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Preface

The purpose of this book is to make contributions to the analytical machin-
ery required to integrate structure and control design and to show that this
optimized structure usually has a finite, rather than an infinite, complexity.
The first challenge in such an endeavor is to choose the right paradigm for
structure design. Engineers currently design wings for aircraft that coordi-
nate the aerodynamics and structural design disciplines very well, but then
the control functions are added, almost as an afterthought, destroying the
flying efficiencies that were so carefully treated in the structure design in the
first place. The added control functions are not efficiently performed either,
given that the structure design has already been completed and cannot be
economically redesigned to “cooperate” better with control functions. So,
historically, engineers design structures first (beams, plates, and shells) and
then add a control system to “torture” the structure into doing things it
was not originally designed to do. Even in research communities we have
not solved this problem of integrating structure and control design. As a
recent research example of this fact, DARPA sponsored a “smart structures”
research program to control wings by warping them (as the Wright Brothers
did many years ago). An existing F16 wing was instrumented with a nickel–
titanium actuator to apply a large torque to the wing to twist it, trying to
obtain a 20◦ twist. The control system and the actuator twisted the wing only
7◦ because too much power was required to twist the structure away from
its equilibrium. As opposed to a control system that torques or pushes the
structure away from its equilibrium, we will show that a tensegrity paradigm
for structures will allow one to modify the equilibrium of the structure to
achieve the new desired shape, so that power is not required to hold the new
shape. Integrating structure and control design will require less power from
the control system to accomplish the same objectives.

Less control power also impacts the parameters of structure design, since
less structural stress is imparted to the structural components during con-
trol. Such cooperation between the static and dynamic properties of the
structure and the control system can only be accomplished by a structure
design paradigm that maintains an extremely high degree of “controllabil-
ity” during all phases of the structure design. This requires new types of

xi



xii Preface

structures and the tensegrity structural paradigm is the only one the authors
have found with these properties.

This book focuses on the development of analytical tools that would allow
the dynamics and structure design to have the control problem in mind, but
analytical tools first have to be derived for the static and dynamic analysis
of the tensegrity paradigm, leaving room for only one chapter on control.

Even though this book focuses on mechanical properties of a tensegrity
system, one need not limit design goals to merely mechanical properties.
Other books will be written to optimize the geometric arrangement of ma-
terial (within the tensegrity paradigm) to obtain a prescribed set of other
acoustic properties, or electromagnetic properties. There are material prop-
erties that can be obtained by a “composite” design (where one chooses
materials and the topology of their configuration) that natural materials do
not possess. For example, we have demonstrated in the microwave lab a
“left-handed” tensegrity material, meaning a material whose electromagnetic
properties have negative values of permeability µ and permittivity ϵ.

Chapter 1, Introduction and Motivation, will give many small examples to
illustrate the basic principles and the fundamental rules that govern tenseg-
rity systems. Examples show tensegrity in nature (at both the nanoscale and
the mesoscale), tensegrity in art, tensegrity in architecture, and tensegrity
in engineering and science. This chapter is a guide to the book, referring to
the types of problems to be addressed in more detail in later chapters and
giving some of the optimization results that are simple to explain without the
mathematical derivations that follow in later chapters. The rest of the book
is fairly dense with mathematics, but Chapter 1 avoids math, to enlighten
the spirit and intent and goals of the new methods.

Chapter 2, Analysis of Static Tensegrity Structures, provides the analyt-
ical tools to deal with the question How many ways can sticks and strings
be connected to yield a stable equilibrium? This chapter finds the entire set
of admissible member forces associated with any given configuration of the
tensegrity system. The chapter also computes the stiffness matrix, predicts
the stable configurations, and develops tools for kinematics.

Chapter 3, Design of Compressive Structures, is the first chapter on de-
sign of tensegrity systems. The chapter provides algorithms to minimize
mass under compressive loads, subject to yield and/or buckling constraints,
yielding minimal mass tensegrity structures. The molecular structure of the
spider fiber, which is nature’s strongest tensile material, is indeed a class 1
tensegrity structure. Algorithms are given to design self-similar structures in
an optimal way, to minimize mass, subject to buckling constraints. Formulas
are also given to optimize the complexity of the structure, which turns out
to be finite. After each additional self-similar iteration, the number of bars
and strings increases, but, for a certain choice of geometry, the total mass of
bars and strings decreases. This algorithm generates what we call tensegrity
fractals. For certain structures, the string mass monotonically increases with
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iteration, while the bar mass monotonically reduces, leading to minimal total
mass in a finite number of iterations. The number of iterations required to
achieve minimal mass is given explicitly in closed form by a formula relating
the chosen geometry and the material properties.

Chapter 4, Design of Bending Structures, repeats the steps of Chapter 3,
except for structures under bending loads. This chapter shows that the mini-
mal mass structure, subject to bending loads, is a class 2 tensegrity structure.
This work also shows how to optimize the complexity of a structure. The 1904
work of Michell derived the infinitely complex case, a continuum. Indeed, if
mass at the construction joints is ignored, then the design of our optimal
structure of finite complexity approaches the design of Michell, in the limit
as the complexity of our design approaches infinity. If a mass penalty is
associated with the presence of joints then the optimal complexity is finite.

Chapter 5, Analysis of Tensegrity Dynamics, derives the dynamics of
tensegrity structures. Tensegrity concepts have been around for a long time,
but in the absence of efficient algorithms to compute the dynamics, engineer-
ing designs were a rare novelty. This might explain the long gap between
the invention of tensegrity as an art form and tensegrity as an engineering
method. The large number of components, bars, and strings left many con-
vinced that the required engineering would just be too complicated. But we
must remind ourselves that “complication” is often measured by the relative
ease with which the user of the analytical tools can do the design. Effi-
cient new algorithms are now available to automatically, with minimal labor
from the user, generate the equations of motion. This can be an enabler to
engineering progress with tensegrity concepts in engineering and science.

NASA spent a lot of money in the 1960s and 1970s developing efficient
algorithms for computer simulations of multibody systems. Each body in the
system could be rigid or elastic, and many applications were forthcoming in
spacecraft control, such as in SKYLAB. While these algorithms for generat-
ing dynamic equations of motion could indeed be used today for tensegrity
systems, Chapter 5 will develop an even more efficient method for describing
the dynamics. System constraints are added in the case of structures pinned
to ground, or having fixed equal-length bars. This new result presents the
dynamic equations in the form of a matrix differential equation in lieu of
the traditional vector differential equations. Even though these equations
are written using a non-minimal set of coordinates, efficiency comes from the
very simple mathematical structure of the equations.

Chapter 6 will focus on methods for controlling tensegrity systems. Some
recent results on the control of nonlinear non-minimal systems are derived
to allow large motions of tensegrity systems. These methods are based upon
Lyapunov stability theory. There are some new control-theoretic results here,
but the main focus is to demonstrate the controllable features of tensegrity
structures.
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This text was designed for two different types of readers in mind. A person
who wants the results without trudging through the proofs can read the
chapters and skip the Advanced Material session at the end of each chapter.
Those readers seeking a more rigorous treatment can read the chapter and
may appreciate the more advanced material.

Finally, the authors would like to thank and acknowledge the many stu-
dents and visitors that have been involved with their research on tenseg-
rity in the past. This book mentions the work of Jack Aldrich, Joe Cessna,
Waileung Chan, Carlos Cox, Bram de Jager, JeongHeon Han, Milenko Masic,
Tino Mingori, Jean-Paul Pinaud, Cornel Sultan, Jeff Scruggs, Carlos Vera,
Darrell Williamson, and Anders Wroldsen, among others.

Throughout the text, many plots and figures are better understood and
appreciated in color. We tried to generate these figures in such a way that
the most important information could be captured from the black-and-white
prints of this book. For completeness however, in many points of this book,
the reader might encounter references to colors in the figures. In this case,
please refer to the full color version of these figure which are available in the
website (www.springer.com) or on the electronic version of this book.



Chapter 1

Introduction and
Motivation

Buckminister Fuller [Ful59, Sad96] coined the word tensegrity as a conjunc-
tion of the two words tension and integrity [Lal96]. Our interest is in en-
gineering structures. Hence, to make progress for any precise mathematical
work, the definition of the word tensegrity must be sharpened.

The structures of interest have compressive parts and tensile parts. At the
moment, we will label the compressive parts simply rigid bodies, and we will
label the tensile parts simply strings. The set of positions and orientations
of all rigid bodies will be called the configuration of a set of rigid bodies.
Strings may be connected to each other and to the rigid bodies. We refer
to set of connections between rigid bodies and strings as the connectivity.
We shall distinguish the set of connections performed via strings, i.e. the
string connectivity. Our definition of a tensegrity configuration of rigid bodies
follows.

In the absence of external forces, let a set of rigid bodies in a
specific configuration have torqueless connections (e.g. via fric-
tionless ball-joints). Then this configuration forms a tensegrity
configuration if the given configuration can be stabilized by some
set of internal tensile members, i.e. connected between the rigid
bodies. The configuration is not a tensegrity configuration if no
tensile members are required and/or no set of tensile members
exist to stabilize the configuration.

In other words, we say that the configuration of rigid bodies is a tenseg-
rity configuration if there exists a string connectivity able to stabilize the
configuration.

We distinguish between the internal forces acting on the rigid bodies from
string attachments and the external forces, i.e., forces that do not come from
strings within the structure. Of course, there exists a set of external forces

R.E. Skelton, M.C. de Oliveira, Tensegrity Systems, 1
DOI 10.1007/978-0-387-74242-7 1, c⃝ Springer Science+Business Media, LLC 2009



2 Chapter 1. Introduction and Motivation

(a) Not a Tensegrity Configuration (b) Tensegrity Configuration (c) Tensegrity System

Figure 1.1: Two-body configurations

that could stabilize any configuration of rigid bodies, even without any ten-
sile members present. The string connectivity actually in place for the opera-
tional design (where external forces may be present) might be quite different
than the string connectivity that would be required to stabilize in the absence
of external forces. Thus the definition of a tensegrity configuration or rigid
bodies depends only on the existence of a set of strings that could stabilize
the configuration in the absence of external forces.

If the configuration of rigid bodies cannot be stabilized with any set of
strings (tensile members), then the configuration is not a tensegrity config-
uration. Notice that the configuration in Figure 1.1(a) is not a tensegrity
configuration, while Figure 1.1(b) is a tensegrity configuration. If the system
were actually built as in Figure 1.1(b), without strings, we would still classify
it as a tensegrity configuration. Figure 1.1(c) is a stable embodiment of the
same tensegrity configuration, hence a tensegrity system.

A tensegrity system is composed of any given set of strings con-
nected to a tensegrity configuration of rigid bodies.

From these definitions it is clear that a tensegrity system can be stable or
unstable. By definition there exists a stabilizing connectivity for the given
tensegrity configuration, but the actual implementation may not have ad-
equate connectivity to stabilize. We refer to Figure 1.1(b) as a tensegrity
configuration, and an unstable tensegrity system. We refer to Figure 1.1(c)
as a stable tensegrity system.

There are many definitions of stability. One must talk about stability of a
specific solution of a specific system composed of a rigid body configuration,
a string connectivity and a specified set of external forces. There might
be many equilibrium solutions, but some are stable equilibria and some are
unstable equilibria. We examine only the stability of the null solution, i.e.,
the solution close to the specified configuration.

The null solution of a tensegrity system (specified by a given
tensegrity configuration, a given string connectivity, and a given
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set of external forces) is a stable equilibrium if the structure re-
turns to the original given configuration after the application of
arbitrarily small perturbations anywhere within the configura-
tion.

Clearly tensegrity falls within the class of prestressable structures, so why
use the word tensegrity at all? The answer is that so much has been written
about tensegrity that this special class of prestressable problems deserves
its proper place in the mathematical set of tools that can be specialized for
this class. It turns out that this special class has important engineering
applications, and this is our main motivation.

The above definitions allow significant advance in the understanding of
tensegrity structure design. If the system can be prestressed to get the same
configuration as if external loads were applied, then this provides a rule to
choose the magnitude of the prestress in practical designs. That is, this
feature (prestressable to the same configuration) allows the prestress to be
chosen to yield the same configuration in the factory or lab (where the ex-
ternal forces are absent), as will be achieved in the operational environment
where the external forces are present. In other words the tensegrity can be
designed to have the same configuration loaded and unloaded. This will sim-
plify the mathematics of design, because it sets the rule for choosing the
prestress.

To distinguish between various types of systems that fit this general
tensegrity definition, we offer one more distinction.

A tensegrity configuration that has no contacts between its rigid
bodies is a class 1 tensegrity system, and a tensegrity system with
as many as k rigid bodies in contact is a class k tensegrity system.

One may wonder why precise definitions are needed after more than 50 years
of the existence of the “tensegrity” concept. The answer is mathematical.
We will show that these definitions above allow the simplest mathematics,
and this simplicity allows deep penetration into the solution of optimization
problems. Since the rigid bodies are not compliant, there are no elastic bodies
in bending, only elastic axially loaded strings. Thus bending of material is not
present nor required in this model. This is a great advantage in accuracy of
our models of the system statics and dynamics, since bending models are quite
inaccurate, compared to models of axially loaded material. Hence, generally
speaking, the force that will buckle a bar is not as accurately predicted as
the force that will yield the material.

Note that indeed Buckminister Fuller’s definition carries the spirit of all
these formal requirements, where stability (integrity) is achieved by tensile
forces. Kenneth Snelson was perhaps the first to build a three-dimensional
tensegrity structure from two rigid bodies. In the photo of Figure 1.2, note
that the two wooden “X” pieces are each rigid bodies, and that these two rigid
bodies are not in contact. Such a configuration of rigid bodies is a tensegrity
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Figure 1.2: Snelson’s X-piece, 1948. A two rigid body three-dimensional
stable structure

configuration since the configuration can be stabilized by tensile members
connecting the rigid bodies. This art piece was built by Kenneth Snelson
in 1948. If some of the wires in the X-piece were missing and the structure
collapsed, it would still be called a tensegrity system, albeit an unstable one,
because a stabilizing string exists for the given rigid body configuration.

Figure 1.2 shows the first class 1 tensegrity made from two three-dimensio-
nal rigid bodies. Figure 1.3 shows the first known construction [Uit22] of a
three-dimensional tensegrity using three bars and the minimal number of
strings (9), by Ioganson, 1920–1921. We label these class 1 tensegrity struc-
tures.

Figure 1.4 illustrates the simplest example for a tensegrity system: one
rigid body and one tensile member. A crude approximation of a violin might
look like this. Figure 1.5 shows two other examples. On the left are two rigid
bodies connected at a frictionless ball joint, with two strings to stabilize the
configuration. On the right, three rigid bodies are stabilized by a minimum
of three strings.
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Figure 1.3: A three bar, nine string three-dimensional stable structure [Uit22]

Figure 1.4: A single rigid body, a single string class 1 tensegrity system

(a) class 2 tensegrity (b) Class 3 tensegrity

Figure 1.5: A class 2 and a class 3 tensegrity system
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Figure 1.6: Two rigid bodies and a single string that do not constitute a
tensegrity configuration

Figure 1.7: A class 2 tensegrity model of a clothesline, with two rigid bodies
(pole and earth) and two strings. For α = 45◦ then, for minimal mass,
β = 45◦ if failure is due to yielding or β = 80◦ if failure is due to buckling of
the pole

Figure 1.6 is composed of two masses and one string. This configuration
is not a tensegrity configuration because the system is not prestressable in
the absence of the external forces.

We now preview the type of optimal design that will be studied in this
book with a simple example. To erect a clothesline in the backyard (well,
times have changed with the availability of clothes dryers), typically one
mounts a pole perpendicular to the ground. However, if one wishes to use
the smallest amount of material to construct the clothesline, one can find the
minimal mass solution to this problem as follows. Consider the clothesline
in Figure 1.7, where the pole is fixed by a ball joint at the ground, and
the clothesline wire is assigned a specified tension t. Only half the system
is shown in the sketch. One might consider this a class 2 tensegrity system
with two rigid bodies (the earth and the bar of the clothesline), similar to the
class 2 example of Figure 1.5. Note that the earth as part of our system in
the clothesline example can be interpreted as in Figure 1.4, where the violin
rigid body plays the role of the earth-like boundary.

The mathematics of Chapter 3 yields structures with minimal mass. For
the clothesline example, if buckling is the mode of failure, then the pole
angle β and the guy wire angle α must satisfy 4 tan2 β + 5 tan α tan β = 1.
If α = 45◦, this would fix the pole angle at β = 80◦. On the other hand, in
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the unlikely situation that material yielding is the mode of failure of the pole
(instead of buckling), then the math of Chapter 3 would require α = β = 45◦.

Both of these results remain independent of material choice for the pole
or wire, and independent of the wire tension. The pipe or pole diameter will
be fixed by the buckling calculations, involving the choice of material and the
magnitude of the force (tension in the clothesline), but the angle of the pole
(80◦) is optimal independently of the choice of pole material, and indepen-
dent of wire tension, as well. One benefit of our optimization for tensegrity
systems is that quite often the optimal geometry of the configuration (op-
timal topology) can be determined independently of material choices, and
independently of the magnitude of external loads.

1.1 Tensegrity in Nature

It may seem strange to begin an engineering book with discussions of art,
beauty, and biology. Yet to serve important mechanical, electrical, and other
functions, we observe that nature uses simple non-toxic (biodegradable) ma-
terials in a sophisticated (and many times beautiful) architecture. D’Arcy
W. Thompson says “The Book of Nature may indeed be written in the char-
acters of geometry.” Indeed, there is much to learn from nature. Before
proceeding, however, we remind the reader that mathematics cannot model
any physical system exactly. We can only approximate nature with simplistic
models. We say that the mathematical model is an idealization of the truth.
Of course, there is obvious benefit in choosing a structural paradigm that fits
the system as close as possible, in the sense that useful features are captured
while the required mathematics is kept as simple as possible.

The bones and tendons of animals and man are connected in a manner
that allows easy control of movement. Obviously, these structures evolved
for control functions, where the bones provide compressive load-carrying ca-
pacity and the tendons provide the stabilizing tensions required in a given
configuration. Figure 1.8 suggests how tendons are connected to bony parts
to control them. Note that the tendons (with muscle actuators) connect the
humerus bone of the arm with the ulna and radial bones of the forearm.
These three bones intersect at the elbow, hence we classify this as a class
3 tensegrity joint. Note also that the bones (especially the cupula) are not
rods. Indeed, the shape of the rigid bodies each have a purpose. The second
sketch in this figure suggests that a class 2 tensegrity approximation of the
toe control system might be reasonable.

Figure 1.9 shows the locomotion kinematics of a cat’s hind legs. The
red and blue plots are forces in the respective tendons that are designated
as flexors (red) and extensors (blue). This figure is from the work of Orjan
Ekeberg [EP05, EP06, PEB06, HE08].

A class 1 tensegrity idealization seems to fit very well the molecular struc-
ture of the spider fiber. The molecular structure of nature’s strongest fiber,
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(a) class 2 shoulder joint and class 3 elbow joint (b) class 2 toe joints

Figure 1.8: The elbow can be thought of as a class 3 tensegrity system, the
shoulder as a class 2 tensegrity system, and the foot as a class 2 tensegrity
system

Figure 1.9: The flexor tendons (red) and the extensor tendons (blue) of a
cat’s hind legs. The plot shows the time profile of the forces in each tendon
during a walk

the dragline silk of a Nephila Clavipes (a spider in Figure 1.10, commonly
known as the golden orb weaver) has a tensegrity architecture. The Cornell
researcher Lynn Jelinski [SMJ96] and DuPont’s Y. Termonia [Ter94] explain
that the spider silk is a complex-folded protein composed primarily of two
amino acids, glycine and alanine. The alanines are aligned in two ways to
form (1) rectangular plates (molecular plates from tiny crystals), called β-
pleated sheets in Figure 1.10, and (2) amorphous strands making a tensile
network of material that can take up the strain. The rectangular plates pro-
vide the rigid bodies in our tensegrity definition, and the amorphous strands
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Figure 1.10: A class 1 tensegrity model of the molecular structure of the spi-
der fiber. The rigid bodies are the β-pleated sheets, and the tensile members
are the amorphous strands that connect to the β-pleated sheets

form the tensile members of our tensegrity definition. Since the β-pleated
sheets are not in contact, the material of the spider fiber is stabilized by
tensile members. As in the clothesline example, if we count the rigid earth,
which establishes immovable boundaries for the spider fiber extremal attach-
ment points, as part of our tensegrity configuration of rigid bodies, then the
spider fiber forms a class 1 tensegrity system, idealized somewhat to fit very
well the molecular structure of the spider fiber.

The membrane of red blood cells have remarkable static and dynamic
behavior. Attached to the under-side of the red blood cell membrane (the
lipid bilayer) are 33,000 units that have convenient tensegrity models. Refer
to the cartoon in Figure 1.11, where the protofilament (the junctional com-
plex) is rigid compared to the rest of the components, so it is modeled as
rigid. The elastic components are the spectrin (tendons). Biologists have de-
termined the exact binding sites where the spectrin attach to the junctional
complex (rigid rod). In [VSBS05] the three-dimensional nanomechanics were
derived using the tensegrity model of an erythrocyte junctional complex in
equibiaxial and anisotropic deformations. The complete red blood cell has
33,000 units of these junctional complexes underneath the membrane (lipid
bilayer) of each red blood cell. The paper [VSBS05] describes the static and
dynamic behavior of an individual junctional complex, in the presence of a
variety of initial conditions that might represent an unhealthy state of the
cell. By modeling the protofilament as a rigid body, and by modeling the
spectrin as the tensile connectors between the lipid bilayer (membrane) and
the protofilament at the precisely known attachment points, the equilibrium
position of the protofilament was determined (using lab data for spectrin
stiffness (due to folding it is very nonlinear), and the geometry of the tensile
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Figure 1.11: The network of junctional complexes underneath the red blood
cell membrane. The protofilament (33,000 in each red blood cell) is the rigid
body and the spectrin dimer are the tensile members. Each spectrin is stapled
to the lipid bilayer

network from atomic force microscopes). Some of these results are shown in
Figure 1.12. The paper [dOVV+09] continues this work modeling networks
of junctional complex. Information that can be obtained from the tensegrity
model include the equilibrium position of the protofilament, relative to the
plane of the membrane and also relative to adjacent units in networks. Values
obtained by simulation seem to be in very good agreement with experimental
observations [VSBS05, dOVV+09].

Other tensegrity models of other cell cytoskeletons whose mechanical be-
havior in living cells is consistent with a tensegrity model have been pro-
posed for many years by the biologist Don Ingber at the Harvard Medical
School [Ing98], and others [WOI99, WNS+01, SSI04, SMJ96, Pea90, Kob76,
CLO+02, CS97]. In the 1998 issue of Scientific American Don Ingber claims
that “tensegrity is the architecture of life.”

In spite of our progress in engineered structures and materials, man-made
designs still cannot approach the efficiency (power per unit mass) of biological
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(a) Single Unit (b) Small Network

Figure 1.12: (a) This figure depicts the steady-state results for a single junc-
tional complex within the network of 33,000 junctional complexes underneath
the red blood cell membrane. Each of the six binding sites where the strings
connect to the rigid body are known and can be found in [VSBS05]. In the
tensegrity model, the actin protofilament (rod) has a radius of 4.5 nm and
a length of 37 nm. The equilibrium pitch angle obtained was θ = 17.8◦.
The equilibrium tension in each Sp dimer (cable) is given in [VSBS05]. (b)
This figure shows the steady-state results for networks of junctional com-
plex superimposed with some extra arrows indicating how the mechanical
equilibrium might relate with certain physiologic responses [dOVV+09]

systems. Nature seems to produce outstanding systems designs, while man
concentrates on components of a system but fails to have rules on how to
put components together to make an efficient system with a prescribed set
of functional capabilities. Humans make large factories to produce small
products, whereas nature can produce products larger than the factory.

Integration of mechanical and electrical functions could be accomplished
by optimizing the material topology and the material choice. Although this
book focuses only on the optimization of mechanical properties, books will
undoubtedly follow that show how to optimize topology to get special acoustic
properties or electrical properties. The heart muscle is an example of a
structural system with combined mechanical and electrical properties.

1.2 Tensegrity in Art

Given some materials, one must choose a geometric arrangement of the mate-
rial components to make a structure. We shall loosely refer to this geometry
of those material connections as the system topology. Our focus is mechan-
ical or material engineering, but engineers and architects pay their respects
to beauty too. Geometry has a special kind of beauty on its own. One can
perceive beauty from the most complex to the least complex patterns to fill
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Figure 1.13: Kenneth Snelson’s “Free Ride Home”, 1974, a class 1 tensegrity
structure

space, from the realists who painted complex detail to the impressionists who
painted less detail, to Picasso who painted even less detail, to minimal art
where complex objects are perceived by the brain from a minimal number
of lines or curves on the paper. The beauty of the straight line and simple
geometries was admired by Plato [Philebus Plato, March 27, 355 BC].

Tensegrity components are very simple elements, often just straight lines.
This type of beauty has appealed to sculptors like Kenneth Snelson [Sne65]
and architects like Buckminister Fuller [Ful59]. Figure 1.13 is a class 1 tenseg-
rity sculpture built in 1974 by Kenneth Snelson, New York. Figure 1.14 shows
two more Snelson creations.

The intersection of art and science, form and function, comes to the fore
with tensegrity. The artist Kenneth Snelson himself doubted any utilitar-
ian value of tensegrity [Sne96]. Artists lend creative and inspired concepts to
structures, without the benefit of (nor the need for) analytical tools to charac-
terize functional properties of the structure. Yet, engineers lend sophisticated
analytical tools to uninspired structural concepts. At the intersection of this
dilemma is the mathematical work called “fractals.” Fractals are obtained by
filling space (usually the plane) with an infinite number of self-similar geo-
metric objects. Tessellation or “tiling” theory deals with filling a finite space
with a finite number of similar objects in a similar topology. Mathematicians
Mandelson and Stephen Wolfram [Mal00] made giant contributions to this
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Figure 1.14: class 1 tensegrity towers by Kenneth Snelson

field. The artist M. C. Escher [Mac65] took tessellation to a popular art form
(one author’s favorite tie is an M. C. Escher creation).

Fractal mathematics and the art forms discussed above require no func-
tional purpose, whereas biological examples of topology obviously have a
functional purpose. This is not to say that scientists have not tried to con-
nect the two. They have generated fractals and self-similar structures and
compared them to the topologies found in biological material, such as in
sea shell [Mal00]. See one of the fractal rules of Wolfram illustrated in Fig-
ure 1.15. The topology of natural material probably developed to solve a
functional purpose for survival (be it for mechanical strength, thermal prop-
erties, or electrical, or acoustic characteristics), and not just filling space as
fractals can do. We shall later discuss fractals of a special kind, where space
is filled with self-similar patterns but with an added certificate of mechanical
performance, such as a guaranteed strength or stiffness. Here we simply point
to the kind of “Platonian” beauty of those fractals that involve only straight
lines.

Tensegrity systems have been around for over 50 years as an art
form [Uit22], with some architectural appeal [Pug76, Mot03, Maz03, Lal96,
Gou98, Ped98, MR03], but the absence of analytical tools for convenient
analysis and optimization with which to design engineering structures from
tensegrity concepts has prevented such intriguing topologies from taking their
rightful place among the alternatives for design and construction of engi-
neered structures. Quoting Elisabeth Eaves from Slate.com, Jan. 9, 2004,
“Art for Smart People. The mathematical sculptures of Kenneth Snelson”:

There is little doubt about the mechanical ingenuity or scientific
impact of Snelson’s work. But is it also art? Absolutely. His
sculptures are pure outpourings of creative energy, utterly useless
as objects and yet visually arresting.
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Figure 1.15: A fractal developed by Stephen Wolfram [Mal00] sometimes
compared with the material of sea shells

Indeed early papers on tensegrity agreed with the artist Kenneth Snelson
that tensegrity is art and probably has no utilitarian value. Gunnart Tilbert
and Sergio Pelegrino [Til02, TP03] point out quite correctly that tensegrity
systems composed of architectures built and envisioned by Kenneth Snelson
were not stiff enough for many engineering purposes. But this should not
be understood as a criticism of the tensegrity concept (even though such
language was used). This is simply a criticism of, and a fact about, one
embodiment of tensegrity concepts: the one they had in mind. The type of
structure examined by Tilbert is shown in Figure 1.16, which is fairly soft
in bending and compression. There are, however, many tensegrity examples
beyond those found by the artists. Tensegrity systems can now be made very
stiff indeed, once the mathematical tools are constructed to allow a demand
for high stiffness or strength.

1.3 Tensegrity in Architecture

We expect a dramatic increase in tensegrity concepts in architectural engi-
neering, since it is now possible to demonstrate mathematically (in subse-
quent chapters) that tensegrity structures can be designed to efficiently take
tension, compression, or bending. As material costs increase, it is reason-
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Figure 1.16: The equilibrium surface for a class 1 tensegrity tower, using
regular minimal tensegrity prisms

able that methods that make more efficient use of material will become more
acceptable, even if that requires rewriting some outdated building codes.

But the advantages of tensegrity in architecture goes beyond mass effi-
ciency. Nature uses tensegrity whenever a large controlled change in configu-
ration of the structure is required (such as in animals and cells). Controlled
tensegrity can alter the amount of solar energy a building interior receives, to
make buildings more energy efficient, by making the building responsive to
external events, such as earthquakes, winds, and thermal loads [dS03, dS06a,
dS06b, dS06c, Maz03].

There are important reasons to pursue responsive architecture [dS06b].
One reason why a building should be designed to change its configuration
is to make better use of the natural environmental disturbances acting on
the building. That is, one should use these disturbances to advantage in
case they can be beneficial (such as increased solar lighting or heating), and
to reduce the damage caused by these disturbances in case they cannot be
beneficial (e.g., reducing the impact of an earthquake or high winds from a
hurricane).

Beneficial disturbances: From time to time the mission for a given space
may change, requiring different lighting or heating conditions. In this case
buildings will modify the shape of the space to suit the user, within limits.
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This has already happened in a limited extent. The superdomes can adjust
the amount of light in the stadium by opening or closing the roof. “Sun roofs”
in homes will take on a new meaning, adjusting the entire roof exposure to
the living room or the patio, or the kitchen. Walls separating patios and
living rooms can be automatically moved or closed, depending upon humidity,
sunlight, rain, etc. Windows and roofs will both be adjustable to regulate
heat and airflow, to reduce the cost of heating and air-conditioning.

Detrimental disturbances: In order to survive violent movements of the
ground and or high winds, the building itself must move, just as a person
might bend his knees or stiffen (or soften) his body and joints, or lean into
the wind to stand in the presence of ground motion or high winds. Designing
a building to survive violent movement of the foundation will lead architects
and contractors to better buildings that will reduce the burdens of insurance
companies that must cover the losses in an earthquake and reduce the number
of casualties in a natural disaster. In 1979 Japan built the first controlled
building, where a momentum exchange controller was installed to move a
large mass on rails on the eleventh floor of the building in response to earth-
quake ground motion. The building moves less by arranging the large mass to
move in opposition to the earthquake motion. In the future, a more efficient
controller will be developed that does not add 10% of the mass of the building
on the eleventh floor to counteract the motion. Instead, tendon-controlled
cables will be installed to control the motion more efficiently, and more pre-
cisely, and more reliably. These are tensegrity applications just waiting to be
developed.

