
1.54inch LCD Module

1.54inch LCD, SPI interfaces

1.54inch LCD Module

Overview

Introduction

This product provides Raspberry Pi, STM32, Arduino

examples.

More

Specification

Operating voltage: 3.3V/5V (Please ensure that the power supply voltage and logic
voltage are consistent, otherwise it will not work properly)

Interface: SPI

LCD type: IPS

Controller: ST7789

Resolution: 240 (H) RGB x 240 (V)

Display area: 27.72（H）x 27.72（V）mm

Pixel size: 0.1155（H）x 0.1155（V）mm

Dimension: 50 x 35(mm)

Hardware Connection

Raspberry Pi

Please connect the LCD to your Raspberry Pi by the 8PIN cable according to the table

below

Use the pin header or PH2.0 8PIN interface, you need to connect according to the

following table:

Connect to Raspberry Pi

LCD
Raspberry Pi

BCM2835 Board
VCC 5V 5V
GND GND GND
DIN MOSI 19

https://www.waveshare.com/wiki/Main_Page
https://www.waveshare.com/1.54inch-LCD-Module.htm
https://www.waveshare.com/1.54inch-LCD-Module.htm

CLK SCLK 23
CS CE0 24
DS 25 22
RST 27 13
BL 18 12

The 1.54inch LCD uses the PH2.0 8PIN interface, which can be connected to the

Raspberry Pi according to the above table: (Please connect according to the pin

definition table. The color of the wiring in the picture is for reference only, and the

actual color shall prevail.)

STM32

The example we provide is based on STM32F103RBT6, and the connection method

provided is also the corresponding pin of STM32F103RBT6. If you need to transplant

the program, please connect according to the actual pin.

STM32F103ZET connection pin correspondence

LCD STM32
VCC 3.3V
GND GND
DIN PA7
CLK PA5
CS PB6
DC PA8
RST PA9
BL PC7

Take the XNUCLEO-F103RB development board developed by our company as an

https://www.waveshare.com/wiki/File:1.54-rpi.jpg
https://www.waveshare.com/xnucleo-f103rb.htm

example, the connection is as follows:

Arduino

Arduino UNO Connection pin correspondence

LCD UNO
VCC 5V
GND GND
DIN D11
CLK D13
CS D10
DC D7
RST D8
BL D9

The connection diagram is as follows (click to enlarge):

https://www.waveshare.com/wiki/File:XNUCLEO-F103RB-LCD-Connet.jpg
https://www.waveshare.com/wiki/File:1.54-Aduino.jpg

LCD and the controller

The built-in controller used in this LCD is ST7789VW, which is an LCD controller with

240 x RGB x 320 pixels, while the pixels of this LCD itself is 135 (H)RGB x 240(V). There

are two types of horizontal and vertical screens, so the internal RAM of the LCD is not

fully used.

The LCD supports 12-bit, 16-bit, and 18-bit input color formats per pixel, namely

RGB444, RGB565, and RGB666 three color formats, this routine uses RGB565 color

format, which is also a commonly used RGB format

The LCD uses a four-wire SPI communication interface, which can greatly save the GPIO

port, and the communication speed will be faster.

Communication Protocol

Note: Different from the traditional SPI protocol, the data line from the slave to the

master is hidden since the device only has display requirement.

RESX Is the reset pin, it should be low when powering the module and be higher at

other times;

CSX is slave chip select, when CS is low, the chip is enabled.

D/CX is data/command control pin, when DC = 0, write command, when DC = 1, write

data

SDA is the data pin for transmitting RGB data, it works as the MOSI pin of SPI interface;

https://www.waveshare.com/wiki/File:0.96inch_lcd_module_spi.png

SCL worka s the SCLK pins of SPI interface.

SPI communication has data transfer timing, which is combined by CPHA and CPOL.

CPOL determines the level of the serial synchronous clock at idle state. When CPOL =

0, the level is Low. However, CPOL has little effect to the transmission.

CPHA determines whether data is collected at the first clock edge or at the second

clock edge of serial synchronous clock; when CPHL = 0, data is collected at the first

clock edge.

There are 4 SPI communication modes. SPI0 is commonly used, in which CPHL = 0,

CPOL = 0.

Working with Raspberry Pi

Enable SPI interface

PS: If you are using the system of the Bullseye branch, you need to change "apt-get"
to "apt", the system of the Bullseye branch only supports Python3.

Open the terminal, and use the command to enter the configuration page.

sudo raspi-config
Choose Interfacing Options -> SPI -> Yes to enable SPI interface

https://www.waveshare.com/wiki/File:RPI_open_spi.png

Reboot Raspberry Pi：

sudo reboot

Please make sure the SPI is not occupied by other devices, you can check in the middle

of /boot/config.txt

Install Library

If you use the bookworm system, you can only use lgpio library,

bcm2835 and wiringPi can't be installed and used.

BCM2835

#Open the Raspberry Pi terminal and run the following command
wget http://www.airspayce.com/mikem/bcm2835/bcm2835-1.71.tar.gz
tar zxvf bcm2835-1.71.tar.gz
cd bcm2835-1.71/
sudo ./configure && sudo make && sudo make check && sudo make install
For more, you can refer to the official website at: http://www.airspayce.com/mike
m/bcm2835/

WiringPi

#Open the Raspberry Pi terminal and run the following command
cd
sudo apt-get install wiringpi
#For Raspberry Pi systems after May 2019 (earlier than that can be executed withou
t), an upgrade may be required:
wget https://project-downloads.drogon.net/wiringpi-latest.deb
sudo dpkg -i wiringpi-latest.deb
gpio -v
Run gpio -v and version 2.52 will appear, if it doesn't it means there was an inst
allation error

Bullseye branch system using the following command:
git clone https://github.com/WiringPi/WiringPi
cd WiringPi
. /build
gpio -v
Run gpio -v and version 2.70 will appear, if it doesn't it means there was an inst
allation error

lgpio

#Open the Raspberry Pi terminal and run the following command
wget https://github.com/joan2937/lg/archive/master.zip
unzip master.zip
cd lg-master
sudo make install

You can refer to the official website for more: https://github.com/gpiozero/lg

Python

sudo apt-get update
sudo apt-get install python3-pip
sudo apt-get install python3-pil
sudo apt-get install python3-numpy
sudo pip3 install spidev

Download Examples

Open Raspberry Pi terminal and run the following command:

sudo apt-get install unzip -y
sudo wget https://files.waveshare.com/upload/8/8d/LCD_Module_RPI_code.zip
sudo unzip ./LCD_Module_RPI_code.zip
cd LCD_Module_RPI_code/RaspberryPi/

Run the demo codes

Please go into the RaspberryPi directory (demo codes) first and run the commands in

the terminal.

C codes

Re-compile the demo codes:

cd c
sudo make clean
sudo make -j 8

The test program of all screens can be called directly by entering the corresponding
size:

sudo ./main Screen Size

Depending on the LCD, one of the following commands should be entered:

#0.96inch LCD Module
sudo ./main 0.96
#1.14inch LCD Module
sudo ./main 1.14
#1.28inch LCD Module
sudo ./main 1.28
#1.3inch LCD Module
sudo ./main 1.3
#1.47inch LCD Module
sudo ./main 1.47
#1.54inch LCD Module
sudo ./main 1.54
#1.8inch LCD Module
sudo ./main 1.8
#2inch LCD Module
sudo ./main 2
#2.4inch LCD Module
sudo ./main 2.4

python

Enter the python program directory and run the command ls -l.

cd python/examples
ls -l

Test programs for all screens can be viewed, sorted by size:

0inch96_LCD_test.py: 0.96inch LCD test program

1inch14_LCD_test.py: 1.14inch LCD test program

1inch28_LCD_test.py: 1.28inch LCD test program

1inch3_LCD_test.py: 1.3inch LCD test program

1inch47_LCD_test.py: 1.47inch LCD test program

1inch54_LCD_test.py: 1.54inchLCD test program

1inch8_LCD_test.py: 1.8inch LCD test program

2inch_LCD_test.py: 2inch LCD test program

2inch4_LCD_test.py: 2inch4 LCD test program

Just run the program corresponding to the screen, the program supports python2/3

https://www.waveshare.com/wiki/File:LCD_rpi_python_examples.png

python2
sudo python 0inch96_LCD_test.py
sudo python 1inch14_LCD_test.py
sudo python 1inch28_LCD_test.py
sudo python 1inch3_LCD_test.py
sudo python 1inch47_LCD_test.py
sudo python 1inch54_LCD_test.py
sudo python 1inch8_LCD_test.py
sudo python 2inch_LCD_test.py
sudo python 2inch4_LCD_test.py
python3
sudo python3 0inch96_LCD_test.py
sudo python3 1inch14_LCD_test.py
sudo python3 1inch28_LCD_test.py
sudo python3 1inch3_LCD_test.py
sudo python3 1inch47_LCD_test.py
sudo python3 1inch54_LCD_test.py
sudo python3 1inch8_LCD_test.py
sudo python3 2inch_LCD_test.py
sudo python3 2inch4_LCD_test.py

FBCP Porting

PS: FBCP is currently not compatible with a 64-bit Raspberry Pi system, it is
recommended to use a 32-bit system.