New construction techniques: Incorporating motion control capability
into the structure is not as simple as adding a new controlled actuator tech-
nology to an existing structure design method. Both the design of the struc-
ture and the controls have to be coordinated to efficiently allow the required
movement. This will create new techniques for construction. There exist
companies even now dedicated to this task of developing new design and
construction techniques to integrate the structure with the movement “mus-
cles.” The most notable progress so far is deployable structures that have
been designed to be transported to a construction site in a stowed compact
package, and then deployed with only the use of winch power. Such deploy-
able houses or field hospitals can be delivered (dropped from cargo planes
or from helicopters) to a disaster area or provide housing for third world
countries. In the near future such deployable housing concepts will make
permanent homes and other buildings.

A simple tensegrity shelter is shown in Figure 1.17, which is a class 2
tensegrity structure, due to the bar-to-bar connections around the periphery.
Such structures could be stowed in a small package and dropped on a disaster
site, and deploy with winch power (manual or electrical) to function as a field
hospital or temporary housing.
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Figure 1.17: A class 2 tensegrity shelter

Even though a tensegrity structure might look complex, the appropriate
efficiencies can be demonstrated by sound analytical tools and an algorithm
for construction technique. In fact, design costs, building costs, and reliabil-
ity are not necessarily measured by complexity but depend more upon the
availability of analytical tools to reduce such designs to reliable algorithms
and construction techniques.

1.4 Tensegrity in Engineering and Science

In art, it is sufficient for the tensegrity to have beauty. But, the engineering
world should not embrace the concept unless some fundamental questions
are answered, such as “What precise mathematical problem is solved by a
tensegrity system?” This book intends to answer such questions. Any loaded
structure might have parts in compression, parts in tension, and other parts
in torsion. So, if one could know the optimal arrangement of material to take
a tensile load, or a compressive load, or a bending load, then one would have
a great start toward designing an efficient structure for the whole system.
We will show that indeed, an efficient, and sometimes optimal, arrangement
of material for each of these cases (tensile, compressive, or bending loads) is
a tensegrity structure.

Early man-made structures employed orthogonal structural elements, such
as the architecture of Stonehenge, or the ailerons, and spars in the classical
wing, or beams and columns in a building. While such orthogonal elements
are simple to manufacture, there is ample evidence (see the biological exam-
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ples above) that a topology composed of orthogonal elements is not neces-
sarily mass efficient for the functional purpose. Consider the revolutionary
improvements in mass efficiency enabled by the invention of the truss, which
departs from orthogonal material topology. The three-dimensional truss con-
cept can be made even more efficient yet, by exposing structural elements to
only unidirectional loads. Such features not only simplify the equations of
motion, but the resulting models will be much more accurate than models of
bodies that are subject to bending moments. That is, if the internal stresses
in the rigid bodies have a specific predetermined direction, then that feature
assures more accurate dynamic models. In addition to modeling advantages,
some mass efficiency can be obtained if the load directions within each body
can be pre-specified. If each bar can be loaded in only one direction (axially),
the material choices can be specialized to handle loads in a pre-specified di-
rection with much less mass than would be required of material choices that
must take loads in a variety of directions. For example, sand and mortar are
very good materials in compression but are not used in situations where the
dynamic loads can reasonably be expected to reverse directions, as in severe
earthquakes. The loads in a structure can be made unidirectional by apply-
ing sufficient prestress [Pel90, YP96]. For example, a prestressed concrete
beam avoids tensile loads in the concrete. The goal in tensegrity systems is
to assure that the members are unidirectionally loaded, so that no member
is required to serve both compressive and tensile functions.

The largest body of scientific literature on tensegrity structures deals with
the form-finding problem, where one searches for a configuration, and a set of
admissible member forces, to satisfy equilibrium conditions [Emm59, Emm96,
CP91, Cal78, KKAM99, Leo88, Max64, RW81, Tar80, Whi84, OW97, MNJ86,
VM99, PC86, MN01a, ZMM06, MSG05, MSG06, SS97a, Ske05, KW02b,
KW02a]. One of the first attempt to characterize dynamics of class 1 tenseg-
rity systems, a network of rods and strings, appears in [Pin05, SPM01,
Ske05, SCS02] some 50 years after the invention of the tensegrity concept.
In [Pin05] the vector equations are very complex indeed. Chapter 5 will pro-
vide a much more convenient analytical tool to describe both the statics and
the dynamics of tensegrity systems. Other approaches to dynamics appear
in [Lan83, HP79, dO06, CW92, CW96, CB98, ASKD03, Mur01, MN01b,
OW01b, OW01a, OW00].

The essence of this book is to seek a methodology to use simplistic ele-
ments (nothing new here) to fill the allowed space (new here), with guaran-
teed mechanical properties (a lot new here). These include static as well as
dynamic properties with and without the use of active control action. Some
discussion on the principles and simple examples of engineering applications
of tensegrity follow.
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Figure 1.18: The simplest nontrivial tensegrity structure with bars and
strings

1.4.1 Fundamentals of Tensegrity Structures

Basic building blocks

The simplest tensegrity is a single rigid body and a string, as in Figure 1.4.
In the case of bars and strings, this is simply a prestressed bar. The next
simplest, and first nontrivial tensegrity structure with bars and strings, is two
bars and four strings, as in Figure 1.18. The next simplest is a fundamental
three-dimensional unit we will call a Tensegrity Prism, which we discuss in
more detail next.

A Tensegrity Prism is composed of any stable three-dimensional unit us-
ing p bars, with an p-sided polygon of strings on the “top” and an p-sided
polygon of strings also on the “bottom” of the unit. Apparently, Iogan-
son [Uit22, Gou98], was first to build such a unit for p = 3, but Snelson made
it popular in an art form. Several variations of tensegrity prisms will be use-
ful. The photo of a regular minimal tensegrity prism appears in Figure 1.19,
for p = 3, where the top view is photographed in Figure 1.20. The word
minimal refers to the use of the smallest number of strings (3p) to stabilize,
and the word regular refers to the requirement that the top and bottom poly-
gons are parallel and equilateral (but the top and bottom polygons do not
necessarily have the same radius, as was the case in Figures 1.19, and 1.20).

The regular minimal tensegrity prism in Figure 1.20 contains two equilat-
eral triangles, one formed by three strings at the top and the other formed
by three strings at the bottom. These two triangles are parallel but may not
have the same radius (even though they do in this figure). The remaining
three strings connect the vertices of the top triangle to the vertices of the
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Figure 1.19: Perspective view and diagram of a regular minimal tensegrity
prism with same top and bottom radius

α

r

Figure 1.20: Top view of A regular minimal tensegrity prism for p = 3. The
only equilibrium of the unloaded prism is at 30◦ as shown. Red solid lines
form the bottom equilateral triangle of strings, blue dashed lines form the
top equilateral triangle, green solid lines form the strings connecting top to
bottom triangles, and the black lines denote the bars which also connect
top and bottom triangles. For three-bar prisms the unforced equilibrium is
α = 30◦, and the equilibrium in the loaded case can approach α = 90◦
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bottom triangle. The bars (brass rods in the photo) also connect certain ver-
tices of the top triangle to the vertices of the bottom triangle. In Chapter 3
we will show that in the unforced case, the only stable equilibrium of the
three bar (p = 3) minimal regular tensegrity prism requires the twist angle
between the top and the bottom triangles to be precisely 30◦, and this fact
remains true regardless of the radii of either top or bottom triangles. Such
conclusions follow from the general result below, for any choice of p (as per
Section 3.5).

For any regular minimal tensegrity prism composed of p bars, let an exter-
nal force of magnitude f/p be applied at each of the 2p nodes perpendicular
to the top and bottom of the prism (formed by p-polygonal faces), so as to
compress the prism to a smaller height. The equal forces will keep the prism
regular. Summing forces acting on each bar one can derive the equilibrium
condition. In the absence of any external forces (f = 0) the prism equilibrium
is uniquely α = π/2 − π/p, as mentioned above. In the presence of the type
of external forces described above, the prism twist can be any value in the
range π/2 − π/p ≤ α ≤ π − 2π/p, where the upper bound corresponds to an
intersection of the p bars at the middle of the structure. Bars would actually
interfere at angle somewhat less than α = π − 2π/p, due to bar thickness.

Primal and dual structures

We now introduce a concept that applies to any configuration of bars and
strings. Let a given configuration of bars and strings be called the primal
system in this discussion. Now define another system, called the dual, which
has the same geometric appearance as the primal, but the strings have been
replaced by bars, and similarly the bars have been replaced by strings. Some
examples of primals and duals follow.

Imagine just three bars connected end to end in a plane. This is the primal
system in Figure 1.21(a). Now imagine the dual of this system, which is a
three-string system without any bars. Obviously neither the primal nor dual
qualify as tensegrity configurations. The primal requires no string to stabilize
this configuration (the three-bar system is already stable and indeed rigid),
so the primal is not a tensegrity because of the absence of strings. The dual
cannot be stabilized because no bars are present, so this is not a tensegrity
system because it is not stabilizable.

Consider the tensegrity primals and duals illustrated in Figure 1.21, where
the strings are red thin lines and the bars are gray thick lines. In Fig-
ure 1.21(b) the configuration of the two-bar system is in a stable equilibrium
if, and only if, the bars cross each other. That is, the configuration cannot be
stabilized by any string placements if both ends of one bar lie on the same side
of the other bar. So, except for this condition, the left hand figure (the pri-
mal) is a tensegrity configuration in both two-dimensional and 3-dimensional
space. The dual of this system is a four-bar system. This configuration, un-
like the primal system, cannot be stabilized in three-dimensional space but
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(a) Primal and dual (not tensegrity)

(b) Stable primal and 3D unstable dual (c) 3D unstable primal and dual

Figure 1.21: Any system of bars and strings (primal) has a dual obtained by
replacing bars by strings and vice versa

can be stabilized in two-dimensional space. Note from these examples that
the dual of a tensegrity system may or may not be a tensegrity system.

In Figure 1.21(c) the four rigid bars Figure 1.21 form a class 4 tensegrity
in the plane. Of course this configuration cannot be stabilized in three-
dimensional space, since the third dimension of the configuration is not sta-
bilizable. Neither is the configuration of the dual. Any tension applied in one
string would immediately collapse the system to fold about the axis of the
other string, moving the system out of the plane. Both primal and dual are
tensegrities defined in a two-dimensional space.

For p = 3, the dual of the regular minimal tensegrity prism is the class
3 prism that results when the strings and bars reverse roles in the right-
most sketch in Figure 1.20, where strings are now black (three of them), and
the red, green, and blue lines are all bars (nine of them). This is a class 3
tensegrity structure, whereas the primal was a class 1 tensegrity structure.

Minimum mass

For p bars, with a total crushing force f (each node receives force of mag-
nitude f/p), the minimal mass for each bar in a regular minimal tensegrity
prism is given by m, where,

m2 =
4fρ2 sin α[h2 + 2r2(1 − cos(α + 2π/n))]5/2

πnhE(sin α − sin(α + 2π/n))
, (1.1)
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Figure 1.22: A stiff regular non-minimal tensegrity prism. The minimal
number of strings that can stabilize is nine. This structure has 12 strings

where E is Young’s modulus, ρ is mass density, r is the outer radius of the p-
polygon, h is the height of the prism, f is the total crushing load (distributed
evenly over the nodes), and α is the twist of the top p-polygon with respect
to the bottom p-polygon. The length ℓ of a bar in terms of the height h and
radius r, and α is

ℓ2 = h2 + 2r2(1 − cos(α + 2π/n)). (1.2)

See early discussions on this problem in [QKAM03, Han92a, Han92b, Han94].

Non-minimal structures

The point has already been made that tensegrity structures can be stiffened
by adding strings at special places. Consider that the regular minimal tenseg-
rity prism has a soft mode (see Chapter 2), but by adding three extra strings
as in Figure 1.22, the prism is stiff. One has a choice of using building blocks
made of regular minimal tensegrity prisms, which are soft, or regular tenseg-
rity prisms, where the extra strings can be strategically located to increase
stiffness and remove any soft modes. At the date of this writing, we have only
seen minimal tensegrity prisms, as the building blocks of tensegrity structures
both in art and in architectural studies, and this may explain the reluctance
of engineers to adopt tensegrity designs for engineering.

Changing shape and stiffness, deployment

Tensegrity is a structural paradigm that has the very unusual property that
the stiffness can be changed without changing external shape, and conversely,
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Figure 1.23: A tensegrity worm crawling through crevices. From the thesis
of Jack Aldrich [ASKD03]

the shape can be changed without changing stiffness. This is due to the fact
that internal changes in geometry can change stiffness, as measured exter-
nally. Likewise, special changes in the internal configuration can change stiff-
ness without changing external shape. Recall that the configuration defined
earlier includes the position of all compressive members, but the stiffness
and shape might involve only certain internal or external members, so that
clever choices can satisfy both kinds of constraints. This might have great
impact in control of flexible and deployable tensegrity structures. Figure 1.23
illustrates the extreme shape-changing ability of tensegrity structures, where
a robotic tensegrity worm crawls (which requires stiffness) while squeezing
through crevices (which requires large shape changes). The mathematical
details for these crawling and shape-changing controls appear in the work
of Jack Aldrich [ASKD03, Ald04, AS05, AS06], who derived control laws to
prevent slack strings, prevent string yielding, and prevent bar buckling.

The second nice property of tensegrity is that stiffness is largely dictated
by clever choices of geometry, rather than by increasing prestress and mass.
In general, stiffness depends upon both geometry and prestress, but Fig-
ures 1.24 and 1.25 illustrate that choices of geometry play the dominant role.
Prestress increases the required mass directly, whereas geometry choices do
not. For these and other reasons, tensegrity structures can be of very light
weight compared to other design choices.
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Figure 1.24: A class 1 tensegrity structure in bending. The bending stiffness
is dominated by geometry, and the robustness to uncertainty in external
moments is dictated by prestress. The stiffness drops when a string goes
slack

Figure 1.25: A class 1 tensegrity in compression. The compressive stiffness is
dominated by geometry, and the robustness to uncertainty in external forces
is dictated by prestress. The stiffness drops when a string goes slack
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(a) Side view (bars shown) (b) Side view

(c) Top view (bars shown) (d) Top view

Figure 1.26: A class 1 tensegrity tent based on the non-minimal regular
tensegrity prism

1.4.2 Temporary Shelters and Tents

The simplest example of tensegrity housing is a tent. Figure 1.26 shows a
sequence of construction steps to make a tent with four bars. This is not a
minimal tensegrity prism, because of the extra strings along lines A–B. The
simplest tent would require three bars (poles) and nine strings, which would
be the simple regular tensegrity prism configuration of Figure 1.20. In our
example, however, we depart from the three-bar regular minimal tensegrity
prism which is soft in a certain rotational direction and gives little interior
space. A four-bar regular minimal tensegrity prism would give more interior
space, but would also be soft, and perhaps perform poorly in wind storms.
Instead, we choose a regular tensegrity prism which is not minimal, but has



1.4. Tensegrity in Engineering and Science 27

four bars and 16 strings, as in Figure 1.26. The extra strings that make it
non-minimal are the strings A–B. These extra A–B strings give the structure
high stiffness in all directions. The diagrams in the figure show the poles first
with a small clearance between the poles, to make room for a water tube from
the roof to the tent inside (the clearance is also to keep the tension in the
A–B strings from being too high). The four poles are anchored to the ground
at the four corners. The top of the tent is a square composed of strings. The
corners of the square at the top may be positioned relative to the square at
the bottom by any angle greater than 45◦ and less than 90◦, where at 90◦
the poles touch. This angle is dictated by the tension chosen for the strings
marked A–B in Figure 1.26. Now install strings (wire, rope or Spectra fiber
fishing line) between the nodes of the tent as shown. The strings can be sewn
directly into the fabric. The ends of these strings must be placed over the
ends of the poles as shown. Such structures can be made deployable by winch
power. That is, either by hand or motor one can increase the tension and the
length of specified strings to deploy this structure to its final configuration
shown in this figure.

1.4.3 Deployable Tensegrity Columns

Insightful papers have been written on the use of symmetry and self-similarity
in structure design [Lak93]. Such symmetry offers manufacturing advantages,
but the results can also be beautiful (e.g. Eiffel Tower). However, past studies
considered fixed structures, whereas we have interest in shape-controllable
structures.

Now consider stacking regular minimal tensegrity prisms to make a tower
or column. Note that a regular minimal tensegrity prism is either right-
handed or left-handed, depending upon the choice of twist (clockwise or
counterclockwise, between the top and bottom polygons). We know of at
least two ways of stacking these prisms to form a column. The first method
is to stack the prisms alternating between left- and right-handed prisms
while allowing the units to overlap. This produces a class 1 tensegrity col-
umn of the type that Kenneth Snelson uses in his artwork, see Figure 1.14,
and [PMS03, SCS98, SS98b, SCS98, SS03, WdOS06b, WdOS06a, vdWdJ05,
Tho00, PRLVC05, PVCL06, KW02b, KW02a, MS02, MS04, IJF06, Fur92].
The second method is to stack only right-handed prisms (or, equivalently,
stack only left-handed prisms) without any overlap. This produces a class
2 tensegrity column, which we examine here. Figure 1.27 shows this class 2
column.

Let p denote the number of bars in each prism (p = 3 in the figures). Let
r and h denote the radius and height of the column, respectively. Let each
node at the top be subject to a downward force of equal value, so that the
total external force is f . When f = 0 we know from our previous discussion
that the equilibrium occurs at α = 30◦. Using the methods of Chapter 2,
equilibrium conditions and the minimal mass subject to a buckling constraint
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Figure 1.27: A class 2 tensegrity column composed of right-handed regular
minimal tensegrity prisms

will be calculated in Chapter 3. The total bar mass is minimized by choosing
n prisms in the column of height h, where n is given by

n∗ =

⌊
1√

3(1 + sin(π/p)
h

r

⌋
. (1.3)

Note that these results do not depend on the mass density, ρ, or Young’s
modulus, E, of the material, indicating once again that topological optimiza-
tions often remain independent of material choice, even though the design
of each member (say the diameter of the string or bar) to take the required
load will be material dependent.

This example illustrates how minimal mass tensegrity structures can often
be characterized by closed form expressions, since the tensegrity definitions
allow deep penetration into the mathematical structure of the optimization
problems. For a discussion of software and numerical approaches to such
problems, see [JKZ98, dOSC06, Cha05, BK88].
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Figure 1.28: A nickel–titanium controlled class 1 tensegrity column, operating
with 40 volts and 2 A. The top of the column twists 40◦, without changing
column height

The column shown in Figure 1.28 uses nickel–titanium wires that reduce
their length (about 4%) when a certain current is applied. The vertical strings
are stiff and not elastic, whereas the diagonal “strings” are nickel–titanium
wires. Sending 2 A of current, at 40 volts, rotates each prism about 4◦ with
respect to the adjacent prism. With 10 stages the twist between the top and
the bottom is therefore 40◦. The rigid bodies do not touch, hence this is a
class 1 tensegrity. The goal of this controlled system is to control the twist
from top to bottom, while the height remains constant. One might do this to
a tall building to alter sun or wind effects on the heating and air-conditioning
of the building. This example also illustrates how a wing might be controlled
for roll control, since this structure is exactly the same, topologically, as the
structure in Figure 1.32.

1.4.4 Deployable Plates and Antennas

Now consider an assembly of three-bar regular minimal tensegrity prisms to
make a plate [Han88] or an antenna [MM90, Kni00]. Two different methods
of connecting the prisms are illustrated in Figures 1.29 and 1.30. By attaching
the ends of the bars of one prism to precisely the correct points along the
strings of the adjacent prisms, the stability of the total system is the same



30 Chapter 1. Introduction and Motivation

(a) Top view (b) Perspective

Figure 1.29: A plate constructed from regular minimal tensegrity prisms

(a) Top view (b) Perspective

Figure 1.30: Another plate constructed from regular minimal tensegrity
prisms

as for each prism in isolation, namely a twist of 30◦ between top and bottom
triangles.

Since this is a class 1 tensegrity structure, controlling the strings will
allow stowing the package into a bundle of parallel bars. Imagine stowing
this package into the nose cone of a rocket, and deploying the structure (by
string control) in space to form a large flat plate, or a large phased-array
antenna. The same stowed package of bars can be controlled to different
shapes. Consider that the top and bottom set of three triangular strings
each can form an equilateral triangle with a different radius. Figure 1.31
illustrates the case when, for each unit, the top radius is 90% as large as the
radius of the bottom [MS04].

In either case, deploying to a flat plate or antenna, a single control func-
tion can accomplish the deployment. This plate design is composed of regular
minimal tensegrity prisms connected in such a way that the unforced equilib-
rium of the assembly is the same as the equilibrium of each unit. The stable
equilibrium of each tensegrity prism occurs when the top triangle is rotated
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Figure 1.31: The same topology as the flat plate, but radii for top of each
prism controlled to 90% of the radii of each prism in the bottom surface

exactly 30◦ with respect to its bottom triangle and be reminded that this
fact remains independent of the radii of either triangle. Hence the radius of
both the top and the bottom triangles can be maneuvered arbitrarily and in
dependently, from very small (the stowed configuration) to a larger specified
radius (the deployed configuration), while maintaining an equilibrium of the
structure at any configuration in between. This is accomplished by simply
controlling the three green vertical strings of Figure 1.20, the ones connecting
the top and bottom triangles of strings, to maintain 30◦ twist between top
and bottom triangles). This can always be done with a controlled actuation
of the vertical strings. In the examples cited here, all units are controlled
in exactly the same way, so there is only one control signal to control the
deployment of the entire plate.

By adjusting the top radius of each tensegrity prism in this system one
can “shape” the antenna to many different configurations that might be use-
ful, say, in controlling the shape of an antenna in space, or controlling the
frequency of radiation for which the antenna is “tuned”.

The minimal mass plate is considered in Chapter 3, where a given crushing
load is applied. Using exactly the same mathematical tools from Chapters 2
and 3 as were used in the minimal mass column in Figure 1.27, we can derive
formulas for minimizing the plate composed of a number of regular minimal
tensegrity prisms.
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(a) Full Length (b) Close-Up

Figure 1.32: A class 1 tensegrity wing. One rigid body has the shape of the
airfoil, and the other type of rigid body has the shape of a long rod (the
spar). None of these rigid bodies touch each other

Now finally, consider the task of making a plate made of regular tensegrity
prisms stiff. In fact, the topology depicted in Figure 1.31 has extra strings
that can make the resulting structure stiff, in the sense there are no soft
modes in the structure. It is stiff in all directions. A flat version of Figure 1.31
would render a stiff tensegrity plate, the analysis of which will be detailed in
a forthcoming publication. The standard regular minimal tensegrity prism in
Figure 1.20 is soft in counterclockwise rotation about the axis normal to the
page. Mathematically, this means that there is at least one infinitesimal mode
(a very small eigenvalue), in addition to the six zero eigenvalues associated
with the rigid body motion (see Chapter 2). One needs to add extra strings
when high stiffness is required. Recall that our stabilizability conditions
only address the stability of the configuration of the structure, and not the
stability of rigid body motion.

1.4.5 Deployable Wings

Now imagine a one-dimensional deployment of a wing. Figure 1.32 shows
photos of a class 1 tensegrity system (this wing model was built by our
colleague Carlos Cox). The ribs represent one set of rigid bodies that are
not in contact, and the rigid spar (a long rod along the longitudinal axis of
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(a) Installation steps (b) Final configuration

Figure 1.33: Wall-mounted bunk bed made from an optimal tensegrity con-
figuration for bending loads

the wing) also makes no contact with the ribs. The wing configuration is
stabilized by tensile members shown in the photo. A wing based on these
concepts has been designed for deployability from a small stowed package to
a fully deployed wing. A preliminary design provided an 80 foot wing that
weighs about 0.16 pounds per square foot of wing area and can carry a large
weight to very high altitudes. In the actual wing the rigid spar (the rod shown
in Figure 1.32) will be replaced by yet another tensegrity structure (optimized
minimal mass and compressive strength by the methods in Chapter 3) to
deploy the spar to its full length, starting from a stowed package with a
very short length. The strings will be controlled to maintain tension during
deployment so that the wing can fly at any length in a stable fashion between
its stowed length and its fully deployed length. The diagonal strings will be
controlled to warp the wing for roll control. Other wing concepts appear in
[MTBBS06].

1.4.6 Beds and Broomsticks

Figure 1.33 (provided courtesy of grandson Felix King) shows a bed design
that hangs off the wall in a cantilevered manner, so that no connections to
the floor are required. The mathematics to minimize mass of a cantilevered
structure are derived in Chapter 4, where it is revealed that a class 2 tenseg-
rity structure is the optimal minimal mass solution. In Figure 1.33, the
compressive members are small wooden bars connected end to end with flex-
pivot joints (a thin wire embedded in the ends of each bar). The tensile
members are 1′′ nylon straps. With this design the bed can support 1, 000
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pounds, which is very much over-designed, but adequate for a first prototype
supporting a grandson.

The mathematics of Chapter 4 allows one to optimize a structure with
fixed complexity. That is, the total number of elements (sticks and strings)
may be specified a priori. The minimal mass solutions of this chapter ap-
proach the infinitely complex (infinite elements leads to a continuum) solution
of Michell in [Mic04].

1.4.7 Station-Keeping Buoy

There is much interest in marine tensegrity structures. See the discussions
in [WdOS06b, Tri87, Tri91, Luo04, JWL+07a, JWL+07b]. Let us synthesize
some requirements for a system of buoys in the deep sea, suitable for weather
forecasting or ocean studies. Each buoy is equipped with radio transmitters
to send the measured data to ground stations. In the presence of uncertain
winds, currents and sea state, it is required that each buoy remains in a fixed
position (within an acceptable radius), and operate continuously throughout
the life of the components of the system (e.g., 6 months). Each buoy sys-
tem could to be dropped into the sea through a small hole in the belly of
an airplane. The buoy system must be stowed into a small package to pass
through the hole in the airplane, and once the package hits the ocean, it must
deploy to its fully operational configuration. Obviously the system must have
propulsion and maneuvering capability to perform the station-keeping func-
tion. To operate the electronic equipment and to power a propulsion system,
such a system must obviously generate power from the local environment
(wind, sun, or water), since no external source of power is available.

Current buoy systems can do all of these tasks except the energy con-
version, the station keeping, and the long life. Currently they are battery
powered, are uncontrolled, and have a very short life. Hence, the wind and
sea carry the current buoy away from the intended location.

A tensegrity solution to the structural part of this problem has been
created, built, and tested in sea trials. The system is designed to convert
wave motion to electrical energy. The instrumented buoy system is shown in
Figure 1.34 (note the generator attached to the bottom of the buoy).

The structural system configuration is a five-bar, eight-string, class 2
tensegrity system sketched in Figures 1.35 and 1.36. The four strings (certain
red thin lines) that lie in the horizontal plane are actually edges of a mem-
brane in tension, shown in Figures 1.36 and 1.37). We will label this system
the Wave-Powered Station-Keeping Buoy (WPSB). The vertical red cable in
Figures 1.35 and 1.36 wraps around the generator rotor and then drops to
the WPSB below.

The buoy follows the surface of the sea wave, but the WPSB resists ver-
tical motion because of the mass and the membrane. This wave induced
elongation of the vertical cable rotates the generator, creating power for im-
mediate use to drive the motorized vehicle, power the electronics, operate the
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Figure 1.34: The instrumented buoy for the wave-powered station-keeping
Buoy (WPSB)

Figure 1.35: The first wave-powered vehicle. A class 2 tensegrity system for
a wave-powered station-keeping buoy (WPSB)
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Figure 1.36: The functional diagram of the wave-powered station-keeping
buoy

Figure 1.37: A test of the WPSB in a pool
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navigation system, etc. This power is routed interior to the stainless steel
vertical cable, travels down the cable to the WPSB, and powers the electric
operations (propulsion and guidance systems) inside the WPSB.

Figure 1.37 shows the non-deployable prototype, where all bars were alu-
minum and the cables were stainless steel. The propulsion system is a thruster
mounted on the rear of the WPSB. The electronics, sensors, magnetic com-
pass, and guidance and control computers are inside the horizontal aluminum
tube of Figure 1.37. This aluminum tube serves as one of the bars in the
tensegrity design. The goal was to keep the buoy within 250 meters of the
commanded coordinate, in sea state 2. Due to severe weather, the system was
tested in sea state 5. Yet, in the presence of high sea state, high winds, and
currents of 1 m/s the control system kept the buoy within 60 m of the target
for 2 hours. The tensegrity concept for the project proved feasible, and this
project provided the first WPSB, although a very slow submarine indeed,
traveling at 2 m/s. To demonstrate feasibility of the mechanical parts of the
system, this first test used a prototype that did not deploy, used a dummy
generator (mechanical motions correct) and was battery-powered. The de-
ployment and the power generator are yet to be designed. Such objectives
are discussed further in [SS06].

1.4.8 Dynamics of Tensegrity Systems

Perhaps the main reason tensegrity systems have remained the tool of the
artist rather than the tool of the engineer is the absence of tools to efficiently
write and solve the equations of motion, i.e., the dynamics of tensegrity
systems. As seen before in this chapter, tensegrity systems often have a
large number of components and one needs to carefully keep track of all the
variables involved. This difficulty will be overcome in Chapter 5, where a
systematic and efficient formulation of the equations of motion of tensegrity
systems will be presented.

The equations of motion are provided in simple form, which make com-
putation and control design (to be addressed later in Chapter 6) easier. The
formulation encompasses constrained and unconstrained tensegrity systems,
providing non-minimal yet simple realizations of the constrained dynamics,
and finally a new matrix form of the equations of motion for class 1 tensegrity
systems. By using the vector along the rod as a generalized coordinate, the
final equations are devoid of the transcendental functions that complicate the
form of the dynamics.

1.4.9 Control of Tensegrity Systems

There does not exist a systems design theory, where all components of a
system are designed to efficiently work together to accomplish a goal. Control
theory as we know it today allows solutions only after the critical decisions are
made about component designs. This book attempts small steps to develop
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scientific tools to relate the overall motion requirements to the initial design
of the structure and control.

The main motivation for the use of tensegrity structures is the advantages
of integrating control functions within the design of the structure. Tradition-
ally, a structure would be designed by a finite element method or a gridding
method [Ben89, BK88, DB92, Ben95, JKZ98, BS03]. In both of these cases
the structure has a fixed equilibrium, since the joints are welded or pinned. At
present, the control function is added to the structural system by mounting
(on the designed structure) control actuators, to make momentary or perma-
nent changes in the shape, pressing against the equilibrium of the structure.
This forced change in shape requires energy and perhaps large forces. In
other words the actuators “torture” the structure to do things the structure
does not naturally want to do. The idea of controlled tensegrity systems is
to allow the dynamics of the controller and the dynamics of the structure to
cooperate more fully. This is accomplished by using control to change the
equilibrium of the structure, rather than pressing against a fixed equilibrium
of the structure.

Figure 1.20 provides the simplest opportunity to describe control prob-
lems, which will be formally addressed in Chapter 6. Suppose sensors measure
the rate (v) at which the green vertical string changes length. Suppose the
tension (u) in this string is controlled by a feedback control algorithm. If, for
example, one wishes to change the diameter or height, or stiffness of the reg-
ular tensegrity prism, then all the green vertical strings could be controlled
in exactly the same manner, increasing length or decreasing the tension or
length of the green vertical strings until the desired height is reached, or until
the right stiffness is obtained.