Framebuffer uses a video output device to drive a video display device from a memory

buffer containing complete frame data. Simply put, a memory area is used to store the

display content, and the display content can be changed by changing the data in the

memory.

There is an open source project on Git Hub: fbcp-ili9341. Compared with other fbcp

projects, this project uses partial refresh and DMA to achieve a speed of up to 60fps.

Download Drivers

sudo apt-get install cmake -y
cd ~
wget https://files.waveshare.com/upload/1/18/Waveshare_fbcp.zip
unzip Waveshare_fbcp.zip
cd Waveshare_fbcp/
sudo chmod +x ./shell/*

Method 1: Use a script (recommended)

Here we have written several scripts that allow users to quickly use fbcp and run

corresponding commands according to their own screen.

If you use a script and do not need to modify it, you can ignore the second method

below.

Note: The script will replace the corresponding /boot/config.txt and /etc/rc.local and

restart, if the user needs, please back up the relevant files in advance.

#0.96inch LCD Module
sudo ./shell/waveshare-0inch96
#1.14inch LCD Module
sudo ./shell/waveshare-1inch14
#1.3inch LCD Module
sudo ./shell/waveshare-1inch3
#1.44inch LCD Module
sudo ./shell/waveshare-1inch44
#1.54inch LCD Module
sudo ./shell/waveshare-1inch54
#1.8inch LCD Module
sudo ./shell/waveshare-1inch8
#2inch LCD Module
sudo ./shell/waveshare-2inch
#2.4inch LCD Module
sudo ./shell/waveshare-2inch4

Method 2: Manual Configuration

Environment Configuration

Raspberry Pi's vc4-kms-v3d will cause fbcp to fail, so we need to close vc4-kms-v3d

before installing it in fbcp.

sudo nano /boot/config.txt

Just block the statement corresponding to the picture below.

A reboot is then required.

sudo reboot

https://www.waveshare.com/wiki/File:FBCP_CLOSE.jpg

Compile and run

mkdir build
cd build
cmake [options] ..
sudo make -j
sudo ./fbcp

Replace it by yourself according to the LCD Module you use, above cmake [options] ..

#0.96inch LCD Module
sudo cmake -DSPI_BUS_CLOCK_DIVISOR=20 -DWAVESHARE_0INCH96_LCD=ON -DBACKLIGHT_CONTROL
=ON -DSTATISTICS=0 ..
#1.14inch LCD Module
sudo cmake -DSPI_BUS_CLOCK_DIVISOR=20 -DWAVESHARE_1INCH14_LCD=ON -DBACKLIGHT_CONTROL
=ON -DSTATISTICS=0 ..
#1.3inch LCD Module
sudo cmake -DSPI_BUS_CLOCK_DIVISOR=20 -DWAVESHARE_1INCH3_LCD=ON -DBACKLIGHT_CONTROL=
ON -DSTATISTICS=0 ..
#1.54inch LCD Module
sudo cmake -DSPI_BUS_CLOCK_DIVISOR=20 -DWAVESHARE_1INCH54_LCD=ON -DBACKLIGHT_CONTROL
=ON -DSTATISTICS=0 ..
#1.8inch LCD Module
sudo cmake -DSPI_BUS_CLOCK_DIVISOR=20 -DWAVESHARE_1INCH8_LCD=ON -DBACKLIGHT_CONTROL=
ON -DSTATISTICS=0 ..
#2inch LCD Module
sudo cmake -DSPI_BUS_CLOCK_DIVISOR=20 -DWAVESHARE_2INCH_LCD=ON -DBACKLIGHT_CONTROL=O
N -DSTATISTICS=0 ..
#2.4inch LCD Module
sudo cmake -DSPI_BUS_CLOCK_DIVISOR=20 -DWAVESHARE_2INCH4_LCD=ON -DBACKLIGHT_CONTROL=
ON -DSTATISTICS=0 ..

Set up to start automatically

sudo cp ~/Waveshare_fbcp/build/fbcp
/usr/local/bin/fbcp
sudo nano /etc/rc.local

Add fbcp& before exit 0. Note that

you must add "&" to run in the

background. Otherwise, the system

may not be able to start.

Set the Display Resolution

Set the user interface display size in the /boot/config.txt file.

https://www.waveshare.com/wiki/File:1in3_lcd_fb5.png

sudo nano /boot/config.txt

Then add the following lines at the end of the config.txt.

hdmi_force_hotplug=1
hdmi_cvt=[options]
hdmi_group=2
hdmi_mode=1
hdmi_mode=87
display_rotate=0

Replace the above hdmi_cvt=[options] according to the LCD Module you are using.

#2.4inchinch LCD Module & 2inchinch LCD Module
hdmi_cvt=640 480 60 1 0 0 0

#1.8inch LCD Module
hdmi_cvt=400 300 60 1 0 0 0

#1.3inch LCD Module & 1.54inch LCD Module
hdmi_cvt=300 300 60 1 0 0 0

#1.14inch LCD Module
hdmi_cvt=300 170 60 1 0 0 0

#0.96inch LCD Module
hdmi_cvt=300 150 60 1 0 0 0

And then reboot the system:

sudo reboot

After rebooting the system, the Raspberry Pi OS user interface will be displayed.

https://www.waveshare.com/wiki/File:2inch_LCD_Module_fbcp02.png

API Description
The RaspberryPi series can share a set of programs, because they are all embedded

systems, and the compatibility is relatively strong.

The program is divided into bottom-layer hardware interface, middle-layer LCD screen

driver, and upper-layer application;

C

Hardware Interface

We have carried out the low-level encapsulation, if you need to know the internal

implementation can go to the corresponding directory to check, for the reason the

hardware platform and the internal implementation are different.

You can open DEV_Config.c(.h) to see definitions, which in the directory

RaspberryPi\c\lib\Config.

1. There are three ways for C to drive: BCM2835 library, WiringPi library, and Dev l
ibrary respectively
2. We use Dev libraries by default. If you need to change to BCM2835 or WiringPi lib
raries, please open RaspberryPi\c\Makefile and modify lines 13-15 as follows:

Data type:

https://www.waveshare.com/wiki/File:RPI_open_spi1.png

#define UBYTE uint8_t
#define UWORD uint16_t
#define UDOUBLE uint32_t

Module initialization and exit processing.

void DEV_Module_Init(void);
void DEV_Module_Exit(void);
Note:
 Here is some GPIO processing before and after using the LCD screen.

GPIO read and write:

void DEV_Digital_Write(UWORD Pin, UBYTE Value);
UBYTE DEV_Digital_Read(UWORD Pin);

SPI write data:

void DEV_SPI_WriteByte(UBYTE Value);

Upper application

If you need to draw pictures or display Chinese and English characters, we provide

some basic functions here about some graphics processing in the directory

RaspberryPi\c\lib\GUI\GUI_Paint.c(.h).

The fonts can be found in RaspberryPi\c\lib\Fonts directory.

New Image Properties: Create a new image buffer, this property includes the image
buffer name, width, height, flip Angle, and color.

void Paint_NewImage(UBYTE *image, UWORD Width, UWORD Height, UWORD Rotate, UWORD Col

https://www.waveshare.com/wiki/File:LCD_rpi_GUI.png
https://www.waveshare.com/wiki/File:RPI_open_spi3.png

or)
Parameters:
 Image: the name of the image buffer, which is actually a pointer to the first
address of the image buffer;
 Width: image buffer Width;
 Height: the Height of the image buffer;
 Rotate: Indicates the rotation Angle of an image
 Color: the initial Color of the image;

Select image buffer: The purpose of the selection is that you can create multiple
image attributes, there can be multiple images buffer, you can select each image you
create.

void Paint_SelectImage(UBYTE *image)
Parameters:
 Image: the name of the image buffer, which is actually a pointer to the first
address of the image buffer;

Image Rotation: Set the rotation Angle of the selected image, preferably after
Paint_SelectImage(), you can choose to rotate 0, 90, 180, 270.

void Paint_SetRotate(UWORD Rotate)
Parameters:
 Rotate: ROTATE_0, ROTATE_90, ROTATE_180, and ROTATE_270 correspond to 0, 90,
180, and 270 degrees.

Image mirror flip: Set the mirror flip of the selected image. You can choose no mirror,
horizontal mirror, vertical mirror, or image center mirror.

void Paint_SetMirroring(UBYTE mirror)
Parameters:
 Mirror: indicates the image mirroring mode. MIRROR_NONE, MIRROR_HORIZONTAL,
MIRROR_VERTICAL, MIRROR_ORIGIN correspond to no mirror, horizontal mirror, vertical
mirror, and image center mirror respectively.

Set points of the display position and color in the buffer: here is the core GUI
function, processing points display position and color in the buffer.

void Paint_SetPixel(UWORD Xpoint, UWORD Ypoint, UWORD Color)
Parameters:

https://www.waveshare.com/wiki/File:Rotation-lcd.png

 Xpoint: the X position of a point in the image buffer
 Ypoint: Y position of a point in the image buffer
 Color: indicates the Color of the dot

Image buffer fill color: Fills the image buffer with a color, usually used to flash the
screen into blank.

void Paint_Clear(UWORD Color)
Parameters:
 Color: fill Color

The fill color of a certain window in the image buffer: the image buffer part of the
window filled with a certain color, usually used to fresh the screen into blank, often
used for time display, fresh the last second of the screen.

void Paint_ClearWindows(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend, UWORD Co
lor)
Parameters:
 Xstart: the x-starting coordinate of the window
 Ystart: the y-starting coordinate of the window
 Xend: the x-end coordinate of the window
 Yend: the y-end coordinate of the window
 Color: fill Color

Draw point: In the image buffer, draw points on (Xpoint, Ypoint), you can choose the
color, the size of the point, the style of the point.

void Paint_DrawPoint(UWORD Xpoint, UWORD Ypoint, UWORD Color, DOT_PIXEL Dot_Pixel, D
OT_STYLE Dot_Style)
Parameters:
 Xpoint: indicates the X coordinate of a point.
 Ypoint: indicates the Y coordinate of a point.
 Color: fill Color
 Dot_Pixel: The size of the dot, the demo provides 8 size pointss by default.
 typedef enum {
 DOT_PIXEL_1X1 = 1, // 1 x 1
 DOT_PIXEL_2X2 , // 2 X 2
 DOT_PIXEL_3X3 , // 3 X 3
 DOT_PIXEL_4X4 , // 4 X 4
 DOT_PIXEL_5X5 , // 5 X 5
 DOT_PIXEL_6X6 , // 6 X 6
 DOT_PIXEL_7X7 , // 7 X 7
 DOT_PIXEL_8X8 , // 8 X 8
 } DOT_PIXEL;
 Dot_Style: the size of a point that expands from the center of the point or
from the bottom left corner of the point to the right and up.
 typedef enum {
 DOT_FILL_AROUND = 1,
 DOT_FILL_RIGHTUP,

 } DOT_STYLE;

Draw line: In the image buffer, draw line from (Xstart, Ystart) to (Xend, Yend), you can
choose the color, the width and the style of the line.

void Paint_DrawLine(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend, UWORD Color,
LINE_STYLE Line_Style , LINE_STYLE Line_Style)
Parameters:
 Xstart: the x-starting coordinate of a line
 Ystart: the y-starting coordinate of the a line
 Xend: the x-end coordinate of a line
 Yend: the y-end coordinate of a line
 Color: fill Color
 Line_width: The width of the line, the demo provides 8 sizes of width by def
ault.
 typedef enum {
 DOT_PIXEL_1X1 = 1, // 1 x 1
 DOT_PIXEL_2X2 , // 2 X 2
 DOT_PIXEL_3X3 , // 3 X 3
 DOT_PIXEL_4X4 , // 4 X 4
 DOT_PIXEL_5X5 , // 5 X 5
 DOT_PIXEL_6X6 , // 6 X 6
 DOT_PIXEL_7X7 , // 7 X 7
 DOT_PIXEL_8X8 , // 8 X 8
 } DOT_PIXEL;
 Line_Style: line style. Select whether the lines are joined in a straight or
dashed way.
 typedef enum {
 LINE_STYLE_SOLID = 0,
 LINE_STYLE_DOTTED,
 } LINE_STYLE;

Draw rectangle: In the image buffer, draw a rectangle from (Xstart, Ystart) to (Xend,
Yend), you can choose the color, the width of the line, whether to fill the inside of the
rectangle.

void Paint_DrawRectangle(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend, UWORD C
olor, DOT_PIXEL Line_width, DRAW_FILL Draw_Fill)
Parameters:

Xstart: the starting X coordinate of the rectangle
Ystart: the starting Y coordinate of the rectangle
Xend: the x-end coordinate of the rectangle

 Yend: the y-end coordinate of the rectangle
Color: fill Color
Line_width: The width of the four sides of a rectangle. And the demo provide

s 8 sizes of width by default.
typedef enum {

DOT_PIXEL_1X1 = 1, // 1 x 1
DOT_PIXEL_2X2 , // 2 X 2
DOT_PIXEL_3X3 , // 3 X 3

DOT_PIXEL_4X4 , // 4 X 4
DOT_PIXEL_5X5 , // 5 X 5

 DOT_PIXEL_6X6 , // 6 X 6
 DOT_PIXEL_7X7 , // 7 X 7
 DOT_PIXEL_8X8 , // 8 X 8
 } DOT_PIXEL;
 Draw_Fill: Fill, whether to fill the inside of the rectangle
 typedef enum {
 DRAW_FILL_EMPTY = 0,
 DRAW_FILL_FULL,
 } DRAW_FILL;

Draw circle: In the image buffer, draw a circle of Radius with (X_Center Y_Center) as
the center. You can choose the color, the width of the line, and whether to fill the
inside of the circle.

void Paint_DrawCircle(UWORD X_Center, UWORD Y_Center, UWORD Radius, UWORD Color, DOT
_PIXEL Line_width, DRAW_FILL Draw_Fill)
Parameters:

X_Center: the x-coordinate of the center of the circle
Y_Center: the y-coordinate of the center of the circle
Radius: indicates the Radius of a circle
Color: fill Color
Line_width: The width of the arc, with a default of 8 widths

typedef enum {
 DOT_PIXEL_1X1 = 1, // 1 x 1
 DOT_PIXEL_2X2 , // 2 X 2
 DOT_PIXEL_3X3 , // 3 X 3
 DOT_PIXEL_4X4 , // 4 X 4
 DOT_PIXEL_5X5 , // 5 X 5
 DOT_PIXEL_6X6 , // 6 X 6
 DOT_PIXEL_7X7 , // 7 X 7
 DOT_PIXEL_8X8 , // 8 X 8

} DOT_PIXEL;
Draw_Fill: fill, whether to fill the inside of the circle

 typedef enum {
 DRAW_FILL_EMPTY = 0,
 DRAW_FILL_FULL,
 } DRAW_FILL;

Write Ascii character: In the image buffer, use (Xstart Ystart) as the left vertex, write
an Ascii character, you can select Ascii visual character library, font foreground color,
font background color.

void Paint_DrawChar(UWORD Xstart, UWORD Ystart, const char Ascii_Char, sFONT* Font,
UWORD Color_Foreground, UWORD Color_Background)
Parameters:

Xstart: the x-coordinate of the left vertex of a character
Ystart: the Y-coordinate of the left vertex of a character
Ascii_Char: indicates the Ascii character

Font: Ascii visual character library, in the Fonts folder the demo provides
the following Fonts:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font
 Font20: 14*20 font
 Font24: 17*24 font
 Color_Foreground: Font color
 Color_Background: indicates the background color

Write English string: In the image buffer, use (Xstart Ystart) as the left vertex, write a
string of English characters, you can choose Ascii visual character library, font
foreground color, font background color.

void Paint_DrawString_EN(UWORD Xstart, UWORD Ystart, const char * pString, sFONT* Fo
nt, UWORD Color_Foreground, UWORD Color_Background)
Parameters:

Xstart: the x-coordinate of the left vertex of a character
Ystart: the Y coordinate of the font's left vertex
PString: string, string is a pointer
Font: Ascii visual character library, in the Fonts folder the demo provides

the following Fonts:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font
 Font20: 14*20 font
 Font24: 17*24 font

Color_Foreground: Font color
 Color_Background: indicates the background color

Write Chinese string: in the image buffer, use (Xstart Ystart) as the left vertex, write a
string of Chinese characters, you can choose character font, font foreground color,
and font background color of the GB2312 encoding.