Other tensegrity control examples are discussed in [DMPC98, dJS01,
dJSM01, CABS04, MS06, MS05, WdOS06b, WdOS06a, WdOS09].

Figure 1.38 illustrates a column (drawn on its side) exposed to a compres-
sive load, which we have equivalently transferred to a prestress, t = 50. Now
suppose we wish to calculate the optimal number of units p (each having two
bars and four strings) to put in the column of a given height L and width D.
Subject to buckling constraints the optimal number is the closest integer to
the value p = L/D

√
2/3, where the length of the column is L and the width

is D.
Now suppose this structure should be controlled so that the variance of

the vertical displacement y at the top right corner should be less than 0.01.
That is, E(y2) < 0.01, where the disturbance is a zero-mean white noise
acting on the upper right-hand corner of the structure in Figure 1.39. The
intensity of the noise is 10. All the vertical strings will be controlled by state
feedback in this example. Hence the number of control actuators (controlling
vertical string tensions) increase as p increases (p is the number of self-similar
units used in the final design of the column). Superimposed on the control
signal from each actuator is actuator noise, which in this example, is zero-
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p = 1

p = 2

p = 4

p = 8

p = 16

t = 50

Figure 1.38: A column with an arbitrary number of two-bar units. The
minimal mass is obtained with p units, where p = L/D

√
2/3

mean white noise with intensity 10−6. The total control energy required to
accomplish the objective E(y2) < 0.01 is minimized for each of the column
designs shown in Figure 1.39 for p = 1, 2, 3 . . .. Then the control energy
required for each of these designs is compared, yielding p = 4 as the structure
that requires the least control energy for the given performance requirement
E(y2) < 0.01. But p = 4 is not the minimal mass structure, illustrating
that the structure and control design problems are not coordinated, in any
way. Now suppose we introduce another free parameter in the control design
problem, by letting the actuator noise be free to choose, in addition to the
control signals. Assuming that actuator cost is inversely proportional to
the noise intensity of the actuator, the mathematical freedom to choose the
actuator noise is equivalent choosing the cost of the actuator. The following
problem can then be solved: Find the minimal cost of all actuators, over
the set of all self-similar structures (columns), so that the minimal energy
required to deliver the closed-loop performance (E(y2) < 0.01) corresponds
to the structure that has minimal mass. It is not difficult to show that one
can always choose such an actuator noise, intensity and in this example that
value is 2 × 10−7. Notice that it would be a waste of money to make the
actuator better (less noisy and more costly) than this number, since then the
minimal energy for controlling the column would occur for a structure that
was more complex and more massive than our “optimal” design above. Note
that this is not a globally optimal structure design, but only one that uses
self-similar structures.
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Figure 1.39: A column with a specified number (p) of two-bar units under
feedback control. The control energy is minimized while keeping the vibra-
tions less than E(y2) < 0.01. The structure requiring the smallest energy
among all the structures is for p = 4 and p = 8 for actuator noises, respec-
tively, 10−6 and 2 × 10−7

This is an example where the design of the structure, the design of the
control system, the design (hence cost) of the instruments (actuators and
sensors), and the choice of the number of actuators are all combined.

The photo in Figure 1.40 and the sketch in Figure 1.41 shows the exper-
imental setup for a vibration control problem, using three actuators, three
sensors, and decentralized control for a tensegrity column composed of nine
bars. The objective is to reduce the vibration at the top of the structure,
while actuators and sensors are at the bottom of the structure. Decentral-
ized control in this example allows each colocated sensor/actuator pair to
communicate in a closed-loop control loop, without any coordination with
the other sensors, actuators, or controllers. This type of control would be
advantageous for a large complex system, such as a deployable tensegrity sys-
tem. Figure 1.42 shows the frequency response of this system being mounted
on a shaker table to simulate a force spectrum similar to an earthquake.
For different values of control gains, this system demonstrates the ability to
suppress the vibration by almost 30 dB. The main point of these plots is to
demonstrate a certain accuracy of the tensegrity model. Usually in vibra-
tion control problems, the inaccuracies of the model upon which the control
system is based manifest themselves by driving the closed-loop system un-
stable for high gains, because the frequencies of the modes of the model
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Figure 1.40: Feedback control of a nine-bar tensegrity column in the presence
of a shaker table. Three actuators and three sensors located at the bottom
of the structure are used to control the vibrations at the top of the structure

are usually not the same as the frequencies of the modes of the hardware.
Note from Figure 1.42 that the open loop system and the closed-loop system
match the frequencies of the real system for all of the dominant modes of the
structure.

The thesis of Jack Aldrich [Ald04] showed how one might control two
read/write heads at once by designing a disk drive suspension system with
two heads and mounting them in a fashion to create a class 1 tensegrity
structure. Figure 1.43 shows two desired trajectories, one for each read/write
head. The goal is to reach the end of this specified path in minimal time,
subject to the constraint that no string becomes slack at any instant of time
(hence a lower tension bound of 5 is specified), and no string yields (hence an
upper bound for the instantaneous string force is set at 95), no bar buckles
(so an upper bound of the bar force is added as well). The solution involves
bang–bang control with two switches from minimum to maximum string force
during the optimal control along the given path. The green lighter sections
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Figure 1.41: The Experimental setup for vibration control of a tensegrity
column

Figure 1.42: The frequency response of the closed-loop system with three
values of control gain, including 0 for open loop. The red curve reduces the
vibration of the first mode by almost 30db

of the paths represent where at least one string is at its maximum allowable
force (95), while the red darker section of the path corresponds to at least
one string being at its lower allowable force (5). The figure only shows the
string forces at a frozen moment in time.
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Figure 1.43: A disk drive with two heads, traveling along specified paths to
reach the final position in minimal time. The numbers represent the string
tensions at a frozen moment in time. On the red light part of the path at
least one string is at its smallest allowable tension. On the green darker path
at least one string is at its maximal allowable tension

1.5 Chapter Summary

The purpose of this chapter is to introduce tensegrity without much mathe-
matics, to give some insightful examples to show how biology (red blood cells,
spider fiber, animal skeletal systems for locomotion) and art (Ioganson, 1921,
Kenneth Snelson 1948, and Buckminister Fuller) have exploited the beneficial
and sometimes beautiful topologies of material for different purposes. Moti-
vation is provided suggesting the need for the development of more advanced
mathematical machinery to allow scientists and engineers to analyze and de-
sign tensegrity systems that can achieve shape control and other engineering
functions beyond current capabilities. This chapter provides a guide to the
later chapters of the book, illustrating certain minimal mass results that will
be derived in later chapters (minimal mass solutions for symmetric columns
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and plates). This chapter provides an easily digested treatment of tensegrity
without math, but it is not exhaustive in that regard. It does not point to
many results that can only be motivated within the context of the detailed
chapters. One such topic is optimal complexity, a theme prominent in Chap-
ters 3 and 4, where great emphasis is placed on making a structure not more
complicated than necessary to minimize mass.



Chapter 2

Analysis of Static
Tensegrity Structures

This chapter develops convenient mathematical algorithms to characterize
stable equilibria of tensegrity systems, to characterize stiffness properties, to
characterize the relationships between force and configuration, and to char-
acterize the mass of the system, subject to buckling or yield constraints. The
final design of a tensegrity system will involve both the static and dynamic
properties. Often the dynamic motion can be greatly improved by changing
design parameters (the types of building blocks, the configuration of each
unit, and the configuration of the whole network of elements) that were fixed
in the static analysis of this chapter. Hence, we are interested in efficient com-
putational tools that will allow rapid and efficient changes, whose impact will
later, in Chapter 5, be quantified from dynamic properties.

2.1 Nodes, Members, and Connectivity

Let n be the number of nodes in a structure given by the three-dimensional
vectors

ni ∈ R3, i = 1, . . . , n.

The configuration of the entire structure is described by the node vector

n =

⎛

⎜⎝
n1
...

nn

⎞

⎟⎠ ∈ R3n. (2.1)

Let mk be the vector that describes the kth member in the structure
whose nodes are nik and njk , i.e.,

mk := nik − njk .

R.E. Skelton, M.C. de Oliveira, Tensegrity Systems, 45
DOI 10.1007/978-0-387-74242-7 2, c⃝ Springer Science+Business Media, LLC 2009
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If m is the total number of members in the structure, the set of members of
the structure is described by the element vector

m =

⎛

⎜⎝
m1
...

mn

⎞

⎟⎠ ∈ R3m.

Now define the vector ei ∈ Rn as the vector with one in the ith position
and zero elsewhere. Let

dk := eik − ejk .

Then define the matrix

N =
[
n1 · · · nn

]
∈ R3×n. (2.2)

It follows that

mk = N (eik − ejk) = Ndk.

Define the matrix

D =
[
d1 · · · dm

]
∈ Rn×m.

The matrix obtained by transposition of D, i.e.,

C = DT ∈ Rm×n,

is called the connectivity matrix. This matrix is made of ones, zeros, and
minus ones and since the rows of C are vectors of the form dk the sum of all
rows of C must be zero, i.e.,

C1n = 0,

where 1n ∈ Rn is a vector where all entries are ones.
If we define a matrix of member vectors

M =
[
m1 · · · mm

]
∈ R3×m,

then

M = NCT . (2.3)

Using the standard vec operator we have the following definition.

Definition 2.1 For any matrix X ∈ Rm×n the vec operation produces the
column vector x ∈ Rmn, x = vec(X) by stacking up the columns of X.
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Hence, we have the facts:

n = vec(N), m = vec(M). (2.4)

It also follows from (2.3) that

m = vec(m) = (C ⊗ I3) vec(n),

where ⊗ denotes the Kronecker product, defined below.

Definition 2.2 Let A and B be a× b and k × n, respectively. The notation
A ⊗ B defines a ak × bn matrix such that the ij block of matrix A ⊗ B is a
k × n matrix defined by

(A ⊗ B)ijblock = AijB. (2.5)

See [HJ85] for additional properties of Kronecker products.

2.2 Potential and Force

Suppose now that the kth structural member is associated with the potential
energy

Vk(n) = Vk(∥mk∥),

which is a function exclusively of the length of mk. The total potential energy
on the structure is

V (n) =
m∑

k=1

Vk(∥mk∥).

The total force at the nodes due to the potential V (n) is the vector

f(n) = −∂nV (n) ∈ R3n.

This vector can be computed by noting that

∂nik
∥mk∥ = ∂ni∥nik − njk∥ =

nik − nik

∥nik − njk∥
=

mk

∥mk∥
,

so that

∂nikVk(∥mk∥) = σk(∥mk∥)mk,

where the scalars

σk(∥mk∥) :=
V ′

k(∥mk∥)
∥mk∥
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are known as force densities, and

V ′
k(∥mk∥) =

d Vk(∥mk∥)
d ∥mk∥

.

Since

∂njk
Vk(∥mk∥) = −∂nik

Vk(∥mk∥) = −σk(∥mk∥)mk,

we have

fk(n) = −∂nVk(∥mk∥) = −σk(∥mk∥) (dk ⊗ mk) ,

where dk = eik − ejk . From the above formulas we conclude that

f(n) =
m∑

k=1

fk(n).

Note that because

dk ⊗ mk = vec(mkd
T
k ),

it is convenient to define

Fk(n) = −σk(∥mk∥)mkd
T
k ∈ R3×n,

and the force matrix

F(n) =
m∑

k=1

Fk(n).

Defining the diagonal matrix of force densities

Σ(m) = diag [σ1(∥m1∥), . . . , σm(∥mm∥)] ∈ Rm×m,

we have

F(n) =
[
m1 · · · mm

]
Σ(m)

⎡

⎢⎣
dT

1
...

dT
m

⎤

⎥⎦ ,

= MΣ(m)C,

= NCT Σ(m)C.

Of course

f(n) = vec(F(n)).
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2.3 Linear Springs and Strings

For most part of this book we will model bars as rigid members or linear
springs and tendons as linear strings.

The potential energy associated with linear springs is of the form

V (∥m∥) =
1
2
κ

(
∥m∥ − l0

)2
,

V ′(∥m∥) = κ
(
∥m∥ − l0

)
,

V ′′(∥m∥) = κ,

where m is the vector describing the spring and the scalar l0 > 0 is known
as the rest length of the spring.

Note also that

σ(∥m∥) = κ

(
1 − l0

∥m∥

)
. (2.6)

Indeed, V , V ′, and V ′′ can all be parametrized as a function of σ and κ since

V (∥m∥) =
1
2κ

σ2 ∥m∥2,

V ′(∥m∥) = σ ∥m∥,
V ′′(∥m∥) = κ,

a fact that we will explore in the next chapters. Note that in this case l0 can
be recovered by inverting (2.6) as

l0 = ∥m∥
(
1 − σ

κ

)
.

Note that for l0 > 0 we must have

κ > σ. (2.7)

For strings, the expressions are the same except that V (n) is null when
∥m∥ < l0. That is,

V (∥m∥) =

{
1
2κ

(
∥m∥ − l0

)2
, ∥m∥ < l0

0, ∥m∥ ≥ l0
.

Note that V (∥m∥) is not differentiable at ∥m∥ = l0. If V ′ and V ′′ are
needed at ∥m∥ = l0 we use the “right derivative”, i.e., V ′(∥m∥) = 0 and
V ′′(∥m∥) = κ.
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2.4 Equilibrium

The force vector is associated with a Taylor series expansion of V (n) in the
direction h in the form

V (n + ϵh) = V (n) − ϵhT f(n) +
ϵ2

2
hT K(n)h + O(ϵ3). (2.8)

The second-order coefficient of the above series, the symmetric matrix K(n),
is known as the stiffness matrix and will be studied in the next section.

A mechanical system with configuration n and potential energy function
V (n) is said to be in equilibrium at n̄ if

f(n̄) = −∂nV (n̄) = 0,

that is, if n̄ is a stationary point of the potential function.
In tensegrity structures it is also important to qualify the nature of the

force on each member. For that sake, let us partition

M =
[
B S

]
∈ R3×(mb+ms),

where B describes bar elements and S describes string elements only. Parti-
tion the diagonal matrix Σ in the form

Σ =
[
−Λ 0
0 Γ

]
∈ R3×(mb+ms),

where we flipped the sign of Λ.
A string can only carry tension, which means

Γ ≽ 0.

Recall that Γ (and Λ) are diagonal matrices. Therefore, the matrix inequality
Γ ≽ 0 is equivalent to the vector entrywise inequality γ ≥ 0.

A bar will usually carry only compression, hence Λ ≽ 0. However, we shall
not impose that Λ ≽ 0, because a bar can indeed carry tension, although not
as efficiently as a string. Therefore, if λi < 0 for the ith bar it can be
advantageous to replace it by a string member.

Using the matrix form of the force F, a complete statement of equilibrium
for a tensegrity structure is then

F =
[
−BΛ SΓ

]
C = 0, Γ ≽ 0.

We often write the inequality constraint in terms of the vector γ in the
equivalent form:

[
−BΛ SΓ

]
C = 0, γ ≥ 0.
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n1

n2

n3

n4

(0, 0)

Figure 2.1: Planar tensegrity cross

Because C1n = 0, any one column of C can be dropped without loss of
generality, and this would reduce by three the total number of equations to
be solved. This device can and should be used to improve the behavior of
numerical procedures to compute equilibrium solutions.

When dealing with tensegrity structures it is convenient to partition the
connectivity matrix C as

C =
[
CB

CS

]
,

such that
[
B S

]
= N

[
CT

B CT
S

]
.

That is, CB describes the “bar connectivity” and CS describes that “string
connectivity”.

Example 2.1

Consider the planar tensegrity cross structure with four (n = 4) nodes

ni = R(π/2)i−1 ex, i = 1, . . . , 4,

as shown in Figure 2.1. The structure has six (m = 6) members, two bars (in
red) and four strings (in black)

bi = ni+2 − ni, i = 1, 2,

si = n[i (mod 4)]+1 − ni, i = 1, . . . , 4.

Let

N =
[
n1 · · · n4

]
∈ R2×4,

B =
[
b1 b2

]
∈ R2×2, S =

[
s1 · · · s4

]
∈ R2×4.
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The connectivity matrix is

C =
[
CB

CS

]
∈ R6×4,

where

CB =
[
−1 0 1 0
0 −1 0 1

]
, CS =

⎡

⎢⎢⎣

−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

⎤

⎥⎥⎦ .

Note that

N =
[
ex ey −ex −ey

]
=

[
I2 −I2

]

and

M =
[
B S

]
,

= NCT ,

=
[
I2 −I2

]

⎡

⎢⎢⎣

−1 0 −1 0 0 1
0 −1 1 −1 0 0
1 0 0 1 −1 0
0 1 0 0 1 −1

⎤

⎥⎥⎦ ,

=
[
−2 0 −1 −1 1 1
0 −2 1 −1 −1 1

]
.

The structure will be in equilibrium if

0 =
[
−BΛ SΓ

]
C,

=
[
2λ1 0 −γ1 −γ2 γ3 γ4

0 2λ2 γ1 −γ2 −γ3 γ4

]

⎡

⎢⎢⎢⎢⎢⎢⎣

−1 0 1 0
0 −1 0 1
−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

=
[
γ1 + γ4 − 2λ1 γ2 − γ1 2λ1 − γ2 − γ3 γ3 − γ4

γ4 − γ1 γ1 + γ2 − 2λ2 γ3 − γ2 2λ2 − γ3 − γ4

]
.

This requires

λ1 = λ2 = γ1 = γ2 = γ3 = γ4 = γ ≥ 0.

Note that the above conditions involve six variables and eight equations, which
require the solution of an under-determined system of linear equations on Λ and
Γ. If we drop one column of C, this reduces the number of equations to six,
which produces a square and nonsingular system of equations to be solved.
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n1

n2 n3

Figure 2.2: Simple planar structure

Example 2.2

Consider a structure with three (n = 3) nodes and three (m = 3) members,
one bar and two strings

b1 = n2 − n1, s1 = n3 − n2, s2 = n1 − n3,

as shown in Figure 2.2. Let

N =
[
n1 n3 n3

]
, B = b1, S =

[
s1 s2

]
, M =

[
B S

]
.

The connectivity matrix is

C =

⎡

⎣
−1 1 0
0 −1 1
1 0 −1

⎤

⎦ ∈ R3×3,

and the structure will be in equilibrium if

CT ΣMT = 0.

This equilibrium is nontrivial if ΣM is not null and belongs in the null space of
CT . The null space of CT is composed of scalar multiples of the vector 13, so
that

ΣMT = 13zT , z ∈ R3.

In other words σimi = z, for all i = 1, . . . , 3, i.e., all members should be aligned
with the vector z. Furthermore, the two strings must be pointing in the same
direction for σ2 > 0, σ3 > 0, which implies that

n3 = αn1 + (1 − α)n2,

for some 0 ≤ α ≤ 1. Hence

M =
[
n2 − n1 n3 − n2 n1 − n3

]
,

=
[
n2 − n1 αn1 − αn2 (1 − α)n1 − (1 − α)n2

]
,

=
[
n1 n2

] [
−1 α (1 − α)
1 −α −(1 − α)

]
,



54 Chapter 2. Analysis of Static Tensegrity Structures

and

MΣC =
[
n1 n2

] [
−σ1 σ2α σ3(1 − α)
σ1 −σ2α −σ3(1 − α)

] ⎡

⎣
−1 1 0
0 −1 1
1 0 −1

⎤

⎦ ,

=
[
n1 n2

] [
σ3(1 − α) + σ1 −(σ1 + σ2α) σ2α − σ3(1 − α)

−[σ3(1 − α) + σ1] σ1 + σ2α −[σ2α − σ3(1 − α)]

]
,

which implies

σ2 = −σ1

α
, σ3 = − σ1

1 − α
.

2.4.1 Affine Transformations

The general equilibrium conditions for a structure can be written as the
matrix equation

NCT ΣC = 0.

The above condition remains valid even when N and consequently M are
subject to a nonsingular affine node transformation T . Such transformations
are characterized by a nonsingular otherwise arbitrary matrix T ∈ R3×3 and
a vector t ∈ R3 in the form

T : R3×n → R3×n, T (N) := TN + t1T
n .

As shown at the end of the chapter, the equilibrium remains unaffected by
such transformations. Affine node transformations do not change Σ or its
sign, which will therefore imply that a tensegrity structure in equilibrium,
for which Γ ≻ 0, will remain a feasible tensegrity structure under such trans-
formations. Also note that the matrix Σ remains invariant under such trans-
formations but not M. In particular, if T does not preserve the length of
the members in M, then the force will also be modified. For instance, a
member m will be transformed to Tm and

σk(∥mk∥) = σk(∥Tmk∥) = σk

will remain the same but

V ′
k(∥Tmk∥)
V ′

k(∥mk∥)
=

∥Tmk∥
∥mk∥

will be different from one if ∥mk∥ ̸= ∥Tmk∥.
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n1

n2

n3

n4

(0, 0)

Figure 2.3: Planar tensegrity cross subject to affine node transformation

Example 2.3

We want to find out whether the planar tensegrity cross structure considered
in previous examples can be put in equilibrium if the nodes are now located at

Ñ =
[
2 2 0 0
1 2 1 0

]
,

as shown in Figure 2.3. By noting that

Ñ = T (N)

for the affine transformation defined by

T =
[
1 1
0 1

]
, t =

(
1
0

)
,

one can immediately answer yes. Note, however, that this transformation affects
the length of the members and, consequently, the magnitude of the forces

V ′
k(∥Tmk∥) =

[
2 2

√
2 1

√
5 1

√
5
]
.

2.4.2 Dual Structures

Another operation that preserves equilibrium is load reversal. Indeed, if

NCT ΣC = 0,

then trivially

NCT (−Σ)C = 0.
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n1

n2

n3

n4

(0, 0)

(a) Tensegrity cross

n1

n2 n3
(b) Simple structure

Figure 2.4: Dual structures

This simple observation will produce interesting structures, combining pri-
mals and duals to produce yet another tensegrity structure preserving equilib-
rium. Of course, in the dual transformation bars become strings and strings
become bars.

Example 2.4

Examples of dual structures are given in Figure 2.4, where 2.4(a) is the dual
tensegrity cross in Figure 2.1 and 2.4(b) is the dual of the simple planar structure
in Figure 2.2.

2.4.3 Class 1 Tensegrity Structures

A class one tensegrity structure with mb bars have exactly n = 2mb nodes.
Furthermore, each node belongs in exactly one bar. This one-to-one corre-
spondence between nodes and bar nodes lets us formulate the equilibrium
analysis in a particularly interesting set of coordinates.

Partition the connectivity matrix C as

C =
[
CB

CS

]
,

such that

M =
[
B S

]
= N

[
CT

B CT
S

]
.

Because any node in the structure is a bar node, the node matrix can always
be arranged so that

CB =
[
−I I

]
, CS =

[
CS1 CS2

]
.
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As shown at the end of the chapter, the equilibrium conditions for this
particular set of coordinates is of the form

BΛ = SΓCS1 = −SΓCS2, Γ ≽ 0,

which can be given the following interesting interpretation: the sum of the
string forces on node “1” of all bars, SΓCS1, and the sum of the string forces
on node “2” of all bars, SΓCS2, must be collinear with the bar vectors and
equal, with opposite signs, to the bar forces, BΛ.

Example 2.5

Consider the planar tensegrity cross structure from Figure 2.1. The string
connectivity matrix can be partitioned as

CS =
[
CS1 CS2

]
∈ R4×4,

where

CS1 =

⎡

⎢⎢⎣

−1 1
0 −1
0 0
1 0

⎤

⎥⎥⎦ , CS2 =

⎡

⎢⎢⎣

0 0
1 0
−1 1
0 −1

⎤

⎥⎥⎦ .

Therefore,

SΓCS1 =
[
γ1 + γ4 γ2 − γ1

γ4 − γ1 γ1 + γ2

]
,

SΓCS2 =
[
−(γ2 + γ3) γ3 − γ4

γ3 − γ2 −(γ3 + γ4)

]
,

BΛ =
[
−2λ1 0

0 −2λ2

]
.

The equilibrium conditions

BΛ = SΓCS1 = −SΓCS2, Γ ≽ 0,

imply

λ1 = λ2 = γ1 = γ2 = γ3 = γ4 = γ ≥ 0.

2.5 Stiffness Matrix

The stiffness matrix K can be computed as

K(n) = −∂nf(n).
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We show at the end of the chapter that

K(n) =
m∑

k=1

Kk(n), Kk(n) = dkd
T
k ⊗ Lk(mk),

where

Lk(mk) = σk(∥mk∥)
[
I3 −

mkm
T
k

∥mk∥2

]
+ V ′′

k (∥mk∥)
mkm

T
k

∥mk∥2
.

Using the fact that (xyT ⊗A) = (x⊗I)A(yT ⊗I) we can rewrite the stiffness
matrix as a matrix product of the form

K(n) = (CT ⊗ I3) diag[L1(m1), . . . ,Lm(mm)](C ⊗ I3).

One may also find it useful to split K(n) into two components,

K(n) = Kσ(n) + Kφ(n),

where

Kσ(n) := CT ΣC ⊗ I3, Kφ(n) := (CT ⊗ I3)Φ (C ⊗ I3),

with

Φ := diag
{

[V ′′
1 (∥m1∥) − σ1(∥m1∥)]

m1mT
1

∥m1∥2
, . . . ,

[V ′′
m(∥mm∥) − σm(∥mm∥)] mmmT

m

∥mm∥2

}
.

The first component Kσ results mostly from prestress while the second com-
ponent Kφ results mostly from material. Indeed, in equilibrium with no
prestress, that is, Σ = 0, only the second component is present. Further-
more, matrix Φ is directly related to material properties. For instance, if
forces are coming from linear elastic elements and Σ = 0 then the scalar
coefficients in matrix Φ is the material stiffness V ′′

k (∥mk∥) = κk.

Example 2.6

For the planar tensegrity cross structure considered in the previous example
assume we have elastic bars with stiffness κB and elastic strings with stiffness
κS . In this case, one can compute for the two bars

L1 = diag(κB ,−γ), L2 = diag(−γ,κB),

and for the four strings

Li =
1
2

[
κS + γ −(κS − γ)

−(κS − γ) κS + γ

]
, i = {3, 5},

Li =
1
2

[
κS + γ κS − γ
κS − γ κS + γ

]
, i = {4, 6}.
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The entire matrix K is constructed as

K =

⎡

⎢⎢⎣

L1 + L3 + L6 −L3 −L1 −L6

−L3 L2 + L3 + L4 −L4 −L2

−L1 −L4 L1 + L4 + L5 −L5

−L6 −L2 −L5 L2 + L5 + L6

⎤

⎥⎥⎦ .

Example 2.7

For the planar simple structure in Figure 2.2 assume we have elastic bars with
stiffness κB and elastic strings with stiffness κS . Let

n1 = ex, n2 = −ex, σ1 = −γ, σ2 = γ/α, σ3 = γ/(1 − α),

for some γ > 0. Compute

L1 = diag(κB ,−γ), L2 = diag(κS , γ/α), L3 = diag(κS , γ/(1 − α)).

Matrix K is

K =

⎡

⎣
L1 + L3 −L1 −L3

−L1 L1 + L2 −L2

−L3 −L2 L2 + L3

⎤

⎦ .

2.5.1 Modes and Modal Vectors

The eigenvalues of the matrix K are called modes of the structure and the
associated eigenvectors, modal vectors. Modes and modal vectors satisfy the
relationship

Khξ = ξ hξ, hξ ̸= 0.

An interpretation of modes and modal vectors can be given by looking at
the potential function around an equilibrium point n. On a neighborhood of
the equilibrium we can approximate V by its second-order Taylor expansion.
That is, for small values of ϵ > 0 we shall have

V (n + ϵh) ≈ V (n) +
1
2
ϵ2hT Kh.

If the nodes are displaced in the direction h, thus changing the potential, the
structure generates internal forces which can be approximated by

f(ϵh) = −∂hV (n + ϵh) ≈ −ϵKh.

If the displacement h is in the direction of a modal vector, i.e., h = hξ then

f(ϵhξ) ≈ −ϵKhξ = −ξϵhξ.
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That is, the force generated by the structure in response to a nodal displace-
ment in a modal vector direction has magnitude |ξ| and is on the opposite
direction of the displacement hξ when ξ is positive.

As we shall see soon, in a stable structure, all modes shall be nonnegative,
and most of them should be positive. However, at least six eigenvalues of K
will always be zero. These eigenvalues are called rigid body modes. These
modes are called rigid because they represent displacements, rigid transla-
tions and rigid rotations, that will not elongate any member of the structure,
thus keeping the potential function V constant. As shown at the end of the
chapter, rigid body modes are associated with null eigenvalues of matrix K.
The remaining eigenvalues are called elastic modes.

Example 2.8

The eigenvalues (modes) of K can be computed symbolically for the planar
cross tensegrity structure in the form

0, 0, 0, 2 (κB + γ) , 2 (κS − γ) , 2 (κS + γ) , 2 (κS + γ) , 2 (κB + κS),

and the associated eigenvectors (modal vectors) are the columns of the matrix

Hξ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 1 1 0 0 −1 −1
2 0 −1 0 −1 −1 0 0
−2 1 2 0 −1 0 1 0
1 0 0 −1 0 1 0 −1
−1 1 1 −1 0 0 −1 1
0 0 1 0 1 −1 0 0
0 1 0 0 1 0 1 0
1 0 0 1 0 1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The first three eigenvalues are the rigid body modes, and the nodal displacements
associated with the rigid modal vectors are illustrated in Figure 2.5. The second
mode is a pure translation and the first and third modes are combinations of
rotations and translations. The last five eigenvalues are elastic modes. The
associated modal vector nodal displacements are shown in Figure 2.6.



2.5. Stiffness Matrix 61

(a) Mode #1 (rigid) (b) Mode #2 (rigid) (c) Mode #3 (rigid)

Figure 2.5: Planar tensegrity cross rigid modal vectors

(a) Mode #4 (b) Mode #4 (c) Mode #5

(d) Mode #6 (e) Mode #7

Figure 2.6: Planar tensegrity cross elastic modal vectors

Example 2.9

The eigenvalues (modes) of K can be computed symbolically for the planar
simple structure in the form

0, 0, 0, 2
[
α−1(1 − α)−1 − 1

]
γ, 3κS , 2κB + κS ,
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and the associated eigenvectors (modal vectors) are the columns of the matrix

Hξ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 −1/2 −1
α−1 0 −α−1(1 − α) −α 0 0
0 1 0 0 −1/2 1
0 0 1 −(1 − α) 0 0
0 1 0 0 1 0
1 0 0 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The first three eigenvalues are the rigid body modes.

2.5.2 Eliminating Rigid Body Modes

It is often useful to eliminate rigid body modes from the stiffness matrix,
hence producing information on the structure’s response in directions that do
produce member deformation. What is needed to eliminate rigid body modes
from the stiffness matrix is to build a basis for all rigid modal vectors Ht

and Hr. One such choice for a basis is given by

hR = BRzR, zR ∈ R6,

where

BR =
[
1n ⊗ I3 vec[skew(ex)N] vec[skew(ey)N] vec[skew(ez)N]

]
.

Then construct an orthonormal basis for all directions he such that

hT
EhR = 0,

that is, an orthonormal basis for the null space of the subspace spanned by
hR. All such vectors can be parametrized as

hE = BEzE , zE ∈ R3n−6, BT
EBE = I3n−6.

In fact, any displacement direction h can be decomposed as

h = BRzR + BEzE .

Moreover, around an equilibrium point n

V (n + ϵh) − V (n) = V (n + ϵ[BRzR + BEzE ]) − V (n)

=
1
2
ϵ2 (BRzR + BEzE)T K (BRzR + BEzE) + O(ϵ3)

=
1
2
ϵ2zT

EBT
EKBEzE + O(ϵ3).

The matrix

KE = BT
EKBE

is the elastic component of the stiffness matrix from which the rigid body
modes have been eliminated.
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(a) Mode #1 (rigid) (b) Mode #2 (rigid) (c) Mode #3 (rigid)

Figure 2.7: Planar tensegrity cross rigid modal vectors. Decoupled transla-
tions and rotation

Example 2.10

First note that BR can be expressed as a function of the eigenvectors depicted
in Figure 2.5 in the form

BR =
[
h2 (h1 + h3) (h2 − h3)

]
.

The nodal displacements resulting from BR are shown in Figure 2.7. In this figure
we see that the translations and rotations are now decoupled and orthogonal.
Now compute an orthonormal basis for the null space of BR, such as

BE =
1
2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −
√

15/3 0 −
√

3/3 0
−1 −

√
15/5 −

√
15/15 0 −

√
3/3

−1
√

15/15 −
√

15/5 −
√

3/3 0
0 0 0 0

√
3

0 0 0
√

3 0
0 0

√
15/3 0 −

√
3/3

0 4
√

15/15
√

15/5 −
√

3/3 0
1

√
15/5 −4

√
15/15 0 −

√
3/3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2.5.3 Stability

If at the equilibrium point n the elastic stiffness matrix is positive definite,
that is,

KE = BT
EKBE ≻ 0,

then the equilibrium n is said to be stable. The idea is that the potential
function must increase for any small displacements in all elastic directions
hE = BEzE , thus generating a restoring force that tends to bring the struc-
ture back to its original equilibrium in an open neighborhood of n.
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Example 2.11

The tensegrity planar cross is on a stable equilibrium since γ > 0 and the
smallest eigenvalue of KE is

ξ = min
i

ξi(KE) = 2min{κB + γ,κS − γ},

and we have from (2.7) that for feasibility κS > γ so that ξ > 0, hence KE ≻ 0.

Example 2.12

The analysis of the planar simple structure in Figure 2.2 is a bit more subtle.
First note that the smallest elastic eigenvalue of KE is

ξ = 2
[
α−1(1 − α)−1 − 1

]
γ,

whose value depends solely on the level of pretension γ and α, which tells the
location of the node n3.

If γ > 0 then this eigenvalue is positive and the structure is stable. From
the modal vector matrix H, the displacements associated with this mode move
all nodes perpendicular to the member directions. On a stable structure, the
structure produces a force that brings the nodes back to the original equilibrium
line.

If γ = 0 then this mode is null, which indicates that a mechanism exists in the
structure, in this case an infinitesimal mechanism (see [CP91] for details). Nodes
can move perpendicular to the members and the structure offers no resistance.

If γ < 0, in which case bar and strings reverse roles and we have the dual
structure 2.4(b), the minimum eigenvalue is negative, which means that the
structure is no longer stable. The structure produces a force that takes the
nodes away from the original equilibrium line.

2.5.4 Eliminating Internal Nodes

In a tensegrity structure many nodes are internal to the structure and never
interact with external forces. It may be useful to account for that effect while
computing the stiffness matrix.

Let n be a configuration in equilibrium. Then the force generated by a
small displacement of the nodes n + h is approximately given by

f ≈ −Kh.

Conversely, if an external force f is applied to the structure, the above equa-
tion predicts the internal displacements h.
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Now rearrange and partition the displacement and force vectors in the
form

h =
[
he

hi

]
, f =

[
fe

f i

]
,

where hi (f i) ∈ R3ni

denote all displacements (forces) internal to the struc-
ture. Partitioning,

K =
[
Kee KT

ei

Kei Kii

]
,

accordingly. The condition that a node is internal can be translated as

f i =
[
Kei Kii

] [
he

hi

]
= 0, (2.9)

that is, that the external force on an internal node will be zero. Assume1

that Kii ≻ 0, in which case, all solutions to the above equation are given by

h =
[

I
−K−1

ii Kei

]
he.

These are the global displacements when no external force is applied on the
internal nodes ni. Using this as the displacements in the power series expan-
sion of V (n + ϵh) we obtain the reduced stiffness matrix as

Ke = Kee − KeiK
−1
ii KT

ei.

Note that the above matrix still contains all rigid body modes, since any
rigid displacement hR satisfies (2.9) as well. The rigid body modes can be
eliminated by applying the procedure we studied previously on the reduced
stiffness matrix Ke instead of K.

Example 2.13

Assume that node n3 in the planar simple structure in Figure 2.2 is an internal
node. The reduced stiffness matrix is then

Ke =
[
L1 + L3 −L1

−L1 L1 + L2

]
−

[
−L3

−L2

]
(L2 + L3)−1

[
−L3 −L2

]
.

The eigenvalues (modes) of Ke can be computed symbolically in this simple
case:

0, 0, 0, 2κB + κS .

Note that all rigid body modes are still present in Ke.

1If that is not the case, compute h =
[
Kei Kii

]⊥
z.
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2.6 External Forces

In a structure with n nodes let

wi ∈ R3, i = 1, . . . , n,

be three-dimensional vectors describing external forces applied at each node
of the structure. We define the external force vector and external force matrix
as

w =

⎛

⎜⎝
w1
...

wn

⎞

⎟⎠ ∈ R3n, W =
[
w1 · · · wn

]
∈ R3×n,

respectively.
Equilibrium in the presence of external forces can be obtained by simply

adding the linear potential to the total potential energy of the structure

Vw(n) = V (n) + wT n,

or, in matrix form,

VW(N) = V (N) + trace(WT N).

As in Section 2.4, an equilibrium point is a stationary point of the potential
energy, hence

∂NVW(N̄) = ∂NV (N̄) + W = 0

here given directly in matrix form. In other words, a point N̄ in which the
internal forces F balance the external forces W, i.e.,

−∂NV (n̄) = F(N̄) = W.

Most developments presented earlier in this chapter can be generalized to
cope with external forces by simply adding the vector or matrix of external
forces to the right-hand side of the equilibrium equations.

2.6.1 Optimal Volume of Loaded Structures

The derivations in this section follow mainly the ideas of A. G. M. Michell
[Mic04].

Let σ̄k, k = 1, . . . , m, denote the yield stress of the material used to
construct the kth member of a structure loaded with the external force w.
Assume that each member has a constant cross-section area Ak, k = 1, . . . , m.
If such a structure is designed so that no members experience yielding then
the maximum force density at any given member should be at most

σk(∥mk∥) ≤ σ̄k
Ak

∥mk∥
, k = 1, . . . , m.
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For minimal mass structures, equalities should hold on the above expressions.
In this case, the volume of each member can be related to the force density
through the formula

Vk = ∥mk∥Ak =
1
σ̄k

σk(∥mk∥) ∥mk∥2, k = 1, . . . , m.

The total volume of a structure is then computed by the summation

V =
m∑

k=1

Vk =
m∑

k=1

1
σ̄k

σk(∥mk∥) ∥mk∥2.

In a structure with mb bars and ms strings the above summation can be split
into two parts:

V = Vb + Vs,

Vb :=
mb∑

k=1

1
λ̄k

λk(∥bk∥) ∥bk∥2, Vs :=
ms∑

k=1

1
γ̄k

γk(∥sk∥) ∥sk∥2.

Assume now that all bars are made of the same material, then

λ̄k = λ̄ for all k = 1, . . . , mb.

Likewise, for strings made of the same material

γ̄k = γ̄ for all k = 1, . . . , ms.

In this case the total volume is given by adding the components:

Vb :=
1
λ̄

mb∑

k=1

λk(∥bk∥)∥bk∥2, Vs :=
1
γ̄

ms∑

k=1

γk(∥sk∥)∥sk∥2.

In the next paragraphs we will show how to compute the volume using infor-
mation from the equilibrium equations. We shall omit the dependence of the
force densities λk and γk on the length of the kth member. Partitioning the
members into bars and strings as in Section 2.4 we must have at equilibrium

[
−BΛ SΓ

]
C = W, Λ ≽ 0, Γ ≽ 0,

where the positivity constraints ensure the bars and strings are carrying,
respectively, compressive and tensile forces. Multiplication of this expression
on the right by the transpose of the node matrix N produces

[
−BΛ SΓ

]
CNT = WNT .

Recalling that

NCT =
[
B S

]
,
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we obtain

SΓST − BΛBT = WNT .

Now take the trace of the above matrix on both sides

trace(SΓST ) − trace(BΛBT ) = trace(WNT ).

Note that the traces on the left-hand side of the above expression also appear
in the volume, which can be conveniently rewritten in the form

V =
1
γ̄

trace(SΓST ) +
1
λ̄

trace(BΛBT ).

This observation is the key for the next result.
Assume that the compressive and tensile yield stresses are equal, i.e.,

γ̄ = λ̄. Among all structures sharing the same set of external forces wi

applied at nodes ni for i = 1, . . . , n the quantity J defined by

J = 2 λ̄σ̄ V + (σ̄ − λ̄) trace(WNT )

is least when V itself is least. However, notice that

J = 2 λ̄γ̄ V + (γ̄ − λ̄) trace(WNT )

= 2 λ̄γ̄
[
trace(SΓST ) + trace(BΛBT )

]

+ (γ̄ − λ̄)
[
trace(SΓST ) − trace(BΛBT )

]

= (λ̄ + γ̄)
[
trace(SΓST ) + trace(BΛBT )

]
. (2.10)

Minimization of J is therefore independent of the choice of material proper-
ties, (λ̄+ γ̄), and depends only on the variable topology (lengths and orienta-
tion of members). We shall explore this extraordinary property first observed
by Michell [Mic04]. Notice that, as pointed out by Rozvany [Roz96, Roz97],
in the case when γ̄ ̸= λ̄, minimization of J may not lead to minimization of
V , as claimed originally by Michell [Mic04]. This is the reason we limit our
attention to the case γ̄ = λ̄. We shall explore this extraordinary property at
other points of this book.

2.7 Chapter Summary

The methods of this chapter form the foundation of work in all remaining
chapters, where optimal designs will be derived to minimize mass or bound
stiffness or optimize topology. There are many ways to connect strings and
bars without obtaining a stable equilibrium, or without obtaining a struc-
ture stiff enough for engineering applications. This chapter provides the
analytical tools to compute, or design for, stiffness, mass, and topology opti-
mization later in the text. A network point of view is taken to characterize
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the structural forces and topologies. By defining a connectivity matrix, one
can arrange any topology and efficiently determine stiffness, mass, and sta-
bility. A vector approach simplifies the equation structure and eliminates
transcendental functions in the equations.

The form-finding equations are linear in the configuration variables. Hence
the forces in all members are immediately known in closed form formulas,
given the external forces and a specified configuration. Tools are also given
to determine the modes of the structure of a given topology.

2.8 Advanced Material

2.8.1 Affine Transformations

That equilibrium remain unaffected by affine node transformations can be
verified by writing

T (N)CT ΣC =
(
TN + t1T

n

)
CT ΣC,

= TNCT ΣC + t1T
nCT ΣC,

= TNCT ΣC,

= 0,

which is a consequence of the nonsingularity of T and the fact that C1n = 0.

2.8.2 Class 1 Tensegrity Structures

Define the nonsingular matrix

T =
[
I I
0 I

]
,

for which

CBT =
[
−I 0

]
, CST =

[
CS1 CS1 + CS2

]
,

and

TT
(
−CT

BΛCB + CT
SΓCS

)
T

=
[

CT
S1ΓCS1 − Λ CT

S1Γ(CS1 + CS2)
(CT

S1 + CT
S2)ΓCS1 (CT

S1 + CT
S2)Γ(CS1 + CS2)

]
.

Define also the transformed nodal coordinates

[
N̄1 N̄2

]
= N̄ = NT−T =

[
N1 N2

] [
I 0
−I I

]
=

[
N1 − N2 N2

]
,
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and multiply the equilibrium conditions on the right by T to obtain the
equivalent conditions

0 = NCT ΣCT

= N̄TT
(
−CT

BΛCB + CT
SΓCS

)
T,

=
[
N1 − N2 N2

] [
CT

S1ΓCS1 − Λ CT
S1Γ(CS1 + CS2)

(CT
S1 + CT

S2)ΓCS1 (CT
S1 + CT

S2)Γ(CS1 + CS2)

]
,

=
[
(N1C

T
S1+N2C

T
S2)ΓCS1−(N1 − N2)Λ (N1C

T
S1 + N2C

T
S2)Γ(CS1 + CS2)

]
,

=
[
NCT

SΓCS1 + NCT
BΛ NCT

SΓ(CS1 + CS2)
]
,

=
[
SΓCS1 + BΛ SΓ(CS1 + CS2)

]
, Λ ≽ 0.

2.8.3 Stiffness Matrix

Note that

−∂nik
fk(n) = [dk ⊗ ∂nik

σk(∥mk∥)mk],

where

Lk(mk) := ∂nik
σk(∥mk∥)mk

= σk(∥mk∥) I3 + σ′
k(∥mk∥)mk

mT
k

∥mk∥
,

= σk(∥mk∥) I3 +
[
V ′′

k (∥mk∥)
∥mk∥

− V ′
k(∥mk∥)
∥mk∥2

]
mkmT

k

∥mk∥
,

= σk(∥mk∥) I3 + [V ′′
k (∥mk∥) − σk(∥mk∥)]

mkm
T
k

∥mk∥2
,

= σk(∥mk∥)
[
I3 −

mkm
T
k

∥mk∥2

]
+ V ′′

k (∥mk∥)
mkm

T
k

∥mk∥2
.

Because

∂njk
σk(∥mk∥)mk = −∂nik

σk(∥mk∥)mk = −Lk(mk),

we have

K(n) =
m∑

k=1

Kk(n), Kk(n) = dkd
T
k ⊗ Lk(mk).

2.8.4 Modes and Modal Vectors

To understand how rigid body modes are associated with null eigenvalues
of matrix K, assume, for simplicity, that the structure contains only linear
elements. From (2.7) we must have

V ′′
k (∥mk∥) = κk > σk(∥mk∥),
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so that Φ ≽ 0. Hence

Kφ ≽ 0.

Now define

H =
[
h1 · · · hn

]
∈ R3×n,

and compute

vec(H)T Kφ vec(H) =
m∑

k=1

κk − σk(∥mk∥)
∥mk∥2

vec(H)T
[
dkd

T
k ⊗ mkm

T
k

]
vec(H),

=
m∑

k=1

[κk − σk(∥mk∥)]
(
dT

k HT mk/∥mk∥
)2 ≥ 0.

Note that the above expression is zero for some nonzero H if and only if

mT
k Hdk = 0, for all k.

We will discuss two cases in which this is possible. The first is for all directions
of the form

Ht = v1T
n ,

where v ∈ R3 is an arbitrary three-dimensional vector. This follows from the
fact that C1n = 0. The second case is when

Hr = skew(v)N,

again for an arbitrary v ∈ R3. Indeed, for all k,

mT
k Hrdk = mT

k skew(v)Ndk,

= mT
k skew(v)mk,

= mT
k (v × mk),

= 0.

Clearly, displacements of the form

N + ϵHt = N + ϵv1T
n

are pure translations and of the form

N + ϵHr = N + ϵ skew(v)N

are pure infinitesimal rotations, since v×ni is orthogonal to ni for all i. Since
all possible choices of v ∈ R3 can be parametrized as linear combinations of
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three linearly independent vectors in R3, the above directions generally2 pro-
duce six linearly independent directions H for which vec(H)T Kφ vec(H) = 0.

Notice also that

Kσ vec(H) = vec
(
HCT Σ(M)C

)
.

In particular, for H = Ht,

Kσ vec(Ht) = vec
(
v1T

nCT Σ(M)C
)

= 0,

since 1T
nCT = 0. Furthermore, for H = Hr,

Kσ vec(Hr) = vec
(
skew(v)NCT Σ(M)C

)
= 0,

because N is assumed to be an equilibrium point, in which case we have
NCT Σ(M)C = 0.

The conclusion is that Kh = 0 for any direction h spanned by vectors Ht

and Hr. In other words, vec(Ht) and vec(Hr) are eigenvectors of the matrix
K associated with a null eigenvalue.

2The only exception being on the extremely particular case when N = v1T
n , which can

be easily ruled out by inspection of N.



Chapter 3

Design of Compressive
Structures

In this chapter we determine the best tensegrity configuration and string
connectivity to minimize mass of a structure in compression, subject to a
constraint on buckling strength and subject to the use of self-similar iterations
(where we replace a bar with yet another tensegrity system). Of course, using
self-similar iterations to fill space might not yield minimal mass over all other
possible arrangements of members that are not restricted by a self-similar
rule, but the simplicity of the math and the beauty of the symmetry are
attractive as a starting point for further optimizations of structures.

Self-similar concepts describe a repetitive process where a geometrical
object is replaced by yet another similar geometrical object. Fractals are the
results of self-similar iterations as the number of self-similar iterations ap-
proaches infinity. Fractals have a mathematical description, but are art forms
as well, having intrigued both artists (M.C. Escher and Snelson) and scien-
tists (Mandelson and Wolfram). Mathematicians have produced a rich theory
to fill space with simple self-similar rules, under the labels of fractals, tiling,
and tessellations. Part of the intrigue is the simplicity of the fundamen-
tal element that generates the fractal by a self-similar rule. Artists have
generated impressive forms with straight lines (Snelson), or simple curves,
repeated within imaginative rules. Scientists discover rules for filling space
with repetitive simple geometries. One can wonder (with Stephen Wolfram)
whether any of the repetitive rules generated by these man-made rules can
match the geometries generated by nature (such as seashell material). In bi-
ological systems, one might argue that the geometry patterns in the material
play a vital role in the generation of a mechanical, acoustical, or electrical
property that enhances the survival of a species.

The literature on fractals is only about geometry, and no specific me-
chanical or electrical properties are associated with a material that might be

R.E. Skelton, M.C. de Oliveira, Tensegrity Systems, 73
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constructed according to this geometry. Our focus is the opposite. We shall
study rules of filling space [Ben95, BS03] with a self-similar rule, while guar-
anteeing a specific mechanical property at each self-similar iteration. That
is the goal of this chapter, in the special case where external forces place the
structure in compression.

One can then study the specific mechanical properties underlying nature’s
biological choices of geometry. This represents a popular focus in bioengi-
neering, where great attention is given to the mechanical response of cells and
its components Cite [VSBS05]. Hence, the ironic union of interests of artists
and engineers in space-filling geometry is spawned from opposite objectives,
beauty of form versus function. Indeed, the requirements of stability, me-
chanical stiffness, and strength rule out most of the self-similar forms that
can fill the space. The study of composite materials has demonstrated that
severe limitations are required on the choice of internal geometrical forms
to yield desired mechanical properties for the bulk material. The tensegrity
paradigm for this geometry will serve our purpose both in form and function
objectives.

To begin our study in finding a self-similar rule to fill space with specific
mechanical properties, tensegrity structures are employed as the building
elements, and we seek to fill a constrained space rather than the whole of
space. Hence our fractals will fill a finite-dimensional space with self-similar
structures of infinite complexity.

Tensile members stabilize the shape of a tensegrity structure; the tendons
can be prestressed to provide robustness against uncertainties in external
loads. Tensile members are more efficient in mass than compressive members.
For this reason, tensegrity structures can be lightweight. Therefore, if the use
of long compressive members is minimized, while the use of tensile members is
maximized, one may be able to improve the strength and reduce the weight
of the structure. In this case, one seeks to design a self-similar tensegrity
structure such that it has the same strength but less mass than the original
tensegrity structure.

In the next two chapters we shall answer two optimization questions: (1)
What is the minimal mass structure in compression? (2) What is the minimal
mass structure in bending? A tensegrity answer to these two questions will
naturally appear, where the complexity of the final answer depends upon
stiffness constraints, if required.

The replacement of the compressive members by another tensegrity struc-
ture yields a new structure with more compressive members (but shorter
ones). If the replacement is continuously applied to the new structure pro-
duced by the previous replacement, this procedure results in a self-similar
structure and the name self-similar tensegrity [CS02]. This self-similar pro-
cess can be repeated indefinitely, and one would like to guarantee certain
mechanical properties of the result. If the self-similar iterations continue
ad infinitum, we call the result tensegrity fractals. With the self-similar idea,
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the structural members can be scaled down for easier manufacturing and con-
struction. At the microscopic level, this becomes material design, rather than
structure design. Hence, at the mathematical level, we do not differentiate
between material design and structure design.

Another motivation for this class of structures is controllability, since the
lengths of strings can easily be controlled using actuators or controllable
materials like piezoelectric and shape memory alloy. The concept enables
the design of large deployable space tensegrity structures that have a small
stowed volume [Fur92], or the design of large movable civil buildings that
can regulate the solar energy and the airflow that is received internal to the
building. Indeed, one motivation for this book is to provide the analytical
tools with which one can simultaneously minimize the mass of a structure
and the energy required to control it to specified performance, but this task
is beyond the scope of this chapter. See some early attempts to control
tensegrity structures in [CDGP, Fur92, Han92b, Ped98, Sul99].

3.1 Self-Similar Structures in Compression

Consider the class 1 tensegrity structure in Figure 3.1. Note in this figure
that by choosing different tendon lengths of the class 1 unit we call C4T16,
one can produce three different configurations of interest, called the Box unit
in Figure 3.2, theT-Bar unit, in Figure 3.3, and the D-Bar unit in Figure 3.4.

1. Box : The rectangular shape called the Box unit of dimension h × w
results by choosing the corners of the box to be nodes at which the forces
are applied. In this case two parallel bars have become the same bar,
reducing the total bars from four to two, forming a class 1 tensegrity
structure, as in Figure 3.2.

2. T-Bar : The configuration we call a T-Bar unit in Figure 3.3 results
when we rotate the Box unit so that the external forces are applied
only at one node on each end, generating a class 4 tensegrity structure
by placing a ball joint at the intersection of the bars.

3. D-Bar : The configuration that results when we choose h = w = 0
will be called a Diamond-Bar unit, or more simply labeled a D-Bar
unit (Figure 3.4). This is a class 2 tensegrity structure, but there is
a string-to-string connection (joint) where the vertical and horizontal
strings intersect.

Primals and Duals: By the words tensegrity primal and tensegrity
dual, we refer to two tensegrity systems for which the bars/tendons of one
system are replaced by tendons/bars to obtain the second system, as defined
in Section 2.4.2. Hence, in Figure 3.3, if the T-Bar system is labeled the
primal system, then the D-Bar system in Figure 3.4 is its dual.
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Figure 3.1: A C4T16 structure under critical compressive load, f(ℓ0)
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Figure 3.2: A Box structure under critical compressive load, f(ℓ0)
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Figure 3.3: A T-Bar structure under critical compressive load, f(ℓ0)
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Figure 3.4: A D-Bar structure under critical compressive load, f(ℓ0)

3.1.1 Failure by Material Yielding

Structures may fail in two ways. The material may fail (material yields), or
the structure may buckle (material bends). One may minimize the mass of a
structure, subject to either buckling or yield constraints. We consider both
modes of failure, but in this section we consider only yielding.

The mass m(s) and yield strength t(s) of a string of length s are related
by

t(s) = σA = σπr2, m(s) = ρπr2s, (3.1)

where σ is the yield stress of the tendon material; r, s, A = πr2 are, respec-
tively, the radius, length, cross-sectional area, measured at yielding. From
(3.1), it follows that

m(s) = csst(s), cs =
ρs

σs
. (3.2)

Likewise, yielding of compressive members of length ℓ, subject to force f(ℓ),
has mass m(ℓ) given by m(ℓ) = cbℓf(ℓ), cb = ρb/σb. Now suppose bar
and string material is the same. Then cs = cb and the total system mass is
proportional to J ,

J =
m∑

i=1

ℓif(ℓi), (3.3)

where ℓi is the length of the ith member and f(ℓi) is the force in the ith
member (in tension or compression). Indeed, in Section 2.6.1 we have already
shown that when the same material is used for strings and bars the total mass
of a structure is minimized under yielding constraints if a certain normalized
material volume J which is independent of material properties (see (2.10)) is
minimized. Under these circumstances, the optimal geometric arrangement
of material (the topology) is independent of the choice of material.
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We will now compute the value of J for the two cases: the primal T-Bar
unit in Figure 3.3 and the dual D-Bar unit in Figure 3.4. It is convenient to
label strings and bar members differently. We denote the length of bars by
ℓi, the length of strings by si, the force in the bar of length ℓi by f(ℓi), and
the force in the string of length si by t(si). In the loaded case (external force
f(ℓ0) applied), the equilibrium conditions for the primal system (the T-Bar)
yield

ℓ1 = s1 cos α1 = ℓ0/2, ℓv1 = s1 sin α1,

f(ℓv1) = 2 sin α1t(s1), f(ℓ1) = f(ℓ0) + 2 cos α1t(s1).
(3.4)

Normalize J by J0 = ℓ0f(ℓ0) to get Ĵ defined by Ĵ = J/J0. This leads to

Ĵ =
1

ℓ0f(ℓ0)
(2ℓ1f(ℓ1) + 2ℓv1f(ℓv1) + 4s1t(s1))

= 1 + 2 cos α1t̂(s1) +
2 sin2 α1t̂(s1)

cos α1
+

2t̂(s1)
cos α1

= 1 +
4t̂(s1)
cos α1

,

where t̂(s1) = t(s1)/f(ℓ0).
Note that, imposing yielding constraints only, the T-Bar unit cannot have
mass less than the original bar, since Ĵ ≥ 1. So, if yielding were the method
of failure, then a single bar is better than the T-Bar unit.

Note that since the D-Bar unit is the dual of the T-Bar unit, the equilib-
rium conditions (3.4) apply with a change in sign of the forces and replacing
(f(ℓ1), f(ℓv1), t(s1)), respectively, by (−t(s1),−t(sv1),−f(ℓ1)). This leads to

s1 = ℓ1 cos α1 = ℓ0/2, sv1 = ℓ1 sin α1,

t(sv1) = 2 sin α1f(ℓ1), 2 cos α1f(ℓ1) = f(ℓ0) + t(s1)
(3.5)

and

Ĵ =
1

ℓ0f(ℓ0)
(4ℓ1f(ℓ1) + 2sv1t(sv1) + 2s1t(s1))

=
1

cos2 α1
(1 + t̂(s1)) + t̂(s1) +

sin2 α1

cos2 α1
(1 + t̂(s1))

= 1 + 2 tan2 α1 +
2

cos2 α1
t̂(s1).

Again, Ĵ ≥ 1 yielding the conclusion that, if yielding is the mode of failure
under compressive loads, the single bar requires less mass than the D-Bar
unit.

3.1.2 Buckling Constraints

When all members (bars and strings) are designed subject to yield con-
straints, the normalization above allows material properties to be eliminated
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from the minimal mass calculations. In this section we design strings subject
to yield constraints, while bars will be subject to buckling constraints. Hence,
the same normalization will not eliminate material properties from the total
mass calculation.

Let a solid rod have length ℓ0, radius r0, mass density ρb, Young’s modulus
of elasticity E, and mass m(ℓ0). According to Euler, a bar of length ℓ0 under
a compressive load f(ℓ0) buckles if,

f(ℓ0) =
Eπ3r4

0

4ℓ20
, m(ℓ0) = ρbπr2

0ℓ0. (3.6)

From (3.6) it follows that

m(ℓ0) = cbℓ
2
0

√
f(ℓ0), cb =

2ρb√
πE

. (3.7)

We pause for one calculation for a hollow cylinder, to make a point. For
a hollow tube with inner radius ri and outer radius r0 the above equations
become

f(ℓ0) =
Eπ3(r4

0 − r4
i )

4ℓ20
, m(ℓ0) = ρbπ(r2

0 − r2
i )ℓ0. (3.8)

From (3.8) the mass of the hollow cylinder m(ℓ0) satisfies a quadratic equa-
tion,

m2(ℓ0) + 2πρbℓ0r
2
i m(ℓ0) −

1
πE

4ρ2
bℓ

4
0f(ℓ0) = 0, (3.9)

which yields m(ℓ0) approaching zero as the radius of the cylinder ri ap-
proaches infinity. This fact suggests that, in the absence of material yielding
or wall panel buckling, the buckling strength of a hollow cylinder approaches
infinity (or the required mass of the hollow cylinder approaches zero), as the
cylinder radius approaches infinity. Of course, panel buckling will occur in
these cases, since the wall of the hollow cylinder becomes too thin. Hence, for
practical reasons, a hollow cylinder is the minimal mass solution for compres-
sive loads, if space is available to make the radius large enough. But in the
presence of restricted space for the cylinder, we will show that the cylinder
is not the minimal mass solution.

Mathematically we shall assume that the compressive members are solid
cylinders, which, by a slight abuse of language, we call bars. Results very
similar to those in this chapter can be obtained by using the more efficient hol-
low cylinders, but the ideas and the results are similar, and for our purposes
the additional complexity of the math to treat hollow cylinders is unjustified
here, so we shall present only the solid bar case.

An interesting fact to note, without explicit derivation, is that, under
compressive loads f(ℓ0), the Box unit in Figure 3.1 cannot have less mass than
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the original single bar, given that the same buckling strength is preserved.
However, the addition of a second Box unit, overlapping with the first, creates
the C4T16 unit in Figure 3.1 which can indeed reduce mass over the original
bar. All the remaining three units, C4T16, D-Bar, and the T-Bar units in
Figure 3.1, can be obtained as special cases of the C4T16 unit, by choosing
appropriate string lengths in the C4T16 unit. Furthermore, each of these
three units can save mass compared to the single bar unit, by appropriate
choice of the free parameters describing the topology of each unit. One can
therefore use any one of these three configurations as a self-similar rule to
construct an efficient structure for taking compressive loads. Each self-similar
iteration will reduce the combined mass of all the bars, without compromising
strength (buckling load) of the structure. Shape constraints or fabrication
issues might dictate which self-similar rule is better for a given application.

In this chapter, we will focus on the T-Bar rule and the D-Bar rule to
develop self-similar structures that are efficient in compression. The C4T16
structure is less efficient than either the D-Bar unit (a class 2 tensegrity) or
the T-Bar unit (a class 4 tensegrity), although C4T16 is a class 1 tenseg-
rity that may have fabrication advantages. Below, these structures will be
designed to match the compressive strength of the original single bar, while
reducing the total bar mass.

The dual of the T-Bar system is the D-Bar system in Figure 3.1. We will
show that for a suitable range of angle α both the primal and the dual can
save mass over the original bar.