void Paint_DrawString_CN(UWORD Xstart, UWORD Ystart, const char * pString, cFONT* fo
nt, UWORD Color_Foreground, UWORD Color_Background)
Parameters:

Xstart: the x-coordinate of the left vertex of a character
Ystart: the Y coordinate of the font's left vertex
PString: string, string is a pointer

 Font: GB2312 encoding character Font library, in the Fonts folder the demo p
rovides the following Fonts:
 Font12CN: ASCII font 11*21, Chinese font 16*21
 Font24CN: ASCII font24 *41, Chinese font 32*41

Color_Foreground: Font color
Color_Background: indicates the background color

Write numbers: In the image buffer,use (Xstart Ystart) as the left vertex, write a string
of numbers, you can choose Ascii visual character library, font foreground color, font

background color.

void Paint_DrawNum(UWORD Xpoint, UWORD Ypoint, double Nummber, sFONT* Font, UWORD Di
git, UWORD Color_Foreground, UWORD Color_Background)
Parameters:

Xpoint: the x-coordinate of the left vertex of a character
Ypoint: the Y coordinate of the left vertex of the font
Nummber: indicates the number displayed, which can be a decimal
Digit: It's a decimal number

 Font: Ascii visual character library, in the Fonts folder the demo provides
the following Fonts:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font

Font20: 14*20 font
 Font24: 17*24 font

Color_Foreground: Font color
Color_Background: indicates the background color

Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display
time,you can choose Ascii visual character font, font foreground color, font
background color.

void Paint_DrawTime(UWORD Xstart, UWORD Ystart, PAINT_TIME *pTime, sFONT* Font, UWOR
D Color_Background, UWORD Color_Foreground)
Parameters:

Xstart: the x-coordinate of the left vertex of a character
 Ystart: the Y coordinate of the font's left vertex

PTime: display time, A time structure is defined here, as long as the hours,
minutes, and seconds are passed to the parameters;

Font: Ascii visual character library, in the Fonts folder the demo provides
the following Fonts:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font
 Font20: 14*20 font
 Font24: 17*24 font
 Color_Foreground: Font color
 Color_Background: indicates the background color

Read the local bmp image and write it to the cache.

For Linux operating systems such as Raspberry Pi, you can read and write pictures. For

Raspberry Pi, in the directory: RaspberryPi\c\lib\GUI\GUI_BMPfile.c(.h).

UBYTE GUI_ReadBmp(const char *path, UWORD Xstart, UWORD Ystart)
parameter:
 path: the relative path of the BMP image
 Xstart: The X coordinate of the left vertex of the image, generally 0 is pass

ed by default
 Ystart: The Y coordinate of the left vertex of the picture, generally 0 by de
fault

Testing Code for Users

For Raspberry Pi, in the directory: RaspberryPi\c\examples, for all the test code;

If you need to run the 0.96-inch LCD test program, you need to add 0.96 as a

parameter when running the main demo.

Re-execute in Linux command mode as follows:

make clean
make
sudo ./main 0.96

Python (for Raspberry Pi)

Works with python and python3.

For python, his calls are not as complicated as C.

Raspberry Pi: RaspberryPi\python\lib\

https://www.waveshare.com/wiki/File:LCD_rpi_c_examples%26128.png
https://www.waveshare.com/wiki/File:LCD_rpi_python_lib.png

lcdconfig.py

Module initialization and exit processing.

def module_init()
def module_exit()
Note:
1. Here is some GPIO processing before and after using the LCD screen.
2. The module_init() function is automatically called in the INIT () initializer on
the LCD, but the module_exit() function needs to be called by itself.

GPIO read and write:

def digital_write(pin, value)
def digital_read(pin)

SPI write data.

def spi_writebyte(data)

xxx_LCD_test.py (xxx indicates the size, if it is a 0.96inch LCD, it is
0inch96_LCD_test.py, and so on)

python is in the following directory:

Raspberry Pi: RaspberryPi\python\examples\

If your python version is python2 and you need to run the 0.96inch LCD test program,

re-execute it as follows in linux command mode:

sudo python 0inch96_LCD_test.py

If your python version is python3 and you need to run the 0.96inch LCD test program,

re-execute the following in linux command mode:

sudo python3 0inch96_LCD_test.py

About Rotation Settings

https://www.waveshare.com/wiki/File:LCD_rpi_python_examples2.png

If you need to set the screen rotation in the python program, you can set it by the

statement im_r= image1.rotate(270).

im_r= image1.rotate(270)

Rotation effect, take 1.54 as an example, the order is 0°, 90°, 180°, 270°

GUI Functions

Python has an image library PIL official library link , it does not need to write code

from the logical layer like C and can directly call to the image library for image

processing. The following will take a 1.54-inch LCD as an example, we provide a brief

description of the demo.

It needs to use the image library and install the library.

sudo apt-get install python3-pil

And then import the library

from PIL import Image,ImageDraw,ImageFont.

Among them, Image is the basic library, ImageDraw is the drawing function, and

ImageFont is the text function.

Define an image cache to facilitate drawing, writing, and other functions on the
picture.

image1 = Image.new("RGB", (disp.width, disp.height), "WHITE")

The first parameter defines the color depth of the image, which is defined as "1" to

indicate the bitmap of one-bit depth. The second parameter is a tuple that defines the

width and height of the image. The third parameter defines the default color of the

buffer, which is defined as "WHITE".

Create a drawing object based on Image1 on which all drawing operations will be

https://www.waveshare.com/wiki/File:LCD_Rotate.jpg
http://effbot.org/imagingbook

performed on here.

draw = ImageDraw.Draw(image1)

Draw a line.

draw.line([(20, 10),(70, 60)], fill = "RED",width = 1)

The first parameter is a four-element tuple starting at (0, 0) and ending at (127,0). Draw

a line. Fill ="0" means the color of the line is white.

Draw a rectangle.

draw.rectangle([(20,10),(70,60)],fill = "WHITE",outline="BLACK")

The first argument is a tuple of four elements. (20,10) is the coordinate value in the

upper left corner of the rectangle, and (70,60) is the coordinate value in the lower right

corner of the rectangle. Fill =" WHITE" means BLACK inside, and outline="BLACK"

means the color of the outline is black.

Draw a circle.

draw.arc((150,15,190,55),0, 360, fill =(0,255,0)

Draw an inscribed circle in the square, the first parameter is a tuple of 4 elements, with

(150, 15) as the upper left corner vertex of the square, (190, 55) as the lower right

corner vertex of the square, specifying the level median line of the rectangular frame is

the angle of 0 degrees, the second parameter indicates the starting angle, the third

parameter indicates the ending angle, and fill = 0 indicates that the color of the line is

white. If the figure is not square according to the coordination, you will get an ellipse.

Besides the arc function, you can also use the chord function for drawing a solid circle.

draw.ellipse((150,65,190,105), fill = 0)

The first parameter is the coordination of the enclosing rectangle. The second and third

parameters are the beginning and end degrees of the circle. The fourth parameter is

the fill color of the circle.

Character.

The ImageFont module needs to be imported and instantiated:

Font1 = ImageFont.truetype("../Font/Font01.ttf",25)
Font2 = ImageFont.truetype("../Font/Font01.ttf",35)
Font3 = ImageFont.truetype("../Font/Font02.ttf",32)

You can use the fonts of Windows or other fonts which is in ttc format..

Note: Each character library contains different characters; If some characters cannot be

displayed, it is recommended that you can refer to the encoding set ro used. To draw

English characters, you can directly use the fonts; for Chinese characters, you need to

add a symbol u:

draw.text((40, 50), 'WaveShare', fill = (128,255,128),font=Font2)
text= u"微雪电子"
draw.text((74, 150),text, fill = "WHITE",font=Font3)

The first parameter is a tuple of 2 elements, with (40, 50) as the left vertex, the font is

Font2, and the fill is the font color. You can directly make fill = "WHITE", because the

regular color value is already defined Well, of course, you can also use fill =

(128,255,128), the parentheses correspond to the values of the three RGB colors so that

you can precisely control the color you want. The second sentence shows Waveshare

Electronics, using Font3, the font color is white.

read local image

image = Image.open('../pic/LCD_1inch28.jpg')

The parameter is the image path.

Other functions.

For more information, you can refer to http://effbot.org/imagingbook pil

Using with STM32

Software Description

The demo is developed based on the HAL library. Download the demo, find the
STM32 program file directory, and open the LCD_demo.uvprojx in the
STM32\STM32F103RBT6\MDK-ARM directory to check the program.

http://effbot.org/imagingbook
https://www.waveshare.com/wiki/File:LCD_STM32_CODE1.png

Open main.c, you can see all the test programs, remove the comments in front of the
test programs on the corresponding screen, and recompile and download.

LCD_0in96_test() 0.96inch LCD test program

LCD_1in14_test() 1.14inch LCD test program

LCD_1in28_test() 1.28inch LCD test program

LCD_1in3_test() 1.3 inch LCD test program

LCD_1in54_test() 1.54inch LCD test program

LCD_1in8_test() 1.8inch LCD test program

LCD_2in_test() 2inch LCD test program

Program Description

Underlying Hardware Interface

Data type

#define UBYTE uint8_t

https://www.waveshare.com/wiki/File:LCD_STM32_CODE128.png

#define UWORD uint16_t
#define UDOUBLE uint32_t

Module initialization and exit processing

UBYTE System_Init(void);
void System_Exit(void);
Note:
1. Here is some GPIO processing before and after using the LCD screen.
2. After the System_Exit(void) function is used, the OLED display will be turned of
f;

Write and read GPIO

void DEV_Digital_Write(UWORD Pin, UBYTE Value);
UBYTE DEV_Digital_Read(UWORD Pin);

SPI writes data

UBYTE SPI4W_Write_Byte(uint8_t value);

The upper application

For the screen, if you need to draw pictures, display Chinese and English characters,

display pictures, etc., you can use the upper application to do, and we provide some

basic functions here about some graphics processing in the directory

STM32\STM32F103RB\User\GUI_DEV\GUI_Paint.c(.h).

Note: Because of the size of the internal RAM of STM32 and Arduino, the GUI is directly

written to the RAM of the LCD.

The character font GUI dependent is in the directory STM32\STM32F103RB\User\Fonts

New Image Properties: Create a new image property, this property includes the
image buffer name, width, height, flip Angle, and color.

https://www.waveshare.com/wiki/File:LCD_rpi_GUI.png
https://www.waveshare.com/wiki/File:LCD_rpi_Font.png

void Paint_NewImage(UWORD Width, UWORD Height, UWORD Rotate, UWORD Color)
Parameters:
 Width: image buffer Width;
 Height: the Height of the image buffer;
 Rotate: Indicates the rotation Angle of an image
 Color: the initial Color of the image;

Set the clear screen function, usually call the clear function of LCD directly.

void Paint_SetClearFuntion(void (*Clear)(UWORD));
parameter:
 Clear: Pointer to the clear screen function, used to quickly clear the screen to
a certain color;

Set the drawing pixel function

void Paint_SetDisplayFuntion(void (*Display)(UWORD,UWORD,UWORD));
parameter:
 Display: Pointer to the pixel drawing function, which is used to write data to t
he specified location in the internal RAM of the LCD;

Select image buffer: the purpose of the selection is that you can create multiple
image attributes, image buffer can exist multiple, and you can select each image you
create.

void Paint_SelectImage(UBYTE *image)
Parameters:
 Image: the name of the image cache, which is actually a pointer to the first add
ress of the image buffer

Image Rotation: Set the selected image rotation Angle, preferably after
Paint_SelectImage(), you can choose to rotate 0, 90, 180, 270.

void Paint_SetRotate(UWORD Rotate)
Parameters:
 Rotate: ROTATE_0, ROTATE_90, ROTATE_180, and ROTATE_270 correspond to 0, 90, 18
0, and 270 degrees respectively;

Image mirror flip: Set the mirror flip of the selected image. You can choose no mirror,
horizontal mirror, vertical mirror, or image center mirror.

void Paint_SetMirroring(UBYTE mirror)
Parameters:
 Mirror: indicates the image mirroring mode. MIRROR_NONE, MIRROR_HORIZONTAL, MIRR
OR_VERTICAL, MIRROR_ORIGIN correspond to no mirror, horizontal mirror, vertical mirr
or, and about image center mirror respectively.

Set points of display position and color in the buffer: here is the core GUI function,
processing points display position and color in the buffer.

void Paint_SetPixel(UWORD Xpoint, UWORD Ypoint, UWORD Color)
Parameters:
 Xpoint: the X position of a point in the image buffer
 Ypoint: Y position of a point in the image buffer
 Color: indicates the Color of the dot

Image buffer fill color: Fills the image buffer with a color, usually used to flash the
screen into blank.

void Paint_Clear(UWORD Color)
Parameters:
 Color: fill Color

Image buffer part of the window filling color: the image buffer part of the window
filled with a certain color, generally as a window whitewashing function, often used
for time display, whitewashing on a second

void Paint_ClearWindows(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend, UWORD Co
lor)
Parameters:
 Xstart: the x-starting coordinate of the window
 Ystart: indicates the Y starting point of the window
 Xend: the x-end coordinate of the window
 Yend: indicates the y-end coordinate of the window
 Color: fill Color

Draw points: In the image buffer, draw points on (Xpoint, Ypoint), you can choose
the color, the size of the point, and the style of the point.

void Paint_DrawPoint(UWORD Xpoint, UWORD Ypoint, UWORD Color, DOT_PIXEL Dot_Pixel, D
OT_STYLE Dot_Style)
Parameters:
 Xpoint: indicates the X coordinate of a point
 Ypoint: indicates the Y coordinate of a point
 Color: fill Color
 Dot_Pixel: The size of the dot, providing a default of eight size points
 typedef enum {
 DOT_PIXEL_1X1 = 1, // 1 x 1
 DOT_PIXEL_2X2 , // 2 X 2
 DOT_PIXEL_3X3 , // 3 X 3
 DOT_PIXEL_4X4 , // 4 X 4
 DOT_PIXEL_5X5 , // 5 X 5
 DOT_PIXEL_6X6 , // 6 X 6
 DOT_PIXEL_7X7 , // 7 X 7
 DOT_PIXEL_8X8 , // 8 X 8

 } DOT_PIXEL;
 Dot_Style: the size of a point that expands from the center of the point or from
the bottom left corner of the point to the right and up
 typedef enum {
 DOT_FILL_AROUND = 1,
 DOT_FILL_RIGHTUP,
 } DOT_STYLE;

Line drawing: In the image buffer, a line from (Xstart, Ystart) to (Xend, Yend), you can
choose the color, line width, and line style.

void Paint_DrawLine(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend, UWORD Color,
LINE_STYLE Line_Style , LINE_STYLE Line_Style)
Parameters:
 Xstart: the x-starting coordinate of a line
 Ystart: indicates the Y starting point of a line
 Xend: x-terminus of a line
 Yend: the y-end coordinate of a line
 Color: fill Color
 Line_width: The width of the line, which provides a default of eight widths
 typedef enum {
 DOT_PIXEL_1X1 = 1, // 1 x 1
 DOT_PIXEL_2X2 , // 2 X 2
 DOT_PIXEL_3X3 , // 3 X 3
 DOT_PIXEL_4X4 , // 4 X 4
 DOT_PIXEL_5X5 , // 5 X 5
 DOT_PIXEL_6X6 , // 6 X 6
 DOT_PIXEL_7X7 , // 7 X 7
 DOT_PIXEL_8X8 , // 8 X 8
 } DOT_PIXEL;
 Line_Style: line style. Select whether the lines are joined in a straight or das
hed way
 typedef enum {
 LINE_STYLE_SOLID = 0,
 LINE_STYLE_DOTTED,
 } LINE_STYLE;

Draw a rectangle: In the image buffer, draw a rectangle from (Xstart, Ystart) to (Xend,
Yend), you can choose the color, the width of the line, and whether to fill the inside
of the rectangle.

void Paint_DrawRectangle(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend, UWORD C
olor, DOT_PIXEL Line_width, DRAW_FILL Draw_Fill)
Parameters:
 Xstart: the starting X coordinate of the rectangle
 Ystart: indicates the Y starting point of the rectangle
 Xend: X terminus of the rectangle
 Yend: specifies the y-end coordinate of the rectangle
 Color: fill Color
 Line_width: The width of the four sides of a rectangle. Default eight widths

are provided
 typedef enum {
 DOT_PIXEL_1X1 = 1, // 1 x 1
 DOT_PIXEL_2X2 , // 2 X 2
 DOT_PIXEL_3X3 , // 3 X 3
 DOT_PIXEL_4X4 , // 4 X 4
 DOT_PIXEL_5X5 , // 5 X 5
 DOT_PIXEL_6X6 , // 6 X 6
 DOT_PIXEL_7X7 , // 7 X 7
 DOT_PIXEL_8X8 , // 8 X 8
 } DOT_PIXEL;
 Draw_Fill: Fill, whether to fill the inside of the rectangle
 typedef enum {
 DRAW_FILL_EMPTY = 0,
 DRAW_FILL_FULL,
 } DRAW_FILL;