3.2 T-Bar Systems

3.2.1 The T-Bar Unit

Let a given solid cylinder (bar) of mass m(ℓ0) buckle at load f(ℓ0). Now
replace the original cylinder by a T-Bar unit, where all eight members of the
T-Bar unit are designed to fail at exactly the same value of the external load
f(ℓ0) as for the original bar of length ℓ0. Hence, we say that the strength of
the two systems is preserved. There are four strings in the T-Bar unit, each
having length si. There are also four bars, two having length ℓ1 and two
having length ℓv1. We use the same name for the string label and the string
length. That is, we say “string si has length si”. Likewise for bars, we say
“bar ℓi has length ℓi”. We denote the tension in a string by using its label as
the argument, so the tension in string s1 is t(s1). Likewise, the force in a bar
labeled ℓ1 is f(ℓ1), and the force in a bar with label ℓv1 is f(ℓv1). The tension
t(s1) should be equal in all four tendons of our T-Bar unit. We will normalize
t(s1) by the external force f(ℓ0), and define t̂(s1) = t(s1)/f(ℓ0). We have two
free parameters in this T-Bar design, the angle α1 and the normalized string
tension t̂(s1). Let the mass of a bar of length ℓi be denoted by m(ℓi), where
from (3.7) m(ℓi) = cbℓ2i

√
f(ℓi) and cb is a material-dependent constant (for
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Figure 3.5: T-Bar forces for unloaded (prestressed) case, f(ℓ0) = 0

simplicity we assume the same material cb for all bars, and the same material
cs for all strings).

We will require the same geometry for both the unloaded and loaded cases
(hence the same ℓ1, ℓv1, s1). For string s1 and bar ℓ1 in Figure 3.3, the forces
in the loaded case are denoted by t(s1) and f(ℓ1). The forces in the unloaded
case will be denoted by an overbar, namely, t̄(s1) and f̄(ℓ1), as shown in
Figure 3.5. Hence in the loaded case (3.4) applies, and in the unloaded case

f̄(ℓ1) = f(ℓ0), f̄(ℓv1) = f(ℓ0) tan α1, t̄(s1) =
1

2 cos α1
f(ℓ0).

In the loaded case (external force f(ℓ0) applied), the forces in (3.4) apply,
with t(s1) = 0. These equations yield for the loaded case,

f(ℓv1) = 0, f(ℓ1) = f(ℓ0), t(s1) = 0.

Our goal is to obtain a stable system in both the loaded and unloaded struc-
tures, subject to the same configuration in both circumstances. In the loaded
case the force f(ℓ1) stabilizes the configuration, whereas in the unloaded case
t̄(s1) must stabilize. Hence, t̄(s1) cannot be zero.

The mass assigned to a member is therefore the larger of the two masses,
computed under both the loaded and unloaded cases. Hence, under buckling
loads, the mass that must be assigned to the member of length ℓ1 corresponds
to the larger of the two forces f(ℓ1) or f̄(ℓ1). That is, m(ℓ1) is the larger
of the two numbers [cb(ℓ1)2(f(ℓ1))1/2, cb(ℓ1)2(f̄(ℓ1))1/2]. In the T-Bar unit,
f(ℓ1) = f̄(ℓ1) and f(ℓv1) < f̄(ℓv1). Hence, the mass of all bars in the T-Bar
unit is mb1 , where,

mb1 = 2m(ℓv1) + 2m(ℓ1)

= 2cb(ℓv1)2[(f̄(ℓv1))1/2 + (f(ℓ1))1/2]

= 2cb(ℓ0/2)2[tan2 α1(f(ℓ0) tan α1)1/2 + (f(ℓ0))1/2]

= 2cb (ℓ0/2)2 (f(ℓ0))1/2[tan5/2 α1 + 1].
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Hence, the mass of the T-Bar unit is less than the mass of the original bar
if µb1 < 1, where,

µb1 =
mb1

m(ℓ0)
=

1
2
[tan5/2 α1 + 1],

and µb1 < 1 if α1 < 45◦.
Now let us add string mass. The string mass is 4m(s1) = 4css1(max[t(s1),

t̄(s1)]), where t(s1) = 0 is the string tension in the externally loaded case and
t̄(s1) = f(ℓ0)/(2 cos α1) is the string tension in the externally unforced case.
Therefore, the total mass ratio is

µ1 =
1
2
[tan5/2 α1 + 1] + 4m(s1)/m(ℓ0)

=
1
2
[tan5/2 α1 + 1] + 4

cs

m(ℓ0)

(
ℓ0

2 cos α1

)(
f(ℓ0)

2 cos α1

)

=
1
2
[tan5/2 α1 + 1] + 4

(
cs

√
f(ℓ0)

cbℓ0

) (
1

2 cos α1

)2

=
1
2
[tan5/2 α1 + 1] + ϵ(1 + tan2 α1), (3.10)

where

ϵ =
cs

√
f(ℓ0)

cbℓ0
=

ρs

√
πEf(ℓ0)

2σsρbℓ0
(3.11)

is a dimensional parameter. We note that small ϵ corresponds to small ex-
ternal forces, soft bar material, high strength string, and long bars. Larger
ϵ corresponds to large external forces, stiff bar material, low yield strength
string, and short bars. In Figure 3.6, a plot of µ1 versus α1 is illustrated
for various values of ϵ. Note that µ1 ≥ 1/2 + ϵ so that for a mass reduction
one should have ϵ ≤ 1/2, which yields a property between external force and
string and bar material, specifically,

f(ℓ0)
ℓ20

<

(
ρ2

b

πE

)(
σs

ρs

)2

. (3.12)

Therefore, in any T-Bar self-similar rule for constructing compressive struc-
tures, the property of bars that is important for mass reduction is ρ2

b/(πE),
and the property of strings that is important for mass reduction is σs/ρs.

In our numerical examples, we assume that both compressive members
and tensile members are made of steel, with density ρb = ρs = 7862 kg/m3,
Young’s modulus E = 2.06×1011 N/m2, and the yield strength σs = 6.9×108

N/m2. For example, (3.12) suggests that using the same steel for strings and
bars, mass cannot be reduced by T-Bar self-similar iterations if f(ℓ0)/ℓ20 >
0.001 N/m2.



3.2. T-Bar Systems 83

0 5 10 15 20 25 30 35 40 45

0.5

0.6

0.7

0.8

0.9

1

α1

µ 1

ε = 10−3

ε = 10−1

ε = 1/4

ε = 1/3

Figure 3.6: T-Bar unit: µ1 versus α1, from (3.10)

Example 3.1

For steel strings and bars cs/cb = 0.5829×10−3. With external force f(ℓ0) =
2.942 ℓ20 N, we have ϵ = 0.001 and from the above equation, choosing tan α1 =
0.25, we obtain µ1 = 0.517. This point is marked with a square in Figure 3.6.

Example 3.2

Suppose a force f1 is applied vertically downward at the top center node of
Figure 3.5, in addition to the horizontal force f0 we have already considered. In
the presence of both horizontal loads f0 and vertical loads f1, the force in the
top two strings will be zero, by our previous assumption that these two forces are
zero in the absence of f1. Using the same techniques as above show that when
the T-Bar is loaded in both directions with forces f0 and f1, where ζ = f1/f0,
the mass ratio is given by

µ1(f0, f1) =
1
2
[
√

1 + ζ/2 tan α + tan2 α
√

ζ + ϵ(1 + tan2)(1 + 2ζ)]. (3.13)

It is obvious that minimal mass of the nominal design (3.10) occurs at
α = 0. However, this design cannot tolerate any side forces f1 without
buckling the system, even though no individual bar buckles. We imagine
that this side force is a small fraction of the nominal force f0 applied in the
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Figure 3.7: T-Bar self-similar iteration

horizontal directions. Hence ζ < 1 and f1 represents external disturbances
ignored in the nominal design, but one can choose α to guarantee a certain
degree of robustness to the external load environment.

3.2.2 The T-Bar Self-Similar Rule

We begin with a bar of length ℓ0 compressed with the buckling load f(ℓ0).
Now we replace this bar by a T-Bar tensegrity unit of the same overall
length, with the same external force f(ℓ0) applied. Then we continue this
process, replacing each bar with another T-Bar unit, designing all members
of each unit to fail at the load applied to that unit. Repeating this self-similar
process n times will preserve the same strength as the original bar. Now we
evaluate the mass of the system after n iterations. The freedoms in each
iteration are αi and t̂(si) (see Figure 3.7). However, we will choose t̂(si) in
the following way. When the external force f(ℓ0) is applied, we will choose
t̂i = 0, but when the external load is absent, we will choose a prestress that
maintains the same load in bar ℓ1 as in the loaded case. This means choosing
prestress (the tension in strings s1) to be t̄(s1) = f(ℓ0)/(2 cos α1). For mass
calculations, this requires that bars ℓi have the mass associated with the
externally loaded case, and bars ℓvi and strings si will have mass dictated by
the forces of the unloaded case (prestress). From Figure 3.7 note that

ℓi+1 =
1
2
ℓi, si = ℓi/ cos αi, ℓvi = ℓi tan αi,

f(ℓi) = f(ℓi−1) + 2t(si) cos αi, f(ℓvi) = 2t(si) sin αi,

and

m(ℓi)
m(ℓ0)

=
(

ℓi

ℓ0

)2
√

f(ℓi)
f(ℓ0)

.

In case we choose t(s1) = 0 in the above equations, we have the f(ℓi) =
f(ℓi−1) and f(ℓvi) = 0.
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After n iterations the number of bars of length ℓn is 2n, and the number of
bars of lengths ℓv1, ℓv2, . . . , ℓvn sum to

∑n
i=1 2i bars. Hence after n iterations,

the total mass of the bars ℓn is given by

2nm(ℓn) = cb2n(ℓn)2
√

f(ℓn) = cb2n

(
ℓ0
2n

)2 √
f(ℓ0).

Hence,

2nm(ℓn)
m(ℓ0)

=
1
2n

. (3.14)

Now we must compute the mass of bars ℓvi, subject to force f̄(ℓvi), where
t̄(si) = f(ℓ0)/(2 cos αi).

m(ℓvi) = cbℓ
2
vi

√
f(ℓvi)

= cb

(
1
2i

ℓ0 tan αi

)2 √
f(ℓ0) tan αi.

Hence,
n∑

i=1

2im(ℓvi)/m(ℓ0) =
n∑

i=1

2i

(
tan5/2 αi

22i

)
=

n∑

i=1

tan5/2 αi

2i
. (3.15)

Now we must compute the mass of the strings si.
n∑

i=1

2i+1m(si)/m(ℓ0) =
n∑

i=1

2i+1sit̄(si)/m(ℓ0)

=
n∑

i=1

2i+1 cs

m(ℓ0)

(
ℓ0

2i cos αi

)(
f(ℓ0)

2 cos αi

)

=
n∑

i=1

2i+1

(
cs

√
f(ℓ0)

cbℓ0

)(
1

2i+1 cos2 αi

)

=
n∑

i=1

ϵ(1 + tan2 αi),

where ϵ is as in (3.11). Now the total mass after n self-similar iterations is
the sum of the bar mass by adding (3.14) and (3.15). The total string mass
is given by (3.14). Hence the total mass after n iterations is

µn = mn/m(ℓ0) =
1
2n

+
n∑

i=1

tan5/2 αi

2i
+

n∑

i=1

ϵ(1 + tan2 αi). (3.16)

In the special case where we choose the same αi = α, for all i, then the
total mass ratio is

µn(αi = α) = 2−n + tan5/2 α(1 − 2−n) + nϵ(1 + tan2 α), (3.17)
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Figure 3.8: T-Bar unit: µn versus n, with ϵ = 0.05, from (3.17)

where we have used the fact
n∑

i=m

βi =
βm − βn+1

(1 − β)
, β ̸= 1 (3.18)

to obtain the expression
n∑

i=1

1
2i

= 1 − 1
2n

, (3.19)

which follows from the power series (3.18) by substituting β = 1/2 and m = 1.
To reduce mass (3.17) requires µn ≤ 1, hence, (2−n−1)(1−tan5/2 α)+nϵ(1+
tan2 α) ≤ 0, hence tan5/2 α ≤ 1, hence α ≤ 45◦.

A plot of µn(αi = α) versus n appears in Figure 3.8. As n approaches
infinity, tendon mass approaches infinity and the bar mass ratio approaches
the value (tan5/2 α). Clearly there exists a minimum mass at a finite number
of iterations n.

To find the number of iterations that yield minimal system mass, differ-
entiate (3.17) with respect to n and set this expression to zero. Solving this
equation for n yields the optimal value n∗, satisfying,

2n∗
=

ln 2(1 − tan5/2 α)
(1 + tan2 α)ϵ

, (3.20)
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or, explicitly,

n∗ = ⌊ ln[(ln 2)(1 − tan5/2 α)] − ln[(1 + tan2 α)ϵ]
ln 2

⌋, (3.21)

where ⌊M⌋ means round down the number M to the closest integer. Equa-
tion (3.21) yields the optimal complexity n∗ of a structure in compression,
when all αi = α. The complexity is represented by n∗, since the number
of tensegrity components required to build the minimal mass structure in
compression is q, given by q = 2n∗

+
∑n∗

i=1(2
i + 2i+1) = 3(2n∗

) − 2.

Example 3.3

For steel strings and bars cs/cb = 0.5829×10−3. With external force f(ℓ0) =
2.942ℓ20 N, we have ϵ = 0.001, and from the above equation, choosing n = 6
and tan α = 0.25, we obtain µ6 = 0.0528, indicating a structure of q = 190
components that has about 1/20th the mass of the original bar of length ℓ0 and
the same buckling strength.

Example 3.4

Verify, using (3.21), that the optimal mass in the above example occurs with
a T-Bar structure of complexity n∗ = 9, in which case the minimal mass is
0.0427 times the mass of the original bar, given by (3.17) using n∗ = 9.

3.2.3 Optimal Column with Constant Width

A more lengthy example is developed here. Using the above self-similar
rule with constant α yields the topology of Figure 3.9. Suppose we desire
a compressive structure of length ℓ0 to have uniform width w, as shown
in Figure 3.10. The width constraint fixes the choice of αi in (3.16). In our
example we will choose αi so that the ends of the ℓvi bars lie on the boundary
of the shape constraint (constant width), until i = k, where k is the largest
integer such that αk ≤ 45◦ (since mass is not reduced with larger α). For
iterations n ≥ i > k mass cannot be reduced if the boundaries of the allowed
shape (width) are reached by the bars ℓvi. Thus, the remaining αi for i > k
will be chosen for mass reduction only and the bars ℓvi will not extend to the
outside boundary of the structure. In fact for these remaining αi, i > k, we
will choose the most mass-efficient design among the set of α that have been
used in the design. That is, αi = α1 = tan−1(w/ℓ0), for n ≥ i > k.

Now define z by z :=
√

ℓ0/w. From the constant-width constraint,

tan αi = 2i−1w/ℓ0 = 2i−1z−2, 1 ≤ i ≤ min{k, n},

where k is the largest i for which tanαi ≤ 1. Then, for any given z,

k = 1 + ⌊ ln(ℓ0/w)
ln 2

⌋ = 1 + ⌊ ln(z2)
ln 2

⌋. (3.22)
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0

Figure 3.9: T-Bar self-similar n = 4, constant α

0

w

Figure 3.10: Constant-width T-Bar column ℓ0/w = 2.3, n = 3, k = 2,
[αi ≤ 45o, i = 1, . . . , k], and [αi = α1, i = k + 1, . . . , n]

Using (3.16), (3.18), and tanα1 = z−2, we have

µn =

{
φ(n, k), n > k;
φ(n, n), n ≤ k;

(3.23)

where

φ(n, k) = 2−n +
k∑

i=1

[
2−i tan5/2 αi + ϵ(1 + tan2 αi)

]
+

n∑

i=k+1

[
2−i tan5/2 α1 + ϵ(1 + tan2 α1)

]

= 2−n + nϵ +
(

23k/2 − 1
2(23/2 − 1)

+ 2−k − 2−n

)
z−5+

ϵz−4

(
4k − 1

3
+ n − k

)
.

Example 3.5

In Figure 3.11, the solid lines plot µn as in (3.23) for various values of ℓ0/w
and ϵ = 0.001. The dashed lines are plots of φ(n, n), which represent the
mass of a structure where the angles αi are allowed to exceed 45◦ even when
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Figure 3.11: Constant-width T-Bar column: µn versus n, with ϵ = 0.001,
from (3.23)

n ≥ i > k. Hence, for n ≤ k the two curves coincide splitting at the value
marked by ∗ (n = k). The minimal mass design is indicated by squares which, in
this example, are all at n∗ = 9. For all practical purposes one can pick the less
complex n = 5 instead of the optimal n∗ = 9 with little impact on the mass.

Example 3.6

In Figure 3.12, the solid lines plot µn and φ(n, n) as in (3.23) for various
values of ϵ and ℓ0/w = 10, as in Example 3.5. Because k does not depend on ϵ,
k = 4 for all plots. Note that the minimal mass (squares) may be below, above,
or equal to n = k, at which point the solid curve is not differentiable. Hence the
minimum complexity n∗ cannot generally be obtained by differentiation of (3.23).
Indeed, the slope of the function µn is zero at n = 3 for the red curve (ϵ = 0.05),
which is indeed the global minimum. However, the slope is also zero at n = 3
for the green curve (ϵ = 0.02), but this is a local and not the global minimum
(which occurs at n∗ = 5).
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Figure 3.12: Constant-width T-Bar column: µn versus n, ℓ0/w = 10,
from (3.23)

Example 3.7

If string mass is neglected, that is, ϵ = 0, and the optimal number of iterations
n∗ → ∞, then

min
n≥1

φ(n, k) =
(

23k/2 − 1
2(23/2 − 1)

+ 2−k

)
+ lim

n→∞
(1 − z−5)2−n

=
(

23k/2 − 1
2(23/2 − 1)

+ 2−k

)
,

because z > 1.

Example 3.8

For z2 = ℓ0/w = 10 and ϵ = 0.02 then, from Figure 3.12, n∗ = 5 and k = 4.
Figure 3.13 shows the optimal column.

The above results have not applied the T-Bar self-similar iterations to the
ℓvi bars, but this can be done in a similar manner. These ℓvi bars become
significant in mass only if the chosen tensions t(si) are large, since only then
can the forces f(ℓvi) = 2t(si) sin αi become large. In examples we find that
the mass of the ℓvi bars is insignificant for the range of values t̂(si) ≤ 0.05,
αi ≤ π/4.
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Figure 3.13: Optimal constant-width T-Bar column ℓ0/w = 10, n∗ = 5, and
k = 4

3.2.4 Yielding in T-Bar Self-Similar Systems

The bar ℓn yields when the bar force is f(ℓn) = σbπr2
n, or, equivalently

r2
n = f(ℓn)/(πσb) = f(ℓ0)/(πσb). (3.24)

The bar buckles when the bar force is f(ℓn) = f(ℓ0) = π3Er4
n/(4ℓ2n), or

equivalently, using the fact ℓn = ℓ0/(2n), we have

r4
n = 4ℓ2nf(ℓn)/(π3E) = 4f(ℓ0)ℓ20/(22nπ3E). (3.25)

Equating (3.24) to the square root of (3.25) yields the iteration number n∗∗

at which the buckling force and the yield force are the same on bar ℓn.

2n∗∗
=

2ℓ0σb√
πEf(ℓ0)

=
(ρs/σs)
(ρb/σb)

1
ϵ
. (3.26)

For n < n∗∗, the failure of bar ℓn is by buckling, and (3.17) applies. If
n > n∗∗ the failure of bar is by yielding, and then (3.17) does not apply.

It is straightforward to take the ln of (3.26) to find the explicit value of
n∗∗. Figure 3.14 shows the range of iterations that are optimal for a constant
angle T-Bar column, considering both yield and buckling type of failures
when the same material is used for bars and strings.

For designs with constant angles αi, as in Figure 3.9, the optimal complex-
ity n is the smaller of the two numbers n computed from (3.20) and (3.26).
For constant-width designs, as in Figure 3.13, the optimal complexity n is
the smaller of the two numbers n computed from (3.23) and (3.26).

Example 3.9

For T-Bar columns with steel materials, the number of self-similar itera-
tions before yielding satisfies 2n∗∗

= 232.9f(ℓ0)−1/4, or equivalently, n∗∗ =
[ln 233 − (ln f(ℓ0))/4]/ ln 2 = 7.86 − 0.36 ln f(ℓ0), where f(ℓ0) is the external
force applied. Hence, for steel materials with f(ℓ0) = 1, the largest number of
self-similar iterations before yielding is 7.

3.2.5 Three-Dimensional T-Bar System

Three-dimensional versions of the T-Bar unit can be built as shown in
Figure 3.15. The structure in Figure 3.15 has N = 3 bars of the ℓv type.
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Figure 3.14: Constant-width T-Bar column: µn versus n, ℓ0/w = 10,
from (3.23); green (shaded) area is where yielding is the mode of failure

0

f( 0)

f( 0)

Figure 3.15: Three-dimensional T-Bar system

In general, one could build three-dimensional T-Bar units with any number
N of bars of the ℓv type. The N = 3 type has a triangular cross-section and
is the most efficient. The N = 4 unit has a square cross-section and might
be preferred in certain envelope constraints. The same analysis as above will
yield the self-similar realizations of optimal compressive structures in three
dimensions. The math is the same as for the planar system, except there are
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Figure 3.16: T-Bar unit: µn versus n, with ϵ = 0.05 for planar (N = 2,
dashed lines) and three-dimensional (N = 3, solid lines) cases, from (3.17)
and (3.28)

N times as many strings si and three times as many bars ℓvi. Hence, (3.16)
reveals the mass for the three-dimensional T-Bar with N bar of the ℓv-type
self-similar compressive structure after n iterations to be

µN
n =

1
2n

+
N

2

n∑

i=1

tan5/2 αi

2i
+

N

2

n∑

i=1

ϵ(1 + tan2 αi). (3.27)

By following the same steps that followed (3.16) in the above section, one
can determine the optimal number of iterations, n∗, for the three-dimensional
T-Bar systems, with constant α or with constant diameter w.

For the three-dimensional case with N = 3 and constant α, the above
equation reduces to

µ3
n(αi = α) = 2−n + (3/2) tan5/2 α(1 − 2−n) + (3/2)nϵ(1 + tan2 α). (3.28)

This three-dimensional case with N = 3 is shown in Figure 3.16 by solid
lines. For comparison, the case N = 2, plotted in Figure 3.8, is shown by
dashed lines.

Note that the price for three-dimensional stability, over the planar case,
is less mass savings for a given α, or else α must be chosen at least 4.63◦
smaller. That is, for the planar case α < 45◦ was required to reduce mass,
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but in the three-dimensional case tanα < (2/N)2/5. For N = 3 this means
that α < 40.374◦. This follows from (3.27) by requiring µN

n ≤ 1 when ϵ = 0,
since in this case, (2−n−1)(1−(N/2) tan5/2 α) ≤ 0, requiring tan5/2 α ≤ 2/N .

For any N , the minimal mass is achieved by finding the iteration number
n = n∗ that minimizes

µN
n (αi = α) = 2−n + (N/2) tan5/2 α(1 − 2−n) + (N/2)nϵ(1 + tan2 α).

(3.29)

Differentiating this with respect to n and solving for n∗ yields

2n∗
=

2 ln 2(1 − N
2 tan5/2 α)

ϵN(1 + tan2 α)
. (3.30)

Now substitute (3.30) into (3.29) to get the minimal mass ratio µn∗

µN
n∗ =

N

2
tan5/2 +ϵ

N(1 + tan2 α)
2 ln 2

[
1 + ln

(
2 ln 2(1 − N

2 tan5 /2α)
ϵN(1 + tan2 α)

)]
.

Note that the total bar mass of the optimal compressive structure is simply
mb = (N

2 tan5/2 α)m(ℓ0). Thus, for any chosen α, the smallest mass for a
stable three-dimensional compressive structure is for N = 3.

3.3 D-Bar Systems

3.3.1 The D-Bar Unit

In this section we replace the original bar of mass m(ℓ0) and length ℓ0 by the
dual of the T-Bar system, which is called the D-Bar system in Figure 3.4.
We will replace the original bar with D-Bar units to get a structure with the
same compressive strength.

For the D-Bar unit the length of all four bars is ℓ1, and the lengths of the
two strings are s1 and sv1. In general, for the ith iteration, with specified
f(ℓ0) and ℓ0, the member lengths and forces are given by

ℓi cos αi = si, ℓi sin αi = svi, (3.31)
2f(ℓi) cos αi = f(ℓi−1) + t(si), 2f(ℓi) sin αi = t(svi), (3.32)

where

ℓ1 = ℓ0/(2 cos α1).

When i = 1 we get the single D-Bar unit of Figure 3.4 and i = 3, . . . , 6 in
Figure 3.17. See also Figure 3.18 for the case n = 2 with α1 > α2.
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Figure 3.17: Configurations of the planar D-Bar self-similar structure with
constant α = 15◦. The svi strings are in red (dashed lines). The si strings
are not shown since they take no tension in these critical states
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Figure 3.18: A D-Bar, n = 2 structure with α1 > α2
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One is free to choose αi and the tension t(si). For smallest mass in the
loaded case we choose t(si) = 0, but the mass of string si will not be zero,
since we will use the tension in the unforced case to size this string. From
previous discussions the string mass of si is based upon the largest tension
in the string, between loaded and unloaded units. That is, for our choice
t(si) = 0, we have max[t(si), t̄(si)] = t̄(si). The total bar mass of the D-Bar
unit is mb1 = 4m(ℓ1). The ratio of the bar mass of the D-Bar unit (composed
of four bars of length ℓ1 and mass m(ℓ1)) and the mass of the original bar of
length ℓ0 is

4
m(ℓ1)
m(ℓ0)

= 4
(

ℓ1
ℓ0

)2
√

f(ℓ1)
f(ℓ0)

, (3.33)

= 4
(

1
2 cos α1

)2
√

f(ℓ0) + t(s1)
2 cos α1f(ℓ0)

(3.34)

= (2 cos5 α1)−1/2, (3.35)

which has a lower bound of 1/
√

2 when t(s1) = 0 is chosen. Observe that this
mass ratio cannot be less than 1 unless

√
2(cos5/2 α1) > 1, or equivalently,

α1 < 29.477◦.
Now we must add string mass to the D-Bar unit. Recall the mass of

the string is m(s1) = (ρs/σs)s1t(s1) = css1t(s1). Note from the unloaded
case in (3.31) that the same geometrical configuration is maintained in the
unloaded and loaded cases if we choose the prestress to be t̄(s1) = f(ℓ0). In
the unloaded case we have t̄(sv1) = t̄(s1) tan α1. Hence the masses of strings
s1 and sv1 are derived as follows:

m(s1) = css1t̄(s1) = csℓ1 cos α1f(ℓ0) = csℓ0f(ℓ0)/2

and

m(sv1) = cssv1t̄(sv1) = csℓ1 sin α1t̄(s1) tan α1 = csℓ0f(ℓ0) tan2 α1/2.

For the D-Bar system, the total string mass ms1 = 2m(s1)+2m(sv1). There-
fore, the total string mass for the D-Bar unit is

2 [m(s1) + m(sv1)] = ϵ(1 + tan2 α1)m(ℓ0), (3.36)

where ϵ is defined as in (3.11).
Herein we will always assume all strings are the same material, and all

bars are the same material. The total mass of the D-Bar unit is therefore
the sum of bar mass (3.35) and string mass (3.36),

m1 = 4m(ℓ1) + 2m(s1) + 2m(sv1) = µ1m(ℓ0),

hence

µ1 = (2 cos5 α1)−1/2 + ϵ(1 + tan2 α1). (3.37)
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Figure 3.19: D-Bar unit: µ1 versus α1, from (3.37)

In Figure 3.19, a plot of µ1 versus α1 is illustrated for various values of ϵ.
Note that µ1 ≥

√
2/2 + ϵ (compare with µ1 ≥ 1/2 + ϵ in the case of a T-Bar

unit) so that for mass reduction one should have ϵ ≤ 1 −
√

2/2 ≈ 0.3. This
is why no mass reduction is possible for ϵ = 1/3 in Figure 3.19.

Example 3.10

For steel strings and bars and f(ℓ0) = 2.942ℓ20, as in previous examples, we
have ϵ = 0.001. Then for α1 = 10◦, µ1 = 0.73 (compare with µ1 = 0.517 for
the T-Bar design). This point is marked with a square in Figure 3.19.

3.3.2 The D-Bar Self-Similar Rule

Using (3.31) it is straightforward to show that the force in the bars of length
ℓn at the nth iteration is

f(ℓn)
f(ℓ0)

=
1∏n

i=1 (2 cos αi)
. (3.38)
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Hence, after the nth iteration, the mass of a bar of length ℓn (normalized by
the mass of bar of length ℓ0) is

m(ℓn)
m(ℓ0)

=
(

ℓn

ℓ0

)2
√

f(ℓn)
f(ℓ0)

=
(

1∏n
i=1(2 cos αi)

)5/2

. (3.39)

Using the fact that the loaded case yields t(sv1) = t(si) = 0, but t̄(si) =
t̄(si) tan αi, and hence, after the nth iteration, the forces in strings sn and
svn are

t̄(sn) = f(ℓn−1) =
f(ℓ0)∏n−1

i=1 (2 cos αi)
,

t̄(svn) = t̄(sn) tan αn = 2 sin αnf(ℓn) =
f(ℓ0) tan αn∏n−1
i=1 (2 cos αi)

.

The masses of these strings are, at any iteration i,
2m(si) + 2m(svi) = 2cs[sit̄(si) + svit̄(svi)]

= csℓ0f(ℓ0)(1 + tan2 αi)

(
1

∏i−1
k=1(2 cos αk)

)2

.

We note that there are 22i−1 strings of length si, 22i−1 strings of length svi,
and 22n bars of length ℓn. We summarize these mass results as follows.

Let a bar of length ℓ0 and mass m(ℓ0) buckle at the critical load f(ℓ0).
Replace this bar with a four-bar, four-tendon system called a D-Bar unit,
as in Figure 3.1, designed to fail at the same external load f(ℓ0). Replace
each new bar with another D-Bar system. Repeat this self-similar process n
times, where at each iteration there is freedom to choose angles αi and the
tension t(si). However, we have chosen t(si) to hold the same configuration of
the structure in the absence of an external load. Then if each new structure
is designed to fail (bars buckle and strings yield) at the same external force
f(ℓ0), then the mass of the new self-similar structure after the nth iteration
is mn, where mn = µnm(ℓ0), and

µn =

[
22nm(ℓn) +

n∑

i=1

22i−1(m(si) + m(svi))

]
/m(ℓ0)

= 22n

(
1∏n

i=1(2 cos αi)

)5/2

+ ϵ
n∑

i=1

22i−2(1 + tan2 αi)
[
∏i−1

i=1(2 cos αi)]2
. (3.40)

Now consider the special case when αi = α. In this case (3.40) yields

µn = 22n(2 cos α)−5n/2 + ϵ
n∑

i=1

22i−2(1 + tan2 α)(2 cos α)−2(i−1)

= (2 cos5 α)−n/2 + ϵ (cos−2n α − 1)/ sin2 α, (3.41)

where we have used (3.18) for β = cos−2 α, m = 1.
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Figure 3.20: D-Bar unit: µn versus n, with ϵ = 0.05 (D-Bar, solid lines),
from (3.41). Also shown is µn versus n for the same ϵ (T-Bar, dashed lines),
from (3.17)

A plot of µn(αi = α) versus n appears in Figure 3.20. As n approaches
infinity, tendon mass approaches infinity and the bar mass approaches zero.
Clearly there exists a minimum mass at a finite number of iterations. It is
straightforward, as in previous cases, to find the optimal number of iterations
to get minimal mass. Hence the optimal complexity required for minimal
mass is obtained by differentiating (3.41) with respect to n, set the expression
to zero, and solve for n to get n∗, satisfying,

(√
1

2 cos α

)n∗

= −4ϵ sin2 α(ln cos α)
ln 2 + 5(ln cosα)

. (3.42)

Or, explicitly,

n∗ = ⌊ ln(−4ϵ sin2 α(ln cos α)) − ln(ln(2 cos5))
ln((2 cos α)−1/2)

⌋. (3.43)

We note from this equation that n∗ approaches infinity as ϵ approaches
zero, suggesting that with massless strings the mass of the set of bars ap-
proaches zero as the complexity n approaches infinity. This yields what
we label as D-Bar tensegrity fractals, where in this case, the iterations i =
1, 2, 3, . . . in Figure 3.17 continue to infinity. The D-Bar tensegrity fractals
fill the internal space of the structure as the configuration becomes arbitrarily
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Figure 3.21: Optimal constant-width T-Bar column ℓ0/w = 10, n∗ = 5, and
k = 4, with last iteration using D-Bar units

dense. It is interesting to note that, in addition to filling space with a rule
for self-similar iterations, a specific mechanical property (mass, strength, and
stiffness) can be assigned to the structure at each iteration. Standard fractal
theories from topology of course fill the space, but do not address system
mechanical properties, given any material properties of the members of the
topology.