Draw circle: In the image buffer, draw a circle of Radius with (X_Center Y_Center) as
the center. You can choose the color, the width of the line, and whether to fill the
inside of the circle.

void Paint_DrawCircle(UWORD X_Center, UWORD Y_Center, UWORD Radius, UWORD Color, DOT
_PIXEL Line_width, DRAW_FILL Draw_Fill)
Parameters:
 X_Center: the x-coordinate of the center of a circle
 Y_Center: Y coordinate of the center of a circle
 Radius: indicates the Radius of a circle
 Color: fill Color
 Line_width: The width of the arc, with a default of 8 widths
 typedef enum {
 DOT_PIXEL_1X1 = 1, // 1 x 1
 DOT_PIXEL_2X2 , // 2 X 2
 DOT_PIXEL_3X3 , // 3 X 3
 DOT_PIXEL_4X4 , // 4 X 4
 DOT_PIXEL_5X5 , // 5 X 5
 DOT_PIXEL_6X6 , // 6 X 6
 DOT_PIXEL_7X7 , // 7 X 7
 DOT_PIXEL_8X8 , // 8 X 8
 } DOT_PIXEL;
 Draw_Fill: fill, whether to fill the inside of the circle
 typedef enum {
 DRAW_FILL_EMPTY = 0,
 DRAW_FILL_FULL,
 } DRAW_FILL;

Write Ascii character: In the image buffer, at (Xstart Ystart) as the left vertex, write an
Ascii character, you can select Ascii visual character library, font foreground color,
and font background color.

void Paint_DrawChar(UWORD Xstart, UWORD Ystart, const char Ascii_Char, sFONT* Font,

UWORD Color_Foreground, UWORD Color_Background)
Parameters:
 Xstart: the x-coordinate of the left vertex of a character
 Ystart: the Y coordinate of the font's left vertex
 Ascii_Char: indicates the Ascii character
 Font: Ascii visual character library, in the Fonts folder provides the following
Fonts:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font
 Font20: 14*20 font
 Font24: 17*24 font
 Color_Foreground: Font color
 Color_Background: indicates the background color

Write English string: In the image buffer, use (Xstart Ystart) as the left vertex, write a
string of English characters, can choose Ascii visual character library, font foreground
color, font background color.

void Paint_DrawString_EN(UWORD Xstart, UWORD Ystart, const char * pString, sFONT* Fo
nt, UWORD Color_Foreground, UWORD Color_Background)
Parameters:
 Xstart: the x-coordinate of the left vertex of a character
 Ystart: the Y coordinate of the font's left vertex
 PString: string, string is a pointer
 Font: Ascii visual character library, in the Fonts folder provides the following
Fonts:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font
 Font20: 14*20 font
 Font24: 17*24 font
 Color_Foreground: Font color
 Color_Background: indicates the background color

Write Chinese string: in the image buffer, use (Xstart Ystart) as the left vertex, write a
string of Chinese characters, you can choose GB2312 encoding character font, font
foreground color, and font background color.

void Paint_DrawString_CN(UWORD Xstart, UWORD Ystart, const char * pString, cFONT* fo
nt, UWORD Color_Foreground, UWORD Color_Background)
Parameters:
 Xstart: the x-coordinate of the left vertex of a character
 Ystart: the Y coordinate of the font's left vertex
 PString: string, string is a pointer
 Font: GB2312 encoding character Font library, in the Fonts folder provides the f
ollowing Fonts:
 Font12CN: ASCII font 11*21, Chinese font 16*21
 Font24CN: ASCII font24 *41, Chinese font 32*41
 Color_Foreground: Font color

 Color_Background: indicates the background color

Write numbers: In the image buffer, use (Xstart Ystart) as the left vertex, write a
string of numbers, you can choose Ascii visual character library, font foreground
color, and font background color.

void Paint_DrawNum(UWORD Xpoint, UWORD Ypoint, double Nummber, sFONT* Font, UWORD Di
git, UWORD Color_Foreground, UWORD Color_Background)
Parameters:
 Xpoint: the x-coordinate of the left vertex of a character
 Ypoint: the Y coordinate of the left vertex of the font
 Nummber: indicates the number displayed, which can be a decimal
 Digit: It's a decimal number
 Font: Ascii visual character library, in the Fonts folder provides the following
Fonts:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font
 Font20: 14*20 font
 Font24: 17*24 font
 Color_Foreground: Font color
 Color_Background: indicates the background color

Display time: in the image buffer, use (Xstart Ystart) as the left vertex, display time,
you can choose Ascii visual character font, font foreground color, and font
background color.

void Paint_DrawTime(UWORD Xstart, UWORD Ystart, PAINT_TIME *pTime, sFONT* Font, UWOR
D Color_Background, UWORD Color_Foreground)
Parameters:
 Xstart: the x-coordinate of the left vertex of a character
 Ystart: the Y coordinate of the font's left vertex
 PTime: display time, here defined as a good time structure, as long as the hour,
minute, and second bits of data to the parameter;
 Font: Ascii visual character library, in the Fonts folder provides the following
Fonts:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font
 Font20: 14*20 font
 Font24: 17*24 font
 Color_Foreground: Font color
 Color_Background: indicates the background color

Arduino Software Description
Note: The demos are all tested on Arduino uno. If you need other types of Arduino, you

need to determine whether the connected pins are correct.

Template: Arduino IDE Installation Steps

Run program

In the product encyclopedia interface downloadthe program , and then unzip it. The

Arduino program is located at ~/Arduino/…

Please select the corresponding program according to the LCD screen model to open

You can view test programs for all screen sizes, sorted by size:

For example, a 1.54-inch LCD Module. Open the LCD_1inch54 folder and run the

LCD_1inch54.ino file.

Open the program, and select the development board model Arduino UNO

https://www.waveshare.com/wiki/Template:Arduino_IDE_Installation_Steps
https://files.waveshare.com/upload/e/e9/LCD_Module_code.7z
https://www.waveshare.com/wiki/File:LCD_arduino_cede1.png
https://www.waveshare.com/wiki/File:1.28inch_LCD_Arduino.png
https://www.waveshare.com/wiki/File:Arduino_for_1.69inch_lcd_module03.jpg

Select the corresponding COM port

Then click to compile and download

https://www.waveshare.com/wiki/File:Arduino_for_1.69inch_lcd_module04.jpg
https://www.waveshare.com/wiki/File:LCD_arduino_cede5.png

Program Description

Document Introduction

Take Arduino UNO controlling a 1.54-inch LCD as an example, open the

Arduino\LCD_1inch54 directory:

Of which:

LCD_1inch54.ino: open with Arduino IDE;

LCD_Driver.cpp(.h): is the driver of the LCD screen;

DEV_Config.cpp(.h): It is the hardware interface definition, which encapsulates the read

and write pin levels, SPI transmission data, and pin initialization;

font8.cpp, font12.cpp, font16.cpp, font20.cpp, font24.cpp, font24CN.cpp, fonts.h: fonts

for characters of different sizes;

https://www.waveshare.com/wiki/File:LCD_arduino_cede5.png
https://www.waveshare.com/wiki/File:LCD_arduino_ide_codeDescription1.png

image.cpp(.h): is the image data, which can convert any BMP image into a 16-bit true

color image array through Img2Lcd (downloadable in the development data).

The program is divided into bottom-layer hardware interface, middle-layer LCD screen

driver, and upper-layer application;

Underlying hardware interface

The hardware interface is defined in the two files DEV_Config.cpp(.h), and functions

such as read and write pin level, delay, and SPI transmission are encapsulated.

write pin level

void DEV_Digital_Write(int pin, int value)

The first parameter is the pin, and the second is the high and low levels.

Read pin level

int DEV_Digital_Read(int pin)

The parameter is the pin, and the return value is the level of the read pin.

Delay

DEV_Delay_ms(unsigned int delaytime)

millisecond level delay.

SPI output data

DEV_SPI_WRITE(unsigned char data)

The parameter is char type, occupying 8 bits.

The Upper Application

For the screen, if you need to draw pictures, display Chinese and English characters,

display pictures, etc., you can use the upper application to do, and we provide some

basic functions here about some graphics processing in the directory GUI_Paint.c(.h)

Note: Because of the size of the internal RAM of STM32 and Arduino, the GUI is directly

written to the RAM of the LCD.

The fonts used by the GUI all depend on the font*.cpp(h) files under the same file

New Image Properties: Create a new image property, this property includes the
image buffer name, width, height, flip Angle, color.

void Paint_NewImage(UWORD Width, UWORD Height, UWORD Rotate, UWORD Color)
Parameters:
 Width: image buffer Width;
 Height: the Height of the image buffer;
 Rotate: Indicates the rotation Angle of an image
 Color: the initial Color of the image;

Set the clear screen function, usually call the clear function of LCD directly.

void Paint_SetClearFuntion(void (*Clear)(UWORD));
parameter:
 Clear: Pointer to the clear screen function, used to quickly clear the screen to
a certain color;

https://www.waveshare.com/wiki/File:LCD_arduino_ide_codeDescription_GUI.png
https://www.waveshare.com/wiki/File:LCD_arduino_ide_codeDescription_font.png

Set the drawing pixel function.

void Paint_SetDisplayFuntion(void (*Display)(UWORD,UWORD,UWORD));
parameter:
 Display: Pointer to the pixel drawing function, which is used to write data to t
he specified location in the internal RAM of the LCD;

Select image buffer: the purpose of the selection is that you can create multiple
image attributes, an image buffer can exist multiple, and you can select each image
you create.

void Paint_SelectImage(UBYTE *image)
Parameters:
 Image: the name of the image cache, which is actually a pointer to the first add
ress of the image buffer

Image Rotation: Set the selected image rotation Angle, preferably after
Paint_SelectImage(), you can choose to rotate 0, 90, 180, 270.

void Paint_SetRotate(UWORD Rotate)
Parameters:
 Rotate: ROTATE_0, ROTATE_90, ROTATE_180, and ROTATE_270 correspond to 0, 90, 18
0, and 270 degrees respectively;

Image mirror flip: Set the mirror flip of the selected image. You can choose no mirror,
horizontal mirror, vertical mirror, or image center mirror.

void Paint_SetMirroring(UBYTE mirror)
Parameters:
 Mirror: indicates the image mirroring mode. MIRROR_NONE, MIRROR_HORIZONTAL, MIRR
OR_VERTICAL, MIRROR_ORIGIN correspond to no mirror, horizontal mirror, vertical mirr
or, and about image center mirror respectively.

Set points of display position and color in the buffer: here is the core GUI function,
processing points display position and color in the buffer.

void Paint_SetPixel(UWORD Xpoint, UWORD Ypoint, UWORD Color)
Parameters:
 Xpoint: the X position of a point in the image buffer
 Ypoint: Y position of a point in the image buffer
 Color: indicates the Color of the dot

Image buffer fill color: Fills the image buffer with a color, usually used to flash the
screen into blank.

void Paint_ClearWindows(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend, UWORD Co

lor)
Parameters:
 Xstart: the x-starting coordinate of the window
 Ystart: indicates the Y starting point of the window
 Xend: the x-end coordinate of the window
 Yend: indicates the y-end coordinate of the window
 Color: fill Color

Draw points: In the image buffer, draw points on (Xpoint, Ypoint), you can choose
the color, the size of the point, and the style of the point.

void Paint_DrawPoint(UWORD Xpoint, UWORD Ypoint, UWORD Color, DOT_PIXEL Dot_Pixel, D
OT_STYLE Dot_Style)
Parameters:
 Xpoint: indicates the X coordinate of a point
 Ypoint: indicates the Y coordinate of a point
 Color: fill Color
 Dot_Pixel: The size of the dot, providing a default of eight size points
 typedef enum {
 DOT_PIXEL_1X1 = 1, // 1 x 1
 DOT_PIXEL_2X2 , // 2 X 2
 DOT_PIXEL_3X3 , // 3 X 3
 DOT_PIXEL_4X4 , // 4 X 4
 DOT_PIXEL_5X5 , // 5 X 5
 DOT_PIXEL_6X6 , // 6 X 6
 DOT_PIXEL_7X7 , // 7 X 7
 DOT_PIXEL_8X8 , // 8 X 8
 } DOT_PIXEL;
 Dot_Style: the size of a point that expands from the center of the point or from
the bottom left corner of the point to the right and up
 typedef enum {
 DOT_FILL_AROUND = 1,
 DOT_FILL_RIGHTUP,
 } DOT_STYLE;

Line drawing: In the image buffer, a line from (Xstart, Ystart) to (Xend, Yend), you can
choose the color, line width, and line style.

void Paint_DrawLine(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend, UWORD Color,
LINE_STYLE Line_Style , LINE_STYLE Line_Style)
Parameters:
 Xstart: the x-starting coordinate of a line
 Ystart: indicates the Y starting point of a line
 Xend: x-terminus of a line
 Yend: the y-end coordinate of a line
 Color: fill Color
 Line_width: The width of the line, which provides a default of eight widths
 typedef enum {
 DOT_PIXEL_1X1 = 1, // 1 x 1
 DOT_PIXEL_2X2 , // 2 X 2

 DOT_PIXEL_3X3 , // 3 X 3
 DOT_PIXEL_4X4 , // 4 X 4
 DOT_PIXEL_5X5 , // 5 X 5
 DOT_PIXEL_6X6 , // 6 X 6
 DOT_PIXEL_7X7 , // 7 X 7
 DOT_PIXEL_8X8 , // 8 X 8
 } DOT_PIXEL;
 Line_Style: line style. Select whether the lines are joined in a straight or
dashed way
 typedef enum {
 LINE_STYLE_SOLID = 0,
 LINE_STYLE_DOTTED,
 } LINE_STYLE;

Draw a rectangle: In the image buffer, draw a rectangle from (Xstart, Ystart) to (Xend,
Yend), you can choose the color, the width of the line, and whether to fill the inside
of the rectangle.

void Paint_DrawRectangle(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend, UWORD C
olor, DOT_PIXEL Line_width, DRAW_FILL Draw_Fill)
Parameters:
 Xstart: the starting X coordinate of the rectangle
 Ystart: indicates the Y starting point of the rectangle
 Xend: X terminus of the rectangle
 Yend: specifies the y-end coordinate of the rectangle
 Color: fill Color
 Line_width: The width of the four sides of a rectangle. Default eight widths
are provided
 typedef enum {
 DOT_PIXEL_1X1 = 1, // 1 x 1
 DOT_PIXEL_2X2 , // 2 X 2
 DOT_PIXEL_3X3 , // 3 X 3
 DOT_PIXEL_4X4 , // 4 X 4
 DOT_PIXEL_5X5 , // 5 X 5
 DOT_PIXEL_6X6 , // 6 X 6
 DOT_PIXEL_7X7 , // 7 X 7
 DOT_PIXEL_8X8 , // 8 X 8
 } DOT_PIXEL;
 Draw_Fill: Fill, whether to fill the inside of the rectangle
 typedef enum {
 DRAW_FILL_EMPTY = 0,
 DRAW_FILL_FULL,
 } DRAW_FILL;

Draw circle: In the image buffer, draw a circle of Radius with (X_Center Y_Center) as
the center. You can choose the color, the width of the line, and whether to fill the
inside of the circle.

void Paint_DrawCircle(UWORD X_Center, UWORD Y_Center, UWORD Radius, UWORD Color, DOT
_PIXEL Line_width, DRAW_FILL Draw_Fill)

Parameters:
 X_Center: the x-coordinate of the center of a circle
 Y_Center: Y coordinate of the center of a circle
 Radius: indicates the Radius of a circle
 Color: fill Color
 Line_width: The width of the arc, with a default of 8 widths
 typedef enum {
 DOT_PIXEL_1X1 = 1, // 1 x 1
 DOT_PIXEL_2X2 , // 2 X 2
 DOT_PIXEL_3X3 , // 3 X 3
 DOT_PIXEL_4X4 , // 4 X 4
 DOT_PIXEL_5X5 , // 5 X 5
 DOT_PIXEL_6X6 , // 6 X 6
 DOT_PIXEL_7X7 , // 7 X 7
 DOT_PIXEL_8X8 , // 8 X 8
 } DOT_PIXEL;
 Draw_Fill: fill, whether to fill the inside of the circle
 typedef enum {
 DRAW_FILL_EMPTY = 0,
 DRAW_FILL_FULL,
 } DRAW_FILL;

Write Ascii character: In the image buffer, at (Xstart Ystart) as the left vertex, write an
Ascii character, you can select Ascii visual character library, font foreground color,
and font background color.