Example 3.11

See Figure 3.17 for cases of n = 3, 4, 5, 6.

Example 3.12

From Figure 3.20 the optimal complexity is n∗ = 4 for the system with
ϵ = 0.05 and α = 10◦ or 20◦ and n∗ = 3 if α = 25◦.

Example 3.13

There are important reasons to combine D-Bar and T-Bar self-similar sys-
tems. It is easy to collapse a D-Bar unit by controlling the string sv1, while
the collapse of the T-Bar unit requires a folding procedure which seems more
complex. Yet the T-Bar self-similar system can reduce more mass on each iter-
ation than the D-Bar system. To combine the advantages of both, one can use
the T-Bar self-similar iteration except on the last iteration. The last iteration
will employ the D-Bar units. Figure 3.21 illustrates a deployable column design,
where the column diameter is chosen to be constant.

3.3.3 Yielding in D-Bar Self-Similar Systems

As in the section on yielding in T-Bar self-similar systems, one can compute
the number of iterations required for material yielding for D-Bar systems.
We consider only the case with constant α. Equating the force required to
yield and the force required to buckle yields the formula

(2 cos α)n =
4σ2

b

πE

ℓ20
f(ℓ0)

. (3.44)
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Figure 3.22: A three-dimensional D-Bar unit

Example 3.14

For a D-Bar column with constant α = π/18, all steel members, with
ℓ20/f(ℓ0) = 1, show that the number of iterations required to yield is given
by

n =
ln(ℓ20/f(ℓ0)) + ln(2σ)2/πE

ln(2 cos α)
=

ln(2σ)2/πE

ln(2 cos α)
= 22. (3.45)

The examples in the planar studies indicate that failure by buckling occurs
with much smaller n, hence buckling is the expected mode of failure for D-Bar
systems.

3.3.4 Three-Dimensional D-Bar System

See Figure 3.22 for the configuration of the three-dimensional D-Bar tenseg-
rity unit. Since the mathematical details follow the same arguments as in
the planar case, we rely on the previous sections to provide the step-by-step
derivations. In this section we shall briefly present the results for this three-
dimensional case.

Using the same arguments as in the planar case, we choose the prestress
to yield the same geometry as the loaded structure. Assuming αi = α for all
i, the relevant forces and lengths are given by

si = ℓ0/[2(2 cos α)i−1], svi = 2 ℓ0 cos[π/(2N)] sin α/(2 cos α)i,

t̄(si) = f(ℓi−1), t(svi) = t̄(svi) = f(ℓi) sin α/ cos[π/(2N)],

f(ℓi) = f(ℓ0)/(N cos α)i, t(si) = 0,

where, as in Section 3.2.5, N refers to the number of bars at the node of
application of the compressive force. In Figure 3.22, N = 3. After the usual
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Figure 3.23: D-Bar unit: µn versus n, with ϵ = 0.05 for planar (N = 2,
dashed lines) and three-dimensional (N = 3, solid lines) columns, from (3.46)
and (3.41)

algebraic manipulations we are led to the final result for the three-dimensional
D-Bar system with constant α,

µN
n =

(
N

4 cos5 α

)n/2

+ ϵ (cos−2n α − 1)/ sin2 α. (3.46)

Note that the component associated with the string mass does not depend on
N , and hence it is exactly the same as computed in the planar case in (3.41).

For example, substituting n = 1 and N = 3 yields for a single three-
dimensional unit with six bars,

µ3
1 =

(
3

4 cos5 α

)1/2

+ ϵ (1 + tan2 α). (3.47)

Hence mass reduction in the three-dimensional D-Bar unit requires 4 cos5 α >
3, or equivalently, α < 19.25◦. The planar case required only α < 29.48◦.

A comparison of (3.47) with (3.37) and a comparison between (3.46)
and (3.41) contrasts the planar and three-dimensional D-Bar columns, with
constant α. A plot of (3.46) with N = 3 and (3.41) (µn versus n) compares
the two in Figure 3.23.
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Figure 3.24: A USS Box structure under critical compressive load, f(ℓ0)

3.4 Unit-Self-Similar Designs

In the previous sections we replaced an individual compressive member by a
more complex tensegrity structure. In this section we replace a specially cho-
sen tensegrity unit (a subsystem, a collection of members) by a more complex
set of units, while maintaining the outside dimensions of the structure. So if
we were to label the iterative approach of the previous sections as a rule for
member-self-similar (MSS) iterations, then we would label the rules in this
section as unit-self-similar (USS) rules for iteration.

3.4.1 Using Box Units

We begin with a column example. As in the previous section for constant-
width columns, consider a space of dimension ℓ0 × w that is available for
constructing a compressive column. The first drawing in Figure 3.24 repre-
sents a single unit composed of two bars and four strings. This unit is a Box
type of unit from Figure 3.2. The second drawing fills the same space with
two Box units. Of course, when two strings are coincident, one can replace
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Figure 3.25: A USS D-Bar structure under critical compressive load, f(ℓ0)

them with a single string. The third drawing fills the same space with four
Box units.

Consider a typical node, where the externally applied load is f(ℓ0), the
overall length and width of the beam is ℓ0 and w, respectively, and if there
are n units within the overall length ℓ0, then the length of one unit is ℓ0/n.
Note also that tan αn = nw/ℓ0. The sum of forces at the typical node yields,

f(ℓn) sin αn = t(s), f(ℓ0) = f(ℓn) cos αn,

and the mass is composed of 2n bars, leading to

m = 2ncbℓ
2
n

√
f(ℓn)

= 2ncb[w2 + (ℓ0/n)2]{f(ℓ0)2[1 + (nw/ℓ0)2]}1/4.

Differentiating this mass expression with respect to n and setting this ex-
pression to zero yields, after a number of simplifications,

n = (ℓ0/w)
√

2/3. (3.48)

Note that the optimal complexity of a column in compression, composed of
USS iterations employing Box units, is a function only of the aspect ratio of
the column, ℓ0/w.

To summarize, we have shown that the assembly of n Box units as in
Figure 3.24 to create a column of dimension ℓ0 × w has minimal mass if n
is chosen to be n = (ℓ0/w)

√
2/3. Note that this is an example where the

optimal complexity is finite.

3.4.2 Using D-Bar Units and T-Bar Units

Now consider the assembly of four D-Bar units, Figure 3.4, to form a column
as in Figure 3.25. Since the units connect end to end at a point, there is
no resistance to buckling of the column system, even though buckling of the
individual units is avoided in the design. To prevent buckling of the column
system we add strings on the column boundary, connecting the nodes on the
width boundary with adjacent units, shown as dotted lines in Figure 3.25.
That is, the ends of the strings sv1 of one unit are connected by a string to the
end of the string sv1 of the adjacent unit. When this is done one can observe
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Figure 3.26: A USS T-Bar structure under critical compressive load, f(ℓ0)

Figure 3.27: Member-self-similar (MSS) concepts can be applied on each com-
pressive member (down the columns of the figure). Unit-self-similar (USS)
concepts can be applied on each unit (along the rows of the figure). A min-
imal mass occurs along each direction, providing a minimal mass over both
concepts as in the lower right design

that the topology of the system is very similar to the topology obtained by
the interconnection of Box units, described above, with the exception that
the ends of the column form a point (from the left and right ends of a D-Bar
unit).

Finally, consider the assembly of four T-Bar units, Figure 3.4, to form a
column as in Figure 3.26. One can see that without the stabilizing strings, the
USS D-Bar and T-Bar are dual structures. It is interesting to note that the
same set of stabilizing strings can be added to both structures even though
they are dual.

We have shown how to minimize mass using self-similar iterations of
the members (MSS), and we have shown how to minimize mass using the
units (USS). Figure 3.27 illustrates both concepts in the planar case of a
column. Member-self-similar (MSS) concepts can be applied on each com-
pressive member (down the columns of the figure). Unit-self-similar (USS)
concepts can be applied on each unit (along the rows of the figure). A min-
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(a) Perspective (b) Top View

Figure 3.28: A regular minimal three-bar tensegrity prism

imal mass occurs along each direction, providing a minimal mass over both
concepts as sketched in the lower right design, where the example illustrates
only these concepts and does not provide numbers for the example.

Due to the similarity between D-Bar, T-Bar, and the Box USS design, we
will not examine the D-Bar design further. Instead, we move on to a more
interesting class of self-similar structures that are natural extensions of the
Box design in three dimensions. These structures will be based on tensegrity
prisms, which we study in detail in the next section.

3.5 Tensegrity Prisms

Tensegrity prisms have been introduced in Section 1.4.1 along with some
nomenclature regarding regularity (whether the top and bottom polygons
are regular and lie in parallel planes, potentially with different radius) and
minimality (whether the prism has the minimum possible number of strings
for stable equilibrium). The prism in Figure 3.28 is both regular and minimal.
This is the first class of prisms we will study.

3.6 Minimal Regular Prisms

Minimal regular tensegrity prisms can have any number of bars p ≥ 2. Reg-
ular p-bar tensegrity prisms have top and bottom regular p-polygons lying
in parallel planes. The radius of the top and bottom polygons can be dif-
ferent. In a regular p-bar prism, the minimum number of strings necessary
for stable equilibrium is 3p, namely p top strings, p bottom strings, and p
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Figure 3.29: Top view of minimal regular tensegrity prisms (with rb = rt = r)

vertical strings. Such strings can be visualized in Figure 3.28 for the case of a
three-bar minimal regular prism. A p-bar prism with 3p strings is a minimal
prism even if it is not a regular prism. In the following section we discuss
properties of minimal regular tensegrity prisms.

3.6.1 Equilibrium

Let rt and rb denote the radius of the top and bottom regular polygons of
a p-bar regular tensegrity prism. The distance separating these two parallel
polygons, sometimes called the height of the prism, is denoted by h. The twist
angle, that is, the angle formed by the projection of the top and bottom
polygons, is denoted by α. The angle φ is the characteristic angle of the
regular polygons, that is, φ = 2π/p. Most of these quantities are depicted in
Figure 3.29, where rt = rb = r for p = 3 and p = 5. As mentioned before,
minimal tensegrity prisms have p bars and 3p strings. In Figure 3.29 the p
bars are shown in black, e.g., n4−n1 in Figure 3.29(a), p top strings are shown
in dotted blue, e.g., n4 − n3 in Figure 3.29(a), and p bottom strings in solid
red, e.g., n2−n1 in Figure 3.29(a). Arrows indicate elements that connect to
the bottom and top planes (the head of the arrow is at the top plane). The
green members are p vertical strings, e.g., n3 − n1 in Figure 3.29(a).

We now present the fundamental relationship for equilibrium of self-
stressed tensegrity prisms without any external loads. Detailed derivations
are given at the end of the chapter.

Let γb, γt, and γv be the force densities, i.e., the ratio between the member
force and the member length (see Section 2.2 for details) on all bottom, all
top, and all vertical strings, respectively, and λb be the force density on all
bars. The fact that all groups of strings and all bars share the same force
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coefficients follow from symmetry implied by the regularity of the prism.
Without external forces, for equilibrium, we should have

⎛

⎝
γt

γb

γv

⎞

⎠ = λb

⎛

⎝
ρ−1(2 sin(π/p))−1

ρ (2 sin(π/p))−1

1

⎞

⎠ , (3.49)

where ρ := rt/rb is the ratio between the top and bottom radii. Note that
the twist angle

α =
π

2
− π

p
(3.50)

is uniquely defined for any p. For instance, for p = 3 then α = 30◦, p = 4 then
α = 45◦, p = 6 then α = 60◦, which are well-known relationships [CB98].

The above formulas are scalable in the sense that λb and the unit geom-
etry (h, rb) or (h, rt) can be chosen arbitrarily without affecting equilibrium.
Increasing λb > 0 increases the overall level of prestress in the unit. Note
that all γ’s are positive if λb > 0. As for the geometry, changing h and say rb

will simply scale the force of the members to match the unit geometry. Also
note that

γb = ρ2γt,

so that, as expected, the top and bottom strings will have the exact same
forces when the top and bottom polygons have the exact same radii.

3.6.2 Design Under Compressive Load

Consider a regular minimal tensegrity prism subject to a total compressive
load f(ℓ0), as shown in Figure 3.30 for the case p = 3. We assume now
that rt = rb = r, that is, that the top and bottom polygons are congruent.
Note that in order to make the notation consistent with other sections in this
chapter, the height h is now seen as the prism length and is therefore labeled
ℓ0. Likewise, the prism width is w = 2 r. This will allow us to compare the
results of this section with the other topologies we have studied.

Even though one can compute the exact forces on all members of a tenseg-
rity prism in equilibrium under compressive load (see, for instance [Ske05]),
here we will adopt the same “small displacements” paradigm used in the pre-
vious sections in order to design a tensegrity prism. As before, we assume
that a stable regular minimal prism is to be designed such that when subject
to a compressive load f(ℓ0) equally distributed on the p top and p bottom
nodes, the vertical component of the vertical string is zero. Under the small
displacements assumption we have that

fz
v = ℓ0γv = f(ℓ0)/p =⇒ γv = f(ℓ0)/(ℓ0 p).
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Figure 3.30: Minimal regular tensegrity prism under compressive load

This allows one to calculate all force densities in all members of the structure,
namely

λb = γv =
f(ℓ0)
ℓ0 p

, γt = γb =
λb

2 sin(π/p)
=

f(ℓ0)
2 ℓ0 p sin(π/p)

.

After computing the lengths of the bars and the strings

∥b∥ =
√

ℓ20 + 2r2[1 + sin(π/p)],

∥sv∥ =
√

ℓ20 + 2r2[1 − sin(π/p)], ∥st∥ = ∥sb∥ = 2r sin(π/p),

we can compute the total mass needed for the bar to buckle at the given load
f(ℓ0) as

mb1 = p cb∥b∥2
√

λb∥b∥ = cb

√
pf(ℓ0)

ℓ0

(
ℓ20 + 2r2[1 + sin(π/p)]

)5/4
.

As before, we are interested in mass savings as compared to a single bar
under compression m(ℓ0) = cbℓ20

√
f(ℓ0). This is why we compute the mass

savings ratio

µb1 =
mb1

m(ℓ0)
=

√
p

z5

(
1 + 2z4 + sin(π/p)

2

)5/4

,
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where, as before, z =
√

ℓ0/w =
√

ℓ0/(2r). As for the mass of the strings

ms1 = p cs

(
γv∥sv∥2+γb∥sb∥2 + γt∥st∥2

)
=

csf(ℓ0)
ℓ0

(
ℓ20 + 2r2(1 + sin(π/p))

)
,

and

µs1 =
ms1

m(ℓ0)
= ϵ

(
1 +

1 + sin(π/p)
2z4

)
,

where ϵ is as defined in (3.11). The total mass savings for a single minimal
regular tensegrity p-bar prism are then

µ1 = µb1 + µs1

=
√

p

(
1 + 2z4 + sin(π/p)

2

)5/4

+ ϵ

(
1 +

1 + sin(π/p)
2z4

)
. (3.51)

Note that µ ≥ √
p (1 + sin(π/p))5/4 ≥

√
2 > 1, so that no mass savings are

possible for a single unit. This will be overcome in the next section where a
unit-self-similar design will be developed based on minimal regular tensegrity
p-bar prisms.

3.7 Tensegrity Columns

Consider now the unit-self-similar structure in Figure 3.31 subject to a total
compressive load f(ℓ0). This is a class 2 tensegrity structure based on a
regular minimal tensegrity prism. Because rt = rb = r, stable minimal
regular p-bar prisms can be stacked as shown, ensuring stability of the overall
structure. In this design, the length of each unit is ℓn = ℓ0/n, where n is the
total number of units.

3.7.1 Unit-Self-Similar Design

Defining z =
√

ℓ0/(2r) and repeating the same operations as in the previous
section, one obtains

µn = µbn + µsn, µbn =
√

p

nz5

(
n2 + 2z4 + n2 sin(π/p)

2

)5/4

, (3.52)

µsn = ϵ

(
1 +

n2[1 + sin(π/p)]
2z4

)
. (3.53)

Note that in this design the mass of the strings decreases monotonically with
n but is bounded from below by ϵ. On the other hand, the mass of the bars
has a distinct minimum. After differentiating µbn with respect to n, one finds
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Figure 3.31: Unit-self-similar tensegrity column under compressive load

that the number of units that minimizes µbn is

n∗ =

⌊
2z2

√
3[1 + sin(π/p)]

⌋
=

⌊
2√

3(1 + sin(π/p))
ℓ0
w

⌋
. (3.54)

These formulas are illustrated by the following examples.

Example 3.15

The plot in Figure 3.32 shows µn as a function of n for a minimal regular
three-bar prism, plotted for various values of ℓ0/w and ϵ = 0.001. Note that, as
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Figure 3.32: Unit-self-similar three-bar prism design: µn versus n, ϵ = 0.001,
from (3.52)

expected from the discussion in the previous section, one needs n ≥ 2 to obtain
some mass savings. The points marked with a square indicate the global minima.
The global minimum for ℓ0/w = 100 is µn = 0.0405 at n = 82. Whereas the
savings are comparable to those obtained with say, the planar T-Bar design, this
is achieved at a much higher number of units. The mass savings for smaller
values of ℓ0/w occur for smaller n but are not as impressive. Note that

n∗(ℓ0/w) = {4, 8, 84}, ℓ0/w = {5, 10, 100},

which indicates that n∗ seems to be a reasonably accurate estimate of the global
optimum.

Example 3.16

The plot in Figure 3.33 shows µn as a function of n for a minimal regular
three-bar prism, plotted for various values of ϵ. In the case ϵ = 0.05, n∗ is 8
which again turned out to be an accurate estimate of the global minima.

From the previous example, n∗ seems to be an accurate estimate of the
global minima. It is also easily related to ℓ0/w. Motivated by this we compute
an upper bound to the optimal mass gain by substituting n∗ in (3.52) in order
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Figure 3.33: Unit-self-similar three-bar prism design: µn versus n, ℓ0/w = 10,
from (3.52)

to obtain

µn∗ =
1

ℓ0/w

5 × 151/4

6
√

p[1 + sin(π/p)] + ϵ
10
6

. (3.55)

The above formula is remarkable and shows that the optimal mass gain is
linear in ϵ and that the component of the mass due to the strings (the term
multiplied by ϵ) is independent of the number of bars per prism p. Also,
for a given p, the optimal mass gain is inversely proportional to the aspect
ratio ℓ0/w.

Example 3.17

The plot in Figure 3.34 shows µn∗ as a function of ℓ0/w for a minimal regular
p-bar prism, plotted for various values of p. Note by the boxed points in the figure
that for a given p a certain minimum aspect ratio is needed for mass savings.

3.8 Tensegrity Plates

Some regular p-bar tensegrity prisms can be connected in such a way as to
generate plates. However, only a few choices of p, namely p = {3, 4, 6},
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Figure 3.34: Unit-self-similar p-bar prism design: µn∗ versus ℓ0/w,
from (3.55)

generate plates in which all top (and bottom) nodes lie on the same plane.
In this chapter we shall limit ourselves to discuss flat plates assembled using
three-bar minimal tensegrity prisms. This can be done in two different ways,
which we call topology A and topology B.

3.8.1 Topology A

In this plate topology two three-bar minimal regular tensegrity prisms of the
same height h and the same top and bottom radius rt = rb = r are placed
such that two of the nodes of the second prism, one at the top and one at the
bottom, lie exactly on one top and one bottom string of the first prism. The
idea is illustrated in the top view shown in Figure 3.35, where the nodes of the
second prism are labeled n′

i, i = 0, . . . , 5. The figure also suggests a solution
to the problem of characterizing the geometry of such plates. Indeed, this
geometry is entirely determined by looking at the top (or bottom) projection
of the prism’s two parallel planes. For this reason the next derivations are
done with two-dimensional vectors, with no z-component.

We look for a two-dimensional translation vector t3A such that the bottom
node n′

0 of the second prism lies on the line formed by the nodes n1 and n2

of the first prism. At the same time the top node n′
5 lies on the line formed

by the top nodes n3 and n4. That is, we look for a vector t3A and scalars
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Figure 3.35: Three-bar plate connection – topology A – top view

0 ≤ βb ≤ 1 and 0 ≤ βt ≤ 1 such that

n′
0 = t3A + n0 = βb n2 + (1 − βb)n1, (3.56)

n′
5 = t3A + n5 = βt n3 + (1 − βt)n4. (3.57)

The answer to the above linear algebra problem, shown at the end of the
chapter, is of the form

[
βb

βt

]
= (

√
3 − 1)

[
1
1

]
, t3A =

[
−1√
3 − 2

]
3r

2
. (3.58)

Due to the symmetry of the problem, a prism can be surrounded by six
other prisms which are translated by

t3Aj = Rj
π/3t3A, j = 0, . . . , 5,

generating the pattern shown in Figure 3.36. Note that a minimum of three
prisms, e.g., the central unit and j = k, . . . , k + 1 for any k, are required to
connect in order to obtain a stable plate. This is due to the fact that only two
nodes are connected between two prisms, which in three dimensions leaves
1 out of 3 degrees of freedom unstabilized. Note that with three prisms we
have six linearly independent node connections.

3.8.2 Topology B

In this topology two three-bar minimal regular tensegrity prisms of the same
height h and the same top and bottom radius rt = rb = r are placed such that
one node of the first prism lies exactly on a string of the second prism and one
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Figure 3.36: Three-bar plate – topology A – top view

node of the second prism lies exactly on a string of the first prism. The idea
is illustrated in Figure 3.37. As for topology A, we look for a two-dimensional
translation vector t3B such that the bottom node n′

0 of the second prism lies
on the line formed by the nodes n1 and n2 of the first prism. In addition,
the top node n3 of the first prism should lie on the line formed by the top
nodes n′

4 and n′
5. That is, we look for a vector t3B and scalars 0 ≤ βb ≤ 1

and 0 ≤ βt ≤ 1 such that

n′
0 = t3B + n0 = βb n2 + (1 − βb)n1,

which is the same equation as in (3.56), and

n3 = βt n′
4 + (1 − βt)n′

5, (3.59)
= βt (n4 + t3B) + (1 − βt)(n5 + t3B),
= t3B + βtn4 + (1 − βt)n5. (3.60)

Proceeding as in the case of topology A, the solution
[
βb

βt

]
= (2 −

√
3)

[
1
1

]
, t3B =

[
−1

2 −
√

3

]
3r

2
(3.61)

is derived at the end of the chapter.
As in the previous section, a unit can be surrounded by six other units

which are translated by

t3Bj = Rj
π/3t3B , j = 0, . . . , 5,

generating the pattern shown in Figure 3.38.
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Figure 3.37: Three-bar plate connection – topology B – top view

Figure 3.38: Three-bar plate – topology B – top view

3.8.3 Design Under Compressive Load

Because rt = rb = r, we shall be able to borrow much of the derivations in
Section 3.6.2. This is indeed the case after noticing that for both topologies A
and B all prisms are connected by simply “sliding” one prism close to another
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and that the static equilibrium of the individual prisms remains unaffected
by such connections.

Indeed, for an individual three-bar prism in a plate subject to a com-
pressive load f(ℓ0) equally distributed among its three top and three bottom
nodes, the total mass saving as compared to the same force applied to a sin-
gle bar is given by (3.51), where z =

√
ℓ0/w is the square root of the aspect

ratio and ϵ is defined by (3.11). For a single prism or radius r, the width is
taken simply as w = 2r, and the length is equal to the height of the prism,
i.e., ℓ0 = h.

For unit-self-similar columns as in Section 3.7, the width w = 2r and the
total length ℓ0 remain constant while the height of the individual units is
reduced to hn = ℓn = ℓ0/n. Also total length ℓ0 is larger than width w, so
that z =

√
ℓ0/w > 1.

Let us now consider that a tensegrity plate with width ℓ0 is to be built
using topologies A and B to cover an area A. For that sake we use n units
of height h = ℓ0 connected by topologies A or B. Then the area of each unit
is πr2 and the total area

A = ξnπr2,

where ξ ∈ [0, 1] is a parameter that accounts for the overlap between the areas
of the units in either topologies (more on the determination of ξ later). From
this definition we have that r =

√
A/ξnπ. By noting that the force in each

individual unit is now also divided by the number of units one can repeat the
steps in Sections 3.6.2 and 3.7 with fz

v = f(ℓ0)/(3n) and the definition of the
aspect ratio parameter z2 =

√
A/ℓ0 to obtain

µn = µbn + µsn, µbn =
√

3
n3/4π5/4

(
nπ + ξ−1(2 +

√
3)z4

)5/4
, (3.62)

µsn = ϵ

(
1 +

2 +
√

3
nπξ

z4

)
. (3.63)

Several remarks are in order. First, the quantity µn still expresses the total
mass normalized by m(ℓ0) = cbℓ20

√
f(ℓ0) as in (3.7), where m(ℓ0) is the min-

imal mass of a single bar under a lumped compressive load f(ℓ0). However,
this quantity is not meaningful in the case studied here, in which the force is
distributed over the area A. The reason for using the same normalization is to
be able to work with the non-dimensional parameters z and ϵ, whereas z has
been properly redefined to be consistent with the previously used definitions
which are related to the square root of the “aspect ratio”. The consequence
is that when looking for the plots of µn one should not draw any comparison
with unity.

As in the previous section, the mass of the strings decreases monotonically
with n and is bounded from below by ϵ whereas the mass of the bars has a
distinct minimum. As in the previous section, one may try to compute this
minimum with respect to n by ignoring the string mass. The task is, however,
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Figure 3.39: Three-bar hexagonal plate with three rings – topology A – top
view

more involved since ξ is often a function of n as well. The next section will
provide a concrete example.

3.8.4 Hexagonal Three-Bar Flat Plates

Consider hexagonal flat tensegrity plates, such as the ones in Figure 3.36 built
using topology A. Such plates can be extended indefinitely by attaching more
“rings” to the sides of an existing plate. For example, Figure 3.36 has two
rings, whereas Figures 3.39 and 3.40 show plates built with topology A with
three and four rings, respectively. Similar plates can be constructed using
topology B, as in Figures 3.38 and 3.41 with two and three rings, respectively.
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Figure 3.40: Three-bar hexagonal plate with four rings – topology A – top
view

For such plates we can compute the value of ξ exactly. Indeed, if the
individual units have radius r, hence area a = 3r2 cos(π/6), then the total
area of these plates is A = 3R2 cos(π/6). The radius R is computed as

R =
(

1
2

+ ∥t3∥(nr − 1)
)

r, ∥t3∥ := 3
√

2 −
√

3,

where nr > 1 is the number of rings and ∥t3∥ = ∥t3A∥ = ∥t3B∥ is the center-
to-center distance computed previously. Note that this is the same value for
both topologies A and B even though t3A ̸= t3B ! With that and the fact that
the number of prisms in a hexagonal plate is

n = 1 + 3nr(nr − 1), (3.64)
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Figure 3.41: Three-bar hexagonal plate with three rings – topology B – top
view

one can compute

ξ(nr) =
A

na
=

R2

nr2
=

[1 + 2∥t3∥(nr − 1)]2

4[1 + 3(nr − 1)nr]
. (3.65)

For example, ξ(nr) is approximately equal to

{0.60, 0.68, 0.75, 0.80},

when nr → {2, 3, 6,∞}. Note that ξ grows with the number of rings nr.
The substitution of ξ on µn produces a complex expression, which we shall
not attempt to differentiate. Instead, the next example gives an idea on the
dependence of µn on nr.
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Figure 3.42: Three-bar tensegrity plate: µn versus nr, for ϵ = 0.05 and
A/ℓ20 = {5, 10, 20}, from (3.62) using (3.64) and (3.65)

Example 3.18

The formula (3.62) gives the total mass as a function of n. For hexagonal flat
plates we plot µn versus the number of rings nr in Figure 3.42 with ϵ = 0.05 and
various aspect ratio parameters A/ℓ20 = {5, 10, 20}. The relationship between n
and nr was computed from (3.64) and the factor ξ(nr) from (3.65). As before,
the minimal mass is indicated by squares.

3.9 Non-minimal Regular Prisms

The prism discussed in the previous section has p bars and 3p strings and
a pretty rigid set of equilibrium conditions. In particular, a unique twist
angle α is possible for each p. If one is willing to add strings, then more
flexible equilibrium conditions can be established, with possible mechanical
advantages. For instance, in this section we discuss adding diagonal strings.
In Figure 3.29(a), one diagonal string is connected to nodes n5 − n1, and
in Figure 3.29(b), one diagonal string is connected to nodes n9 − n1. This
produces the prism depicted in Figure 3.43 (also Figure 1.22).
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Figure 3.43: A regular non-minimal tensegrity prism. This structure has 12
strings, including 3 extra diagonal strings

3.9.1 Equilibrium

Let γd be the force density in the diagonal strings, then
⎛

⎜⎜⎝

γt

γb

γv

γd

⎞

⎟⎟⎠ =
λb

cos(α − π/p)

⎛

⎜⎜⎝

ρ−1 cos(π/p)
ρ cos(π/p)

2 cos(α) cos(π/p)
− cos(α + π/p)

⎞

⎟⎟⎠ , (3.66)

where now the twist angle is any angle between

π

2
− π

p
≤ α ≤ π

2
. (3.67)

In this range, one can verify that the γ’s are all nonnegative for λb > 0. As
in the minimal regular prism, γb/γt = ρ2.

Note also that for α = π/2 − π/p, γd = 0. That is, diagonal strings
are not needed when the canonical twist angle of a minimal prism is chosen.
Conversely, vertical strings are not needed when α = π/2. Note that going
all the way to π/2 may cause the bars to collide, and hence may not be
realizable.