void Paint_DrawChar(UWORD Xstart, UWORD Ystart, const char Ascii_Char, sFONT* Font,
UWORD Color_Foreground, UWORD Color_Background)
Parameters:
 Xstart: the x-coordinate of the left vertex of a character
 Ystart: the Y coordinate of the font's left vertex
 Ascii_Char: indicates the Ascii character
 Font: Ascii visual character library, in the Fonts folder provides the follo
wing Fonts:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font
 Font20: 14*20 font
 Font24: 17*24 font
 Color_Foreground: Font color
 Color_Background: indicates the background color

Write English string: In the image buffer, use (Xstart Ystart) as the left vertex, write a
string of English characters, can choose Ascii visual character library, font foreground
color, and font background color.

void Paint_DrawString_EN(UWORD Xstart, UWORD Ystart, const char * pString, sFONT* Fo
nt, UWORD Color_Foreground, UWORD Color_Background)
Parameters:
 Xstart: the x-coordinate of the left vertex of a character

 Ystart: the Y coordinate of the font's left vertex
 PString: string, string is a pointer
 Font: Ascii visual character library, in the Fonts folder provides the follo
wing Fonts:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font
 Font20: 14*20 font
 Font24: 17*24 font
 Color_Foreground: Font color
 Color_Background: indicates the background color

Write Chinese string: in the image buffer, use (Xstart Ystart) as the left vertex, and
write a string of Chinese characters, you can choose GB2312 encoding character
font, font foreground color, and font background color.

void Paint_DrawString_CN(UWORD Xstart, UWORD Ystart, const char * pString, cFONT* fo
nt, UWORD Color_Foreground, UWORD Color_Background)
Parameters:
 Xstart: the x-coordinate of the left vertex of a character
 Ystart: the Y coordinate of the font's left vertex
 PString: string, string is a pointer
 Font: GB2312 encoding character Font library, in the Fonts folder provides t
he following Fonts:
 Font12CN: ASCII font 11*21, Chinese font 16*21
 Font24CN: ASCII font24 *41, Chinese font 32*41
 Color_Foreground: Font color
 Color_Background: indicates the background color

Write numbers: In the image buffer, use (Xstart Ystart) as the left vertex, write a
string of numbers, you can choose Ascii visual character library, font foreground
color, and font background color.

void Paint_DrawNum(UWORD Xpoint, UWORD Ypoint, double Nummber, sFONT* Font, UWORD Di
git, UWORD Color_Foreground, UWORD Color_Background)
Parameters:
 Xpoint: the x-coordinate of the left vertex of a character
 Ypoint: the Y coordinate of the left vertex of the font
 Nummber: indicates the number displayed, which can be a decimal
 Digit: It's a decimal number
 Font: Ascii visual character library, in the Fonts folder provides the follo
wing Fonts:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font
 Font20: 14*20 font
 Font24: 17*24 font
 Color_Foreground: Font color
 Color_Background: indicates the background color

Write numbers with decimals: at (Xstart Ystart) as the left vertex, write a string of
numbers with decimals, you can choose Ascii code visual character font, font
foreground color, font background color

void Paint_DrawFloatNum(UWORD Xpoint, UWORD Ypoint, double Nummber, UBYTE Decimal_Po
int, sFONT* Font, UWORD Color_Foreground, UWORD Color_Background);
parameter:
 Xstart: the X coordinate of the left vertex of the character
 Ystart: Y coordinate of the left vertex of the font
 Nummber: the displayed number, which is saved in double type here
 Decimal_Point: Displays the number of digits after the decimal point
 Font: Ascii code visual character font library, the following fonts are pro
vided in the Fonts folder:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font
 Font20: 14*20 font
 Font24: 17*24 font
 Color_Foreground: font color
 Color_Background: background color

Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display time,
you can choose Ascii visual character font, font foreground color, and font
background color.

void Paint_DrawTime(UWORD Xstart, UWORD Ystart, PAINT_TIME *pTime, sFONT* Font, UWOR
D Color_Background, UWORD Color_Foreground)
Parameters:
 Xstart: the x-coordinate of the left vertex of a character
 Ystart: the Y coordinate of the font's left vertex
 PTime: display time, here defined as a good time structure, as long as the h
our, minute, and second bits of data to the parameter;
 Font: Ascii visual character library, in the Fonts folder provides the follo
wing Fonts:
 Font8: 5*8 font
 Font12: 7*12 font
 Font16: 11*16 font
 Font20: 14*20 font
 Font24: 17*24 font
 Color_Foreground: Font color
 Color_Background: indicates the background color

Display image: at (Xstart Ystart) as the left vertex, display an image whose width is
W_Image and height is H_Image;

void Paint_DrawImage(const unsigned char *image, UWORD xStart, UWORD yStart, UWORD W
_Image, UWORD H_Image)
parameter:
 image: image address, pointing to the image information you want to display

 Xstart: the X coordinate of the left vertex of the character
 Ystart: Y coordinate of the left vertex of the font
 W_Image: Image width
 H_Image: Image height

VisionFive2

Adaptive Model

0.96inch LCD Module

1.14inch LCD Module

1.28inch LCD Module

1.3inch LCD Module

1.54inch LCD Module

1.8inch LCD Module

2inch LCD Module

2.4inch LCD Module

Hardware Connection

VisionFive2 Pin Connection

LCD VisionFive2 Board Pin No.
VCC 3.3V
GND GND

https://www.waveshare.com/0.96inch-lcd-module.htm
https://www.waveshare.com/1.14inch-lcd-module.htm
https://www.waveshare.com/1.28inch-lcd-module.htm
https://www.waveshare.com/1.3inch-lcd-module.htm
https://www.waveshare.com/1.54inch-lcd-module.htm
https://www.waveshare.com/1.8inch-lcd-module.htm
https://www.waveshare.com/2inch-lcd-module.htm
https://www.waveshare.com/2.4inch-lcd-module.htm
https://www.waveshare.com/wiki/File:LCD_VisionFive201.jpg

DIN 19
CLK 23
CS 24
DC 22
RST 13
BL 12

Install Corresponding Libraries

apt-get install pip
pip install VisionFive.gpio
apt-get install python3-numpy
apt-get install python3-pil

Demo Download

apt-get install p7zip-full
wget https://files.waveshare.com/upload/e/e9/LCD_Module_code.7z
7z x LCD_Module_code.7z -o./LCD_Module_code
cd LCD_Module_code/VisionFive/python/example/

Run the Corresponding Demo According to the Screen You

Purchased

python3 0inch96_LCD_test.py
python3 1inch14_LCD_test.py
python3 1inch28_LCD_test.py
python3 1inch3_LCD_test.py
python3 1inch54_LCD_test.py
python3 1inch8_LCD_test.py
python3 2inch_LCD_test.py
python3 2inch4_LCD_test.py

Resources

Documents

Schematic

ST7789VW Datasheet

2D Drawing

3D Drawing

https://files.waveshare.com/upload/e/e8/1.54inch_LCD_Module_SchDoc.pdf
https://files.waveshare.com/upload/a/ad/ST7789VW.pdf
https://files.waveshare.com/upload/6/64/1_54inch_lcd_module_2d.zip
https://files.waveshare.com/upload/9/9b/1_54inch_lcd_module_3d.zip

Demo codes

Demo codes

Software

lcd Chinese Character Modulo Software

Image2Lcd Image Modulo Software

Support

Technical Support

If you need technical support or have any feedback/review,

please click the Submit Now button to submit a ticket, Our

support team will check and reply to you within 1 to 2 working

days. Please be patient as we make every effort to help you to

resolve the issue.

Working Time: 9 AM - 6 AM GMT+8 (Monday to Friday)

Submit Now

Overview
Introduction

Specification

Hardware Connection

Raspberry Pi

STM32
Arduino

LCD and the controller

Communication Protocol

Working with Raspberry Pi
Enable SPI interface

Install Library

BCM2835

WiringPi

lgpio
Python

Download Examples

Run the demo codes

C codes

https://files.waveshare.com/upload/8/8d/LCD_Module_code.zip
https://files.waveshare.com/upload/7/78/LcmZimo.zip
https://files.waveshare.com/upload/b/bd/Image2Lcd2.9.zip
https://service.waveshare.com/

python

FBCP Porting
Download Drivers

Method 1: Use a script (recommended)

Method 2: Manual Configuration
Environment Configuration

Compile and run

Set up to start automatically

Set the Display Resolution

API Description
C

Hardware Interface

Upper application
Testing Code for Users

Python (for Raspberry Pi)

lcdconfig.py

About Rotation Settings

GUI Functions

Using with STM32
Software Description

Program Description

Underlying Hardware Interface
The upper application

Arduino Software Description
Run program

Login / Create Account

https://www.waveshare.com/w/index.php?title=Special:UserLogin&returnto=1.54inch+LCD+Module