From the above equilibrium conditions, and using the methods of Sec-
tion 2.5, one can verify that the above prism is stiff in the sense that no
finite or infinitesimal mechanisms are present for any twist angle inside the
feasible interval (3.67). Indeed, columns built using the self-similar princi-
ple discussed in (3.7) using such stiff non-minimal tensegrity prisms as basic
units will also be free of infinitesimal mechanisms.
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3.10 Chapter Summary

In this chapter we have introduced the concept of complexity in the context
of self-similar iterations. Since the number of self-similar iterations fixes the
number of discrete structural elements (bars and tendons), we refer to the
number of self-similar iterations as the complexity of the system. We have
shown that the self-similar structure that minimizes mass under compressive
loads is obtained from the T-Bar self-similar rule. Furthermore, the optimal
complexity of such a structure under compression is finite (as opposed to
the optimal bending result of Michell which gives infinite complexity. See
Chapter 4). In the case of compressive structures, the optimal complexity, p,
is the smaller of the two numbers p computed from (3.26) or (3.21). One of
these numbers, (3.21), is independent of external force or material properties,
while the other, (3.26), depends on both. Thus when failure is by buckling
then the optimal topology of compressive members remains independent of
the material and external load, whereas when failure of compressive members
is by material yielding, then the optimal topology depends on material and
external load.

As in the case of the T-Bar topology, the optimal compressive structure
using the D-Bar self-similar rule also reduces mass, up to a finite number of
iterations. As in the T-Bar case, explicit formulas are given for the optimal
number of self-similar iterations (3.43). Since the geometric arrangements of
the compressive and tensile elements are different in the T-Bar and D-Bar
cases, we have shown how to use the advantages of both to build a structure
that collapses and deploys easily with simple tendon control. If one wishes to
design a deployable structure that maintains the same cross-sectional shape
of the original structure, but expands its length like an accordion, one can
use the T-Bar self-similar rule except for the very last iteration, which would
be a single D-Bar iteration.

Tensegrity prisms were discussed and equilibrium formulas have been de-
rived for minimal and non-minimal regular prisms. By combining tensegrity
prisms we analyzed two types of self-similar structures: class 2 tensegrity
columns and class 1 plates. Class 2 tensegrity columns are a natural general-
ization of the planar unit-self-similar design using D-Bar or T-Bar units to
the three-dimensional case. Formulas for the design of plates were obtained
in the case of distributed compressive crushing loads. Class 1 plates were de-
signed so that the connection between units happened at an existing straight
string. This way of connecting preserves the equilibrium of the individual
units but also may come at the expense of low stiffness. Indeed, if a unit is
designed with zero pretension, then the stiffness between units will be zero.
One can overcome this problem by allowing the units to overlap, thus avoid-
ing the connection at straight strings. This construction will be reported in
another publication.

It is interesting to observe that, in the presence of a crushing force, the
minimal mass of the two types of plates, topologies A and B, is the same,
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and the optimal complexity (density of units filling the space) is the same.
Topology A has a more uniform distribution of the nodes than topology B,
and the stiffness of the two plates might be different, but stiffness was not
computed in these examples.

3.11 Advanced Material

3.11.1 Equilibrium of Regular p-Bar Tensegrity Prism

The notation in this section refers to Figure 3.29. We have that p is the
number of bars per prism, h is the prism height, rt and rb are the top and
bottom radii, respectively, α is the twist angle, and φ = sign(α)2π/p is the
prism characteristic angle (see Section 3.6.1 for more details).

Define the rotation matrix

R(φ) :=

⎡

⎣
cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

⎤

⎦ ,

then all bottom nodes of a prism can be located by

ni = R(φ)i

⎛

⎝
rb

0
0

⎞

⎠ , i = 0, . . . , p − 1,

whereas the top nodes are

ni = R(φ)i−p+1

⎛

⎝
rt cos(α)
−rt sin(α)

h

⎞

⎠ , i = p, . . . , 2p − 1.

Using the above nodes all members can be precisely located. Namely,
bars are given by

bi = np+i − ni, 0 ≤ i ≤ p − 1,

bottom strings:

sbi = ni+1 (mod p) − ni, 0 ≤ i ≤ p − 1,

top strings:

sti = np+[i+1 (mod p)] − np+i, 0 ≤ i ≤ p − 1,

vertical strings:

svi = np+[i−1 (mod p)] − ni, 0 ≤ i ≤ p − 1,
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and diagonal strings:

sdi = np+[i−2 (mod p)] − ni, 0 ≤ i ≤ p − 1.

For equilibrium (see Section 2.4 for details), the sum of the forces at a
bottom node i must be zero, i.e.,

λbbi = γb[sbi − sb(i−1)] + γvsvi + γdsdi.

Because of symmetry we can consider a common force density for each group
of strings instead of individual force coefficients. Symmetry will also allow
us to analyze equilibrium at a single bottom node and single top node. At
the ith bottom node the above equilibrium equation can be written as

Abix = λbbi, Abi :=
[
sbi − sb(i−1) svi sdi

]
, x :=

⎡

⎣
γb

γv

γd

⎤

⎦ .

Therefore,

x = λbA−1
bi bi =

λb

cos(α − π/p)

⎛

⎝
(rt/rb) cos(π/p)
2 cos(α) cos(π/p)
− cos(α + π/p)

⎞

⎠ .

The sum of the forces at a top node p + i is

−λbbi = γt[sti − st(i−1)] − γvsv(i+1) − γdsd(i+2),

which can be written as

Atiy = −λbbi, Abi :=
[
sti − st(i−1) −sv(i+1) −sd(i+2)

]
, y :=

⎡

⎣
γt

γv

γd

⎤

⎦ .

Therefore,

y = −λbA−1
ti bi =

λb

cos(α − π/p)

⎛

⎝
(rb/rt) cos(π/p)
2 cos(α) cos(π/p)
− cos(α + π/p)

⎞

⎠ .

Note that γv and γd appear in both x and y but, as expected, with the
same value. For stable equilibrium (see Section 2.4), we must also have

x ≥ 0, y ≥ 0.

Since cos(π/p) ≥ 0 for all p ≥ 2, we must have

λb ≥ 0, cos(α − π/p) ≥ 0 ⇒ π/p − π/2 ≤ α ≤ π/p + π/2
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for positivity of γb and γt. For positivity of γv and γd, we must have

cos(α) ≥ 0 ⇒ −π/2 ≤ α ≤ π/2,

cos(α + π/p) ≤ 0 ⇒ π/2 − π/p ≤ α ≤ 3π/2 − π/p.

That is,

π/2 − π/p ≤ α ≤ π/2.

When α = π/2 − π/p, we have γd = 0; and when α = π/2, we have γv = 0.

3.11.2 Tensegrity Plates

Topology A

Subtracting (3.57) from (3.56) we obtain the equation

n0 − n5 = βbn2 + (1 − βb)n1 − βtn3 − (1 − βt)n4,

which is independent of t3A and involves only nodes of the first unit. This
equation can be rewritten as the linear algebra problem

Apx = bp,

where

Ap :=
[
n2 − n1 n4 − n3

]
, x :=

[
βb

βt

]
, bp := n0 − n1 − n5 + n4.

The solution to this problem is
[
βb

βt

]
= x = A−1

p bp =
1
2

(
1 +

√
3 tan(α/2)

) [
1
1

]
,

from which, using (3.56), we obtain

t3A = βbn2 + (1 − βb)n1 − n0 = −3r

2

[
1

tan(α/2)

]
.

We obtain (3.58) after substituting α = π/6, since the prisms are minimal
and regular.

Topology B

Summing (3.56) and (3.60), we obtain the equation

n0 + n3 = βbn2 + (1 − βb)n1 + βtn4 + (1 − βt)n5,
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which is independent of t3B and involves only nodes of the first unit. This
equation can be rewritten as the linear algebra problem

Apx = bp,

where

Ap :=
[
n2 − n1 n4 − n5

]
, x :=

[
βb

βt

]
, bp := n0 + n3 − n1 − n5.

The solution to this problem is
[
βb

βt

]
= x = A−1

p bp =
(

3 − 6 cos(α)√
3 sin(α) − 3 cos(α)

− 1
) [

1
1

]
,

from which, using (3.56), we obtain

t3B = βbn2 + (1 − βb)n1 − n0 =
3
2

⎛

⎝
−1√

3 cos(α) + 3 sin(α) − 2
√

3√
3 sin(α) − 3 cos(α)

⎞

⎠ .

We obtain (3.61) after substituting α = π/6, since the prisms are minimal
and regular.



Chapter 4

Design of Bending
Structures

This chapter provides the complete analytical solution for the design of a
planar cantilevered structure to support a given load, yielding the smallest
volume of material required to support the load. Constraints against both
types of material failure, yielding and buckling, are guaranteed.

The most important reference in this chapter is the seminal work of
Michell in 1904 [Mic04], where he showed a continuum of material to mini-
mize volume for a material system under bending loads, under the assumption
that all members use the same materials. (Michell’s optimization result re-
quires that all members are composed of the same material, as first pointed
out by Rozvany [Roz96, Roz97].) This is commonly called today the Michell
Truss [HP69, Sch81, OS01, Roz98]. This chapter gives a discrete optimal
result for beams in bending, whereas Michell’s 1904 results [Mic04] provided
only the continuum solution.

4.1 Michell Topology

We start with some definitions of spirals and then show how to connect them
together to make an interesting topology. We shall use Michell’s name to label
the components of our technique (Michell Spirals and Michell Topology), even
though such concepts are new.

4.1.1 Michell Spirals

Consider a sequence of lines of length pℓ, pℓ+1, . . . connected end to end as
shown in Figure 4.1. Relative to a common origin, 0, the geometry of these
connections can be described as follows.

R.E. Skelton, M.C. de Oliveira, Tensegrity Systems, 129
DOI 10.1007/978-0-387-74242-7 4, c⃝ Springer Science+Business Media, LLC 2009
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Figure 4.1: A Michell Spiral of order 4 (φ = π/16, β = π/6)

Definition 4.1 Let rℓ define a set of radii from a common origin, 0, for ℓ =
0, 1, 2, . . . , q. Let pℓ, ℓ = 0, 1, 2, . . . , q − 1, define the lengths of lines beginning
at points with radius rℓ and terminating at points with radius rℓ+1. Then a
Michell Spiral of order q is defined by the end-to-end connections of lines of
length pℓ, satisfying,

rℓ+1 = arℓ, pℓ = crℓ, ℓ = 0, 1, 2, . . . , q, (4.1)

where a > 0 and c > 0.

If

a =
sin β

sin(β + φ)
, c =

sin φ

sin(β + φ)
, (4.2)

then the sequence generates a Michell Spiral as in Figure 4.1. The relations
between (a, c) and (φ,β) given above follow from Figure 4.1 by observing
that

rℓ+1 cos φ + pℓ cos β = rℓ, (4.3)
rℓ+1 sin φ = pℓ sin β. (4.4)

Obviously if a = 1, all radii have the same value and the lines pℓ are secants
of a circle. In this case φ + 2β = π. For the spirals to converge to the origin
one needs a < 1, which corresponds to φ + 2β < π.

4.1.2 Michell Topology

Consider Figure 4.2, where a Michell Spiral of order 4 is described by the
connection of nodes n00, n01, n02, n03, n04. A Michell Spiral of order 3 is
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Figure 4.2: Michell Spirals of order 0, 1, 2, 3, and 4 (φ = π/16, β = π/6)

described by the connections of nodes n10, n11, n12, n13. A Michell Spiral of
order 1 is described by the straight line between nodes n30 and n31, a Michell
Spiral of order 0 is the single node n40, and so forth.

Relative to the common origin 0, nodes lying on the same radius have the
same magnitude, that is,

∥nik∥ = ∥nmn∥, for all i + k = m + n. (4.5)

From Figure 4.2, nodes with the same radius are related by a phase shift of
2mφ where m is an integer. This means that

ni+m,k−m = ej2mφnik. (4.6)

Note that in this chapter we use complex notation (phasor) to describe vectors
in a plane, instead of the more general three-dimensional setup of Chapter 2.
This will simplify many of the derivations we carry on in this chapter.

The members of the spiral are described by defining the vector connecting
nodes nik and ni,k+1:

mik = nik − ni,k+1, (4.7)

where the vector nik has magnitude and phase given by

nik = nikejϕnik , nik = ri+k, ϕnik = (i − k)φ, (4.8)
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Figure 4.3: Michell Topology of order 4 (φ = π/16, β = π/6)

where rk satisfies (4.1) for some specified r0.
The mirror image of all lines reflected about the axis 0− n00 is obtained

after computing the conjugate of the vectors mik

mik = nik − ni,k+1 = nki − nk+1,i. (4.9)

Note also that (4.7) and (4.8) yield

mik = pi+kej[β+(i−k)φ], (4.10)

where pm (m = 0, 1, 2, . . . , q) satisfies (4.1).
The collection of members mik and their conjugates form the final struc-

ture of the Michell Topology of order 4 as shown in Figure 4.3.

Definition 4.2 A Michell Topology of order q is described by the Michell
Spirals of order ≤q and their conjugate spirals where (4.5) and (4.6) hold
(Figure 4.3 illustrates for q = 4).

Note the importance on the parameters (φ,β) or, equivalently, (a, c) in
the shape of the Michell Topology. Figure 4.4 illustrates two different choices
of parameters for q = 8. Note that as the product q φ → 0 the Michell
Topology approaches a standard triangular-shaped trellis topology.
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(a) (φ = π/48, β = π/6) (b) (φ = π/12, β = π/6)

Figure 4.4: Michell Topologies of order 8

4.2 Michell Topology in Static Equilibrium

4.2.1 Force Equilibrium at a Generic Node

Following the development in the previous section, we shall write the force
vector wik applied to node nik in complex form

wik = wikejϕwik . (4.11)

We choose to describe the angle ϕwik in terms of an angle θik, measured
relative to the radial line to node nik, that is,

ϕwik = θik + (i − k)φ, (4.12)

where θik is the angle at which the external force wik is applied, measured
from the radial line to node nik.

As in Section 2.4, at node nik (illustrated in Figure 4.5), we shall sum
force vectors entering the node, where the forces along directions mik, mki,
mi,k−1, mk,i−1, respectively, have magnitudes, fik, tki, fi,k−1, tk,i−1. Using
these, the sum of forces at node nik yields,

fik
mik

∥mik∥
+ tki

mki

∥mki∥
− fi,k−1

mi,k−1

∥mi,k−1∥
− tk,i−1

mk,i−1

∥mk,i−1∥
+ wik = 0.

(4.13)

As shown at the end of the chapter, for equilibrium one should solve the
recursive equations

(
tki

fik

)
pi+k = Ω

(
tk,i−1

fi,k−1

)
pi+k−1 + Φikwik, (4.14)
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Figure 4.5: Sum of the forces at node nik

with “initial” conditions
(

t00
f00

)
p0 = Φ00w00, (4.15)

where,

Φik =
pi+k

sin(2β)

[
sin(θik − β)
− sin(θik + β)

]
, (4.16)

Ω =
1
2

[
g −h
−h g

]
, g = 1 +

tan β

tan(β + φ)
, h =

sin φ

cos β sin(β + φ)
.

(4.17)

It is straightforward to show that g + h = 2, which will be useful later.

Example 4.1

Let q = 1, in which case n00 is the only node at which external forces are
applied

(
t00
f00

)
=

w00

sin(2β)

[
sin(θ00 − β)
− sin(θ00 + β)

]
.

Note that the forces do not depend directly on p0 or r0. The dependence on the
length of the member has been transferred to the angle β.
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In the case 0 ≤ β < π/2 three cases are of interest. The first is when
|θ00| < β < π/2, then sin(2β) ≥ 0 and

−π < −2β < θ00 − β < 0 =⇒ sin(θ00 − β) < 0
0 < θ00 + β < 2β < π =⇒ sin(θ00 + β) > 0,

which implies t00 < 0 and f00 < 0. That is, both members of the truss are in
tension.

The second is when |θ00 − π| < β < π/2. A similar analysis shows that
t00 > 0 and f00 > 0. That is, both members of the truss are in compression.

Finally, when β < |θ00| < π−β then t00f00 < 0, indicating that one member
of the truss is in compression while the other is in tension. In this case the truss
is said to be in bending.

The scenario is significantly more complicated when q > 1 and in the
presence of forces in any nodes of the Michell Topology. Yet, as the next sec-
tion will show, it is possible to derive a remarkably simple recursive formula
that allows one to compute the forces in all nodes of the topology given any
set of external forces.

4.2.2 Linear Propagation of Forces

Define a vector xα ∈ R2(α+1) which contains forces (normalized by multiply-
ing by the length of the member) in all members that lie within the radii rα

and rα+1. That is,

xα =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0α

fα0

t1,α−1

fα−1,1
...

ti,α−i

fα−i,i
...

tα,0

f0,α

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pα. (4.18)

For example, the normalized forces in all members between radii r0 and r1,
between radii r1 and r2, between radii r2 and r3, and between radii r3 and
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r4, are, respectively,

x0 =
[
t00
f00

]
p0, x1 =

⎡

⎢⎢⎣

t01
f10

t10
f01

⎤

⎥⎥⎦ p1, x2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

t02
f20

t11
f11

t20
f02

⎤

⎥⎥⎥⎥⎥⎥⎦
p2, x3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t03
f30

t12
f21

t21
f12

t30
f03

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p3. (4.19)

Using the recursive relations (4.14–4.17) it is straightforward to show that
the vectors xα and xα+1 are related by the recursive form,

xα+1 = Aαxα + Bαuα, α = 0, 1, 2, . . . , q − 1, (4.20)

where

Aα ∈ R2(α+2)×2(α+1), Bα ∈ R2(α+2)×(α+2), xα ∈ R2(α+1), uα ∈ Rα+2.

It follows that

uα =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wα+1,0

wα,1

wα−1,2

wα−2,3

wα−3,4
...

w0,α+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.21)

and

Aα =

⎡

⎢⎢⎢⎢⎢⎣

J2 0 0 0 0
0 J 0 0 0

0 0
. . . 0 0

0 0 0 J 0
0 0 0 0 J1

⎤

⎥⎥⎥⎥⎥⎦
,

Bα =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Φα+1,0 0 0 0 0 0
0 Φα,1 0 0 0 0
0 0 Φα−1,2 0 0 0
0 0 0 Φα−2,3 0 0

0 0 0 0
. . . 0

0 0 0 0 0 Φ0,α+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (4.22)

with

J = Ω
[
0 1
1 0

]
=

[
J1 J2

]
. (4.23)
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Note that all elements in Bα have arguments in Φik such that i + k = α + 1,
and all elements in uα have arguments wik such that i + k = α + 1.

This proves the following theorem.

Theorem 4.1 Let a truss be arranged according to the Michell Topology of
order q (as in Figure 4.3 for q = 4) satisfying (4.1), having external forces
wik applied at the nodes nik with i ≥ 0, j ≥ 0, and i + j ≤ q. Let xα

contain the forces (normalized by the member length) in all members within
the band of members between radii rα and rα+1 as in (4.18) and uα contain
the magnitude of the forces at the nodes with radius rα as in (4.21). Then the
forces propagate from one band to the next according to the linear recursive
equation (4.20).

4.3 Michell Topologies Under a Single
Bending Load

As we discussed in the previous section, in general, it is not possible to
characterize the direction of the forces in a Michell Topology a priori, as we
have done in Example 4.1. In this section we discuss one very important
exception: the case of a single load applied at the node n00.

More precisely, we consider a single nonzero external force w00 = w =
wejθ applied at node n00 of a Michell Topology. We consider only trusses for
which a < 1, or equivalently,

φ > 0, β > 0, φ + 2β < π. (4.24)

Note that the above relations imply β < π/2. The main result is the next
theorem, proved at the end of the chapter.

Theorem 4.2 Let a truss be arranged according to the Michell Topology of
order q (as in Figure 4.3 for q = 4) satisfying (4.1) with a and c given
by (4.2). Assume the only force applied on the truss is w = wejθ at node
n00. If

φ > 0, 0 < β < |θ| < π − β, φ + 2β < π,

then the forces at all nodes satisfy

tikfik < 0, for all i ≤ q, k ≤ i.

Furthermore, if

β < θ < π − β,

then tik > 0 for all i ≤ q, k ≤ i. Otherwise, if

β − π < θ < −β,

then tik < 0 for all i ≤ q, k ≤ i.
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Figure 4.6: Michell Topology of order 4 (φ = π/16, β = π/6) showing direc-
tion of external force that creates bending; blue and red indicate a member
in compression or tension

The above theorem implies that if the single external force of any mag-
nitude lies in the shaded region in Figure 4.6 then the force direction in all
members of a Michell Topology of any order is known. This direction is the
same as in the case of pure bending, where θ00 = π/2. Of course the mag-
nitude of the force in each member will depend upon the magnitude and
direction of the external force, but the direction of those member forces will
depend on neither magnitude nor direction of the external force. This abil-
ity to characterize large regions in the plane where the member forces are
unidirectional is key to obtaining the optimization results that follow. The
remaining sections of this chapter are devoted to such particular classes of
loaded Michell Topologies.

4.4 Material Volume of Michell Topologies

In this section we provide an analytical solution to the problem of minimiz-
ing the material volume of a Michell Topology with a load in bending, as
defined in the previous section, under a yielding failure constraint. We make
use of some results previously derived in Section 2.6.1, where we show that
minimizing the total material volume V is equivalent to minimizing a certain
quantity J , computed as in (2.10), when bars and strings are made of the
same material (λ̄ = γ̄).
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4.4.1 Material Volume for a General Set of External
Forces

The results of the previous sections readily apply to general Michell Topolo-
gies. Define the following set of indices:

B := {ik : fik > 0}, B := {ik : tik > 0},
S := {ik : fik < 0}, S := {ik : tik < 0}.

The set B (B) represents the set of indices ik of members mik (mik) in
compression, i.e., all bars. Likewise S (S) represents the set of indices ik of
members mik (mik) in tension, i.e., strings. Recalling from (4.10) that

∥mik∥ = ∥mik∥ = pi+k,

then

λik =
|tik|

∥mik∥
=

tik
pi+k

∀ ik ∈ B, λik =
|fik|
∥mik∥

=
fik

pi+k
∀ ik ∈ B,

and

γik =
|tik|

∥mik∥
= − tik

pi+k
∀ ik ∈ S, γik =

|fik|
∥mik∥

= − fik

pi+k
∀ ik ∈ S.

The general formulas of the previous section readily apply after defining ma-
trices B and S associated with the sets B ∪ B and S ∪ S, respectively. In
particular, under the assumption that all bars and strings are made of the
same material, one can readily compute the quantity

J = (λ̄ + γ̄)

⎡

⎣
∑

ik∈B
tikpi+k +

∑

ik∈B

fikpi+k −
∑

ik∈S
tikpi+k −

∑

ik∈S

fikpi+k

⎤

⎦ .

A case of special interest for this chapter is discussed in the next section.

4.4.2 Michell Topologies Under a Single Bending Load

In this section we discuss the material volume under the single bending load
scenario discussed in Section 4.3. For such structure and load configurations,
Theorem 4.2 provides means to compute the sign of the forces in the structure
for a large range of applied forces, thus determining a priori which members
are bars and which members are strings.

For instance, assume that β < θ < π − β. Then from Theorem 4.2
we have that tik > 0 and fik < 0 or, in other words, B = S = ∅ and
B = S = {ik : 0 ≤ i ≤ q, 0 ≤ k ≤ i}. Similarly, if β − π < θ < −β then
B = S = {ik : 0 ≤ i ≤ q, 0 ≤ k ≤ i} and B = S = ∅.
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For the purposes of computing the material volume we can focus on just
one scenario, say β < θ < π − β. In this case,

λik =
|tik|
∥bik∥

=
tik

pi+k
∀ ik ∈ B, γik =

|fik|
∥sik∥

= − fik

pi+k
∀ ik ∈ S.

A consequence of the above is that the quantity J can be computed for any
Michell Topology of order q simply as

Jq = (λ̄ + γ̄)
q∑

i=0

i∑

k=0

(tik − fik)pi+k.

We shall develop an analytic expression for this formula based on the geo-
metric parameters r0, φ, and β and the external force. We start with the
particular case q = 1.

Example 4.2

For q = 1 and β < θ < π − β we conclude from the results of Example 4.1
that

J1 = p0(λ̄ + γ̄)(t00 − f00),

= r0 w00 (λ̄ + γ̄)
sin(θ − β) + sin(θ + β)

sin(2β)
sin φ

sin(β + φ)
,

= r0 w00 (λ̄ + γ̄)
sin θ

sin β

sin φ

sin(β + φ)
.

We now return to the general case q ≥ 1. As shown at the end of the
chapter, the fantastically simple relationship holds:

Jq = q J1.

Following Example 4.2 we have that

Jq = q r0 w00 (λ̄ + γ̄)
sin θ

sin β

sin φ

sin(β + φ)
.

If the above analysis is repeated for β − π < θ < −β then the above formula
still holds for θ replacement by |θ|.

The preceding discussion is summarized in the next theorem.

Theorem 4.3 Let a truss be arranged according to the Michell Topology of
order q (as in Figure 4.3 for q = 4) satisfying (4.1) with a and c given
by (4.2). Assume the only force applied on the truss is w = wejθ at node
n00. Assume that λ̄ = γ̄ and

φ > 0, 0 < β < |θ| < π − β, φ + 2β < π.
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If a Michell Topology of order q has the minimal material volume needed to
withstand such a force then the quantity

Jq = q r0 w00 (λ̄ + γ̄)
sin |θ|
sin β

sin φ

sin(β + φ)
(4.25)

is also minimal.

4.5 Michell Topologies with Minimum
Material Volume Under a Single Bending
Load

In this section we will use the analytic formula for Jq obtained in Theorem 4.3
in order to search for parameters that minimize Jq. We start by defining the
quantity

J ′
q :=

Jq

r0w00 (λ̄ + γ̄) sin |θ|
=

q sin φ

sin β sin(β + φ)
,

which we seek to minimize. Note that if the geometric parameters β and φ
are chosen so as to minimize J ′

q, then Jq will simply “scale” the design as
a function of the structure’s radius (r0), the external load (w00 and sin |θ|),
and the material choice (λ̄ = γ̄).

We shall define

ρ :=
rq

r0
= aq =

(
sin β

sin(β + φ)

)q

and the “complexity” q are specified a priori. The “aspect ratio” of the
structure is ρ−1. As shown in the advanced material at the end of the chapter,
the optimal choice of φ the minimizes J ′

q is

φ = φ∗ := arccos
(

2
ρ−1/q + ρ1/q

)
. (4.26)

For all ρ ∈ [0, 1] and q ≥ 1 the value of 2/(ρ−1/q + ρ1/q) is in the interval
[0, 1] so that φ∗ is a well-defined angle in the interval [0,π/2]. A plot of φ∗

as a function of ρ for several choices of q is given in Figure 4.7. Note that
limq→∞ φ∗ = 0.

A more interesting quantity is perhaps the total angle q φ∗, plotted in
Figure 4.8. This angle represents the part of the anchoring disk used to
support the structure. For instance, for the truss in Figure 4.3 we have q φ =
π/2 and for the trusses in Figure 4.4 we have q φ = π/6 and q φ = 2π/3 for
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Figure 4.7: The optimal angle φ∗ (in degrees)

the cases (a) and (b), respectively. Interestingly, even though limq→∞ φ∗ = 0,
we have that

lim
q→∞

q φ∗ = lim
q→∞

q arctan
(

ρ−1/q − ρ1/q

2

)
= ln ρ−1

is a finite quantity for 0 < ρ ≤ 1. Therefore, even the infinitely complex
Michell Topology built with q → ∞ will have a finite support on the anchoring
disk. In particular

0.0432 ≈ e−π ≤ ρ ≤ 1 ⇒ lim
q→∞

q φ∗ ≤ π.

That is, the resulting truss has no overlapping members, hence no overlap-
ping material, if the anchoring disk will not be completely encircled by the
structure. Note that for any q we will have that q φ∗ ≤ limq→∞ q φ∗, as il-
lustrated in Figure 4.8. Also seen in the figure is that even though it may be
possible to construct optimal trusses with no overlapping members by choos-
ing small values of q (in particular optimal trusses with q = 1 or q = 2 never
reach q φ∗ = π for any choice of ρ ∈ (0, 1]), the total angle quickly approaches
π when ρ approaches e−π. For q = 10 this difference is already negligible as
compared to q → ∞. In Figure 4.8, ρ = e−π is the vertical dotted line.

The exact value of ρ for which q φ∗ = π as a function of q is computed at
the end of the chapter as

ρπ :=
(

1
cos(π/q)

− tan(π/q)
)q

. (4.27)
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Figure 4.8: The optimal total angle q φ∗ (in degrees); material overlap occurs
for ρ ≤ e−π

These are the values of ρ at which the curves intersect with the horizontal
dotted line q φ∗ = π in Figure 4.8.

We also show at the end of the chapter that the optimal truss has the
invariant property

tan φ∗ tan(2β∗) = 1, (4.28)

where

β∗ = arctan(ρ1/q)

is the optimal value of β∗. Figure 4.9 shows a plot of β∗ as a function of ρ.
With the optimal φ∗ and β∗ we can compute the value of the cost function

at the optimum

J ′
q
∗ = q ρ1/q sin φ∗

(
1 +

1
tan2 β∗

)
= q (ρ−1/q − ρ1/q).

This function is plotted in Figure 4.10 as a function of ρ and q.

4.5.1 The Limit as Complexity Grows

In this section we show that the discrete structure that we have considered so
far converges to the optimal Michell Truss [Mic04] on the limit when q → ∞.
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Figure 4.11: Discrete Michell Spirals of order 3, 4, 6, 12, and ∞ (continuous)
(q φ = π, β = π/4)

We start by computing the optimal angle β∗

lim
q→∞

β∗ = lim
q→∞

arctan(ρ1/q) =
π

4
.

As we have seen before, spirals on the optimal discrete Michell Truss wrap
around the origin only a finite number of times. This is also true even in the
case q → ∞ if ρ > 0. Indeed

lim
q→∞

q φ∗ = ln ρ−1,

which is finite. For that to happen we must obviously have limq→∞ φ∗ = 0.
Thus as q → ∞, mass fills up the region delimited by the continuous spiral
shown in Figure 4.11 and its conjugate. The normalized minimum volume
J ′
∞

∗ := limq→∞ J ′
q
∗ can be computed as

J ′
∞

∗ = lim
q→∞

q (ρ−1/q − ρ1/q) = 2 ln ρ−1.

The optimal discrete cost is compared with the limiting case J∗
∞ in Fig-

ure 4.12 as a function of ρ and q. Also in Figure 4.11, the continuum spiral
is compared with discrete spirals of order 3, 4, and 12. At the end of the
chapter we show that the discrete structures we considered so far formally
converge to the continuous Michell Truss in the limiting case.
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4.5.2 Penalizing Joint Mass Leads to Finite Optimal
Complexity

The above theory assumes perfect fabrication with no extra mass added to
make the joints. As a practical matter, the joints cannot be made perfectly.
Whether glued, or welded, or pinned, the joints will contribute to the mass
in proportion to the number of members that must be joined. That is, we
add a penalty to the normalized volume criterion J ′

q so that the volume of
the joints is added to the volume of tensile and compressive material. We
assume that the volume of the joints is linearly proportional to the number
of members q(q + 1), so the new criteria to optimize is

Jtotal = J ′
q + µ q(q + 1),

where µ is the ratio of joint normalized volume to the normalized volume
(mass) of the members being joined. Since the extra term depends only on
q and not on φ, the derivations of the previous sections remain unaltered so
that one can compute the normalized minimum total volume as

J∗
total = J ′

q
∗ + µ q(q + 1) = q (ρ1/q − ρ−1/q) + µ q(q + 1).

In Figure 4.13 we plot this optimal cost for various choices of µ as a function
of complexity q for the worst case ρ = e−π, which represents the limit for
which a structure can be constructed with no material overlap for any value
of q. Note that a fairly clean joint (µ = 0.001, i.e., the joint mass is 0.1% of



4.6. Chapter Summary 147

0 2 4 6 8 10 12 14 16 18 20
5

6

7

8

9

10

11

12

13

14

15

µ = 0

µ = 0.001
µ = 0.01

µ = 0.05

q

J
∗ to

ta
l

Figure 4.13: The joint mass optimal discrete cost J∗
total plotted for the worst

case ρ = e−π

the mass of the member being joined) yields an optimal complexity at around
q = 10. Note also that more massive joints (µ = 0.01 or µ = 0.05) require a
very low optimal complexity (q ≤ 6).

4.6 Chapter Summary

This chapter provides the complete analytical solution for the design of a
planar cantilevered structure with a circular foundation to support a given
bending load, using the smallest volume of material required to support the
load, while satisfying constraints against material yielding. In the presence
of any mass added at the joints (glue, etc.), the minimal mass structure has
an optimal complexity. Even without joint mass, the reduction in mass is
negligible beyond complexity q = 5. We name the discrete truss structure
described in Figure 4.3 the Michell Topology. The specific properties of the
new results are discussed below.

For external forces applied at any or every node

The “complexity” q relates to the number of members (= q(q + 1)) in the
Michell Topology (q = 4 in Figure 4.3). From node to node, the forces within
the structure propagate according to linear recursive equations. Analytic
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formulas are derived to compute the static equilibrium forces under arbitrary
load scenarios.

For external forces applied at only one node (n00)

The properties of such structures are completely characterized as a function
of its complexity (q) and the aspect ratio of the structure (ρ−1). The number
ρ−1 = r0/rq represents an aspect ratio for the structure. In Figure 4.3, the
radius r0 is the length of the structure from reference point 0 and rq is the
radius of the circular foundation boundary.

Under the assumption that the maximum tensile and compressive stresses
are the same, the minimal total material volume subject to a yielding con-
straint is proportional to the simple quantity q(ρ−1/q − ρ1/q). As in [Mic04],
in the presence of a single external force applied for bending, the optimal
material topology depends on neither material choice nor magnitude of the
load. The results give the optimal design for any fixed complexity q, but the
minimum volume of material occurs at infinite complexity (q → ∞).

The Michell Topology is a class 2 tensegrity structure, composed of only
axially loaded elements, “sticks and strings”. The Michell Topology also has
the following features.

The direction of the forces (tension or compression) in every member re-
mains constant, independent of the complexity q or the aspect ratio ρ−1.
Furthermore, this unidirectional property of member forces remains indepen-
dent of the magnitude of the external force, depending only on the direction
of the external force. In fact, for a very large variation in the direction of the
external load the members experience unidirectional forces, either tensile or
compressive, regardless of the magnitude of the external load. This fact is
illustrated in the q = 4 example of Figure 4.6, where member forces are uni-
directional for any load within the shaded area shown. The ability to identify
the condition for unidirectionality allows tensegrity design and construction
of the optimal bending structure, since conditions for slack strings are clearly
identified.

The angle between the connecting tensile and compressive members ap-
proaches 90◦ (β → π/4) in the limit as the complexity q approaches infinity.
This agrees with the infinitely complex results (filling the space with a ma-
terial continuum) of Michell [Mic04], where the intersection of tensile and
compressive stress lines is always at 90◦. In our finite-complexity (discrete)
results the angle between tensile and compressive members (2β) is optimized
and is always less than 90◦. In fact the tangent of the optimal β is simply
ρ1/q, where ρ ∈ [0, 1].

Ignoring joint mass, as in the above discussions, the optimal structural
complexity is at q → ∞, yielding the material continuum of Michell. How-
ever, even if joint mass is ignored, very low complexity produces a material
volume close to the continuum optimum. From Figure 4.12, the optimized
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material volume is within 7% of the continuum solution when q ≥ 5 and
within 2% when q ≥ 10.

Practically, increasing complexity q to large values does not yield im-
proved designs, since other neglected issues (such as fabrication errors, mate-
rial inhomogeneities, ignored fasteners, and glue mass) will likely have more
effect than the suboptimality due to the use of a finite q. We quantify this
effect by adding to the structural volume objective function a mass (volume)
penalty in proportion to the number of joints. Such fabrication effects are
characterized in Figure 4.13, which shows that if the joint mass is within 0.1%
of the mass of the members being joined, then there is an optimal complexity
at q = 10. The figure shows that more massive joints lead to less complexity
for the optimal structure.

A note on the book cover

The Native American Indian folklore describes a dreamcatcher that the In-
dian would hang outside his tent at night. (See one made by Indians in
Figure 4.14.) The good dreams are caught by the dreamcatcher and travel to
the rim and down the feathers and pass through the similar feathers worn by
the sleeper. The bad dreams are trapped at the center of the dreamcatcher
and are held there until the morning light destroys them. It is interesting
to observe that the topology woven by the Indians in the dreamcatcher is
the same as the Michell Topology in Figures 4.3 and 4.4, repeated to fill the
circle.

4.7 Advanced Material

4.7.1 Force Equilibrium at a Generic Node

Multiply (4.13) by the vector pi+kej(k−i)φ to obtain

pi+k[fikejβ + tkie
−jβ − fi,k−1e

j(β+φ) − tk,i−1e
−j(β+φ) + wikejθik ] = 0.

(4.29)

This complex equation yields two real equations

[
cos β cos β
− sin β sin β

] (
tki

fik

)
pi+k

−
[

cos(β + φ) cos(β + φ)
− sin(β + φ) sin(β + φ)

] (
tk,i−1

fi,k−1

)
pi+k +

[
cos θik

sin θik

]
wik =

(
0
0

)
,

which are then solved for the two variables tkipi+k and fikpi+k, leading
to (4.14–4.17), where we have used the fact that the lengths pi+k and pi+k−1

are related by (4.1).
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Figure 4.14: A native American dreamcatcher

4.7.2 Proof of Theorem 4.2

A proof of Theorem 4.2 is obtained after an exhaustive inspection of the
force equilibrium at all nodes of the Michell Topology. For i = k = 0 this
was already done in Example 4.1. Further assume that 0 < β < θ00 < π − β
so that t00 > 0 and f00 < 0. The opposite case is handled similarly.
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Now move to node n01. In the diagram of Figure 4.5, w01 = 0 by as-
sumption, hence t1,−1 = 0 because n01 is at the lower boundary of the truss,
and f00 = |f00| > 0, where the magnitude of f00 is the one computed in node
n00. At this point, one can repeat the analysis of Example 4.1 for a fictitious
force w01 = |f00|m00. Note that because the truss is such that a < 1 one has
β < θ01 = φ + β < π − β leading to the conclusion that t01 > 0 and f10 < 0.
The same idea, applied to all other nodes at the lower boundary, e.g., n0i,
i ≤ q, leads to the conclusion that

t0i > 0 and fi0 < 0 for all i ≤ q.

The analysis at the node n10 is similar. Following the diagram of Fig-
ure 4.5, repeat the analysis of Example 4.1 for a fictitious force w10 =
−|t00|m00. Once again the fact that the truss is such that a < 1 leads
to π−β > θ10 = π− (φ+β) > β so that t10 > 0 and f01 < 0. The same idea,
applied to all nodes at the upper boundary, e.g., nk0, k ≤ q, proves that

tk0 > 0 and f0k < 0 for all k ≤ q.

The next node to be analyzed is n11. Follow the diagram of Figure 4.5 and
repeat the analysis of Example 4.1 for a fictitious force w11 = −|t10|m10 +
|f10|m10. Using again the fact that a < 1 one concludes that β < θ11 < π−β,
yielding t11 > 0 and f11 < 0.

The last type of node that needs to be analyzed is an interior node that
is not on the axis 0 − n00. For instance, at node n12 create the fictitious
force w12 = −|t20|m20 + |f11|m11. Again a < 1 leads to β < θ12 < π − β,
yielding t21 > 0 and f12 < 0. This process can be repeated sequentially in all
remaining nodes of the structure, yielding always an analysis similar to one
of the above types of nodes already analyzed. The conclusion is that

tki > 0 and fik < 0 for all i ≤ q, k ≤ i.

A similar procedure where −β > θ00 > β − π leads to

tki < 0 and fik > 0 for all i ≤ q, k ≤ i,

which concludes this proof.

4.7.3 Michell Topologies Under a Single Bending Load

Using the notation introduced in Section 4.2.2 we can express Jq as

Jq = (λ̄ + γ̄)
q−1∑

α=0

yT
αxα,
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where yα is a vector with the following particular structure:

yα =

⎛

⎜⎜⎜⎜⎜⎝

1
−1
...
1
−1

⎞

⎟⎟⎟⎟⎟⎠
∈ R2(α+1).

The following result is now needed.

Lemma 4.1 Let yα be defined as above and let Aα be as defined by (4.20).
Then

yT
α+1Aα = yT

α , (4.30)

for any α = 0, . . . , q − 1.

Proof: Expand yT
α+1Aα and use the fact that g + h = 2. !

With the above result in mind we will obtain the interesting recursive
formula

yT
αxα = yT

α (Aα−1xα−1 + Bα−1uα−1)

= yT
α−1xα−1 + yT

αBα−1uα−1.

Noticing that in the case of a single bending load w00 = w we have uα = 0
for all α = 1, . . . , q − 1 we conclude that

Jq = (λ̄ + γ̄)
q−1∑

α=0

yT
αxα = q J1.

4.7.4 Michell Topologies with Minimum Material
Volume Under a Single Bending Load

Solve for β as follows:

cos φ +
1

tan β
sin φ =

sin(β + φ)
sin β

= ρ−1/q ⇒ tan β =
sin φ

ρ−1/q − cos φ
.

(4.31)

Notice that under the above constraint

J ′
q =

q sin φ

sin2 β

sin β

sin(β + φ)
=

q sin φ

sin2 β
ρ1/q = q ρ1/q sin φ

(
1 +

1
tan2 β

)
,

so that using the expression for tanβ computed in (4.31) we obtain

J ′
q = q ρ1/q sin φ

(
1 +

(
ρ−1/q − cos φ

)2

sin2 φ

)
=

q

sin φ

(
ρ−1/q + ρ1/q − 2 cos φ

)
.
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Because J ′
q is a function of φ and q, we therefore proceed by determining the

optimal value of φ that minimizes J ′
q as a function of q. This is obtained by

solving

d

dφ
J ′

q =
q

sin2 φ

[
2 − (ρ−1/q + ρ1/q) cos φ

]
= 0.

One can verify that the optimal choice of φ is the one given in (4.26), which
is repeated here for convenience,

φ = φ∗ := arccos
(

2
ρ−1/q + ρ1/q

)

is the unique solution to the above equation in the range [0,π/2].
Alternative expressions for φ∗ can be obtained by noticing that

sin φ∗ =
√

1 − cos2 φ∗ =
ρ−1/q − ρ1/q

ρ−1/q + ρ1/q
, tan φ∗ =

ρ−1/q − ρ1/q

2
, (4.32)

which are valid for ρ ∈ [0, 1] and q ≥ 1. The above expressions will be useful
later.

The exact value of ρ for which q φ∗ = π as a function of q can be computed
by solving the equation

q φ∗ = q arctan
(

ρ−1/q − ρ1/q

2

)
= π

for ρ or, equivalently, by solving the simpler equation

1
x
− x = 2 tan

(
π

q

)

for x = ρ1/q. For q ≥ 2 the above equation is solved by

ρπ = xq =
(√

1 + tan(π/q)2 − tan(π/q)
)q

=
(

1
cos(π/q)

− tan(π/q)
)q

,

which is (4.27).
Because tan β is a function of φ given by (4.31) we can also determine the

optimal value of β from

tan β∗ =
sin φ∗

ρ−1/q − cos φ∗ =
ρ−1/q − ρ1/q

ρ−1/q(ρ−1/q + ρ1/q) − 2
= ρ1/q, (4.33)

which yields (4.29). The invariant property (4.28) follows from (4.32) and
(4.33).
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4.7.5 The Limit as q Goes to ∞
An analytic expression for the boundary of the continuous spiral can be
obtained by noticing that nodes on a discrete Michell Spiral satisfy

ni+1,k = a ejφnik.

For both families of discrete spirals we can obtain the corresponding contin-
uum spiral by calculating the normalized secant vectors:

vi+1,k =
ni+1,k − ni,k

pi+k
=

(a ejφ − 1)
pi+k

ni,k =
(a ejφ − 1)

c

ni,k

ri+k
.

A simple calculation reveals that

(a ejφ − 1)
c

=
sin(β + φ)

sin φ

(
sinβ

sin(β + φ)
ejφ − 1

)
= − cos β + j sin β = −e−jβ ,

which is independent of φ. From differential geometry [Str61], a continuous
curve can be obtained by solving the differential equation

ẋ(s) = v(s) = −e−jβ x(s)
∥x(s)∥ ,

where the “dot” denotes differentiation with respect to the arc-length s. By
parametrizing the curve in polar coordinates x(s) = r(s)ejψ(s) we obtain the
complex differential equation

ẋ(s) =
(
ṙ(s) + j r(s) ψ̇(s)

)
ejψ(s) = −e−jβejψ(s).

This complex differential equation is equivalent to the pair of real differential
equations

ṙ(s) = − cos β, r(s) ψ̇(s) = sin β.

One can verify that the solution to these differential equations are

r(s) = A − s cos β, ψ(s) = B − tan β ln(s cos β − A),

where A and B are constants to be determined. For instance, if ψ(0) = 0,
then

A = r(0), B = tan β ln(−r(0)),

so that

r(s) = r(0) − s cos β, ψ(s) = − tan β ln
(

r(0) − s cos β

r(0)

)
.
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A more familiar parametrization for the above curve is obtained using ψ(s)
as the independent parameter. Indeed

ψ(s) = − tan β ln
(

r(s)
r(0)

)
=⇒ r(s) = r(0)e−ψ(s) cot β .

In other words

x(ψ) = r(0) e−ψ cot βejψ,

which is the familiar logarithmic spiral, the optimal solution obtained by
Michell [Mic04]. Note that the conjugate curve is

x(η) = r(0) e− η cot βe−jη,

which can be obtained as the limit of the conjugate spirals ni,k+1 = a e−jφnik

by solving the differential equation

ẋ(s′) = v(s′) = −ejβ x(s′)
∥x(s′)∥ ,

where s′ is the arc-length for the conjugate spiral. Note that for any r(0) =
r, r ≤ r0 that the spiral and its conjugate describe the lines of constant
compressive and tensile stress, respectively, depending on the orientation of
the external load. Indeed at any intersection point of these stress lines we
should have x(s′) = x(s) for some s′ and s so that the cosine of the angle
between the tangent vectors v(s′) and v(s) is given by

Re{v(s′)v(s)} = Re

{
ejβ x(s′)

∥x(s′)∥ejβ x(s)
∥x(s)∥

}
= Re{ej2β} = cos(2β),

where Re denotes the real part of a complex number. Note that when β =
limq→∞ β∗ = π/4 then these tangent vectors are orthogonal thus satisfying
Michell’s optimality condition [Mic04].



Chapter 5

Analysis of Tensegrity
Dynamics

Throughout this chapter we construct dynamic models in the form of ordi-
nary differential equations for tensegrity structures. We make the following
assumptions:

a) Rods are rigid, thin, and long and so rotational motion about the longi-
tudinal axis can be neglected.

b) Strings are massless elastic elements with Hookean (linear) behavior only
when in tension.

c) The connectivity of the structure is fixed.

These assumptions reflect tensegrity structures where the rods are mas-
sive and stiff, here approximated as rigid, as compared with a network of
lightweight, elastic strings. Herein we are motivated by the network approach
in [Ske05]. We first study the dynamics of a single rod.

5.1 Vectors and Notation

In dynamics a vector was conceived as an entity that has magnitude and
direction in three-dimensional space. This concept was introduced by Gibbs
(see [Hug86]). In the more modern linear algebra, the axiomatic definitions
of a vector allow the treatment of an n-dimensional space, but the concepts
of inner products and outer products in linear algebra do not exactly match
the concepts of dot and cross products of the dynamics literature. Such
distinctions should be made clear. Let r⃗ be the label we use to represent a
(Gibbs) vector in the three-dimensional (non-relativistic) space. This vector
is defined independently from any basis system or frame of reference. While

R.E. Skelton, M.C. de Oliveira, Tensegrity Systems, 157
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the vector is not defined by any reference frame, this vector can be described
in any chosen reference frame. With that in mind we define the following
entities.

Definition 5.1 (Dextral Set) The set of vectors e⃗i, i = 1,2,3, form a dex-
tral set if the dot products satisfy e⃗i · e⃗j = δij (where δij is a Kronecker delta)
and the cross products satisfy e⃗i × e⃗j = e⃗k, where the indices i,j,k form the
cyclic permutations, i,j,k = 1,2,3 or 2,3,1, or 3,1,2.

Definition 5.2 (Vectrix) Let e⃗i, i = 1, 2, 3, define a dextral set of unit vec-
tors fixed in an inertial frame, and define the vectrix E⃗ by E⃗ =

[
e⃗1 e⃗2 e⃗3

]
.

The item E⃗ is called a vectrix, since it is an 1 × 3 array of the three
horizontally stacked items e⃗i, i = 1, 2, 3 (the dextral set). Hence, these arrays
E⃗ contain Gibbs vectors e⃗i, so they are not matrices. Neither is the 1 × 3
item E⃗ a vector in the sense of linear algebra. Hence the label vectrix, coined
by Peter Hughes [Hug86].

Now consider two reference frames, described by the dextral sets (vectrices
E⃗ and X⃗), where the coordinate transformation between these two frames is
described by the 3 × 3 direction cosine matrix XE (orthonormal) so that X⃗

= E⃗XE , XET XE = I3. Let the three-dimensional column vectors rX and
rE describe the components of the same vector r⃗ in the two reference frames
X⃗ and E⃗, respectively. That is,

r⃗ = E⃗rE = X⃗rX . (5.1)

Hence, if we wish to describe the relationship between the components of the
same vector r⃗, described in two different reference frames, then

X⃗ = E⃗XE , r⃗ = X⃗rX = E⃗ XErX . (5.2)

After all terms in an equation are written in the same basis, then the chosen
basis (vectrix E⃗ in this chapter) can be dropped, yielding

rE = XErX . (5.3)

The item labeled r⃗ is a “Gibbs vector”, and the items labeled rX and rE

are “vectors” in the spirit of the linear vector spaces of linear algebra, where
we use the notation rX , rE ∈ R3 to denote that the items rX and rE live in
a real three-dimensional space. However, the items rX and rE provide no
useful information unless we have previously specified the frames of reference
X⃗ and E⃗ for these quantities.

The above discussions on notation is for those familiar with traditional lit-
erature on rigid body dynamics. However, unlike many problems in aerospace,
where multiple coordinate frames are utilized (one fixed in each body), this
chapter uses only one coordinate frame (the inertial frame, described by the
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vectrix E⃗) to describe all vectors. Hence, one could then shorten the no-
tation for convenience. Instead of the proper notation of a Gibbs vector
n⃗i = E⃗nE

i , we will simplify the notation to nE
i = ni and write n⃗i = E⃗ni,

where nT
i =

[
nix , niy , niz

]
describes the components of the vector n⃗i

in coordinates E⃗. Hence the only difference between the Gibbs vector n⃗i and
the three-dimensional array of its components ni is that the frame is specified
a priori, E⃗, and in this chapter, all other vectors that might be mentioned
are referenced to the same frame E⃗.

Hence, for the given basis E⃗, the dot product and the components of the
cross product of any two Gibbs vectors b⃗ = E⃗b and f⃗ = E⃗f can be written
as

b⃗ · f⃗ = bT f , (5.4)

b⃗ × f⃗ = E⃗b̃ f , b̃ =

⎡

⎣
0 −b3 b2

b3 0 −b1

−b2 b1 0

⎤

⎦ . (5.5)

Since we are committed to the same reference frame E⃗ throughout the chap-
ter, we wish not to burden the notation with the explicit notation of the
reference frame. So, by a slight abuse of vector notation, in lieu of the more
accurate notation of the cross product, b⃗ × f⃗ = E⃗b̃f , we will simply write
b × f = b̃f .

5.2 Dynamics of a Single Rigid Rod

We start by defining some important quantities associated with the dynamics
of the single rigid rod in three-dimensional space as illustrated in Figure 5.1.
This rod has mass m > 0 and length ℓ > 0 with extreme points nj , ni ∈ R3,
hence ∥nj − ni∥ = ℓ. We often make use of the normalized rod vector

b = ℓ−1(nj − ni), ∥b∥ = 1. (5.6)

Any point in the rod can be located by the vector

v(µ) = µnj + (1 − µ)ni, (5.7)

where µ ∈ [0, 1]. Let ρ(µ) ≥ 0 be a density function defined on the interval
µ ∈ [0, 1] which describes the mass density along the rod, that is,

m =
∫ 1

0
ρ(µ) dµ > 0.

In this section we describe the position of the rod by means of the configu-
ration vector

q =
(

r
b

)
∈ R6, (5.8)
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r

b
ni

nj

z

y

x

Figure 5.1: Illustration of a rigid rod with its configuration in R3. The
vectors r and b describe the translational and rotational position of the rod,
respectively

where r = v(σ), σ ∈ [0, 1], is any fixed point in the rod. Whenever possible
r will be made to coincide with the center of mass of the rod.

Any point in the rod can be equivalently described as a linear function of
the configuration vector:

v(η) = r + η b =
[
I3 ηI3

]
q, η ∈ [−σℓ, (1 − σ)ℓ]. (5.9)

Note that µ and η are related by µ = σ+η/ℓ. Using η we can compute higher
order mass moments around r, the next two of which are

f(σ) = ℓ−1

∫ (1−σ)ℓ

−σℓ
ρ(σ + η/ℓ) η dη,

J(σ) = ℓ−1

∫ (1−σ)ℓ

−σℓ
ρ(σ + η/ℓ) η2 dη > 0.

Such moments are associated with two important quantities, the kinetic en-
ergy and the angular momentum of the rod. The kinetic energy of the rod is
given by the formula

T =
1
2

∫ 1

0
ρ(µ) v̇(µ)T v̇(µ) dµ =

1
2

q̇T (J(σ) ⊗ I3) q̇, (5.10)

J(σ) =
[

m f(σ)
f(σ) J(σ)

]
≽ 0. (5.11)

We note that a Kronecker product of two n × n matrices A and B, denoted
by A⊗B, is an n2 × n2 matrix composed of n × n blocks of matrices of the
type AijB.
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The angular momentum of the rod about r is

h =
∫

m
ρ(µ) (v(µ) − r) × (v̇(µ) − ṙ) dµ

= J(σ)b × ḃ, (5.12)

= J(σ) b̃ ḃ, (5.13)

where b̃ denotes a skew-symmetric matrix composed of the three components
of the vector b, as defined in (5.4).

The matrix J(σ) is positive semidefinite because T ≥ 0 for all q̇. Indeed,
for most practical mass distribution functions ρ (see next section), matrix J
will be positive definite (J ≻ 0), a property that will be used in the next
chapters.

Note that if we choose σ =
∫ 1
0 ρ(µ)µ dµ so that r coincides with the center

of mass of the rod then f(σ) = 0. This leads to the well-known decoupling
of the kinetic energy in translational and rotational components in a rigid
body described by its center of mass. One should choose to describe a rod
by its center of mass whenever possible, with the main exception being the
case when constraints are present in points of the rod other than the center
of mass. We will illustrate this case later in this book. The next example
discusses some useful mass distributions and their properties.

Example 5.1

In most parts of this book we consider rods with mass uniformly distributed
along the rod, that is,

ρ(µ) = m ℓ−1.

In this case the mass moments f and J are

f(σ) =
1
2
mℓ (1 − 2σ) , J(σ) =

1
3
mℓ2

(
1 − 3σ + 3σ2

)
,

which are functions of σ, hence depends on the choice of the fixed point r.
Indeed, in this case the center of mass is the center of the bar, i.e., σ = 1/2 in
which case f and J are familiar

f(1/2) = 0, J(1/2) =
1
12

mℓ2.

Another familiar choice is when r coincides with one of the extreme points
of the rod, say r = ni (σ = 0) so that

f(0) =
1
2
mℓ, J(0) =

1
3
mℓ2.
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Interestingly, for any rod with uniform mass distribution matrix J is positive
definite, i.e., J ≻ 0, regardless of σ. Indeed, for any σ ∈ [0, 1] the function J(σ)
has two imaginary roots so that

J(σ) > 0, m − f(σ)2

J(σ)
=

m

4 (1 − 3σ + 3σ2)
> 0 for all σ ∈ [0, 1].

Using the Schur complement [BGFB94] this implies J ≻ 0.

The matrix S = A−BC−1D is called a Schur complement of the matrix
P if either

P =
[
A B
D C

]
or P =

[
C D
B A

]
. (5.14)

Example 5.2

A mass distribution of interest is that comprised of a number of lumped
masses along the rod, i.e.,

ρ(µ) =
K∑

k=1

mkδ(µ − µk),

where
∑K

k=1 mk = m and mk > 0, µk ∈ [0, 1] for all k = 1, . . . , K. The
quantities f and J , expressed as a function of σ, are

f(σ) = ℓ
K∑

k=1

mk(µk − σ), J(σ) = ℓ2
K∑

k=1

mk(µk − σ)2.

In this case

J(σ) > 0, m − f(σ)2

J(σ)
= m −

(∑K
k=1 mk(µk − σ)

)2

∑K
k=1 mk(µk − σ)2

≥ 0 for all σ ∈ [0, 1].

Note that for K > 1 and µk ̸= µj for at least one j ̸= k then m > f(σ)2/J(σ).
For instance, with K = 2

m − f(σ)2

J(σ)
=

ℓ2m1m2(µ1 − µ2)2

J(σ)
> 0 for all µ1 ̸= µ2 and σ ∈ [0, 1],

in which case J ≻ 0.
In the absence of constraints to the rod kinematics, such as in class 1

tensegrity structures, we find it convenient to work with a configuration ma-
trix

Q =
[
r b

]
∈ R3×2 (5.15)
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Figure 5.2: A single rod with three strings

as opposed to the configuration vector (5.8). Points on the rod can be de-
scribed simply as

v(η) = Q
[
1
η

]
. (5.16)

Compare the above with (5.9).

5.2.1 Nodes as Functions of the Configuration

In dynamics, the node vectors must be expressed as a function of the con-
figuration matrix Q or the configuration vector q. In the next sections we
focus on the configuration matrix Q. The configuration vector q will be con-
sidered when we deal with constrained rods in Section 5.4. One of the major
advantages of our approach is that the relationship between the configuration
matrix and nodes is linear for all tensegrity structures, as illustrated in the
next example.

Example 5.3

Consider the single rod pinned at one end with three strings as illustrated
in Figure 5.2. Let Q be as in (5.15). Because any node ni located in a rod is
computed through

ni = Q
[

1
ηi

]
, i = {1, 2},

where η1 = 0, η2 = ℓ, we have that

N =
[
n1 · · · n5

]
= Q

[
1 1 0 0 0
0 ℓ 0 0 0

]
+

[
0 0 n3 n4 n5

]
.

In general we should have

N = QΨT + Y, N,Y ∈ R3×n, Ψ ∈ Rn×2, (5.17)

where Ψ ∈ Rn×2 and Y ∈ R3×n are constant. The above expression is valid
even when more than one rod is considered (see Section 5.3).
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5.2.2 String Forces

Forces on the rod are due to the elongation of strings and ground reactions.
For simplicity, we assume that the strings are Hookean, as in Section 2.3,
and that they are firmly attached to nodes on the rods or on fixed space
coordinates. That is, strings are linear force elements with rest length l0i and
stiffness ki. The force vector of the ith string is

ti :=

{
0, ∥si∥ < l0i ,

−κi(∥si∥ − l0i )∥(si/∥si∥), ∥si∥ ≥ l0i ,
(5.18)

where si is a vector in the direction of the ith string. String vectors are linear
functions of the nodes of the structure. As in Sections 2.1 and 2.4, assembling
a matrix of string vectors and nodes

S =
[
s1 · · · sm

]
∈ R3×m, N =

[
n1 · · · nn

]
∈ R3×n, S = NCT

S ,

where the vector nk denotes the kth node in the structure and the string
connectivity matrix CS ∈ Rm×n, it follows that

T = −SΓ, F =
[
f1 · · · fn

]
= TCS = −NCT

SΓCS , (5.19)

where we made use of the diagonal matrix Γ which contains the force densities

γi := max{0, κi(∥si∥ − l0i )∥/∥si∥} (5.20)

on its diagonal, as in Sections 2.2 and 2.4. The matrix F is the matrix of
nodal forces.

5.2.3 Generalized Forces and Torques

Equations of motion will be written in terms of the configuration matrix or
vector, whereas the forces in the previous section are functions of the nodes.
Hence, one needs to express forces in terms of the configuration matrix or
vector coordinates. That is, one needs to compute generalized forces. As
shown at the end of the chapter and because of linearity of (5.17) the matrix
of generalized forces is computed as

FQ = −(QΨT + Y)CT
S ΓCS Ψ. (5.21)

A closer look at (5.21) reveals that

FQ =
[
fr fb

]
, fr =

n∑

i=1

fi, fb =
n∑

i=1

ηifi,

where fr is simply the sum of all forces applied to the rods and fb is related
to the sum of the torques on the rod. Indeed

b̃ fb =
n∑

i=1

τi, τi = ηib̃ fi.

This fact will be used next.
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5.2.4 Equations of Motion

Newtonian approach

In this section let us assume that r coincides with the location of the center
of mass of the rod. Then the translation of the center of mass is governed by
the equations of motion

m r̈ =
n∑

i=1

fi, (5.22)

where fi are external forces applied to the rod. Let τ =
∑n

i=1 τi be the torques
applied to the rod, assuming that the fixed point r is both the center of mass
and center of rotation. Then from Newton’s laws ḣ = τ , where h = J b̃ ḃ, so
that

ḣ = J
(˜̇b ḃ + b̃ b̈

)
= J b̃ b̈, (5.23)

where, for ease of notation, we have omitted the dependence of J on σ. We
shall do the same with respect to f from now on. Hence

J b̃ b̈ =
n∑

i=1

τi. (5.24)

We must add to these equations a constraint on the length of the rod,
(ℓb)T (ℓb) = ℓ2, or simply bT b = 1, as described in (5.6). Differentiating this
constraint twice with respect to time yields

bT ḃ = 0, bT b̈ + ∥ḃ∥2 = 0. (5.25)

Equations (5.23) and (5.25) must be solved simultaneously for b̈. Note that
they are linear in the vector b̈, yielding the solution for b̈ (proof at the end
of chapter),

b̈ = −(∥ḃ∥/∥b∥)2 b −
n∑

i=1

J−1(b̃ τi)/∥b∥2. (5.26)

We also show at the end of the chapter that with the help of the projection
matrix

P(b) := I − (bbT )/∥b∥2, (5.27)

we can write
n∑

i=1

b̃ τi = −∥b∥2P(b) fb

to express the torques in the right-hand side of (5.26) in terms of the gener-
alized force fb =

∑n
1 ηifi so that,

b̈ = J−1P(b) fb − (∥ḃ∥/∥b∥)2 b. (5.28)
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Lagrangian approach

In Section 5.4 we will deal with tensegrity structures in which some or all the
rods may have kinematic constraints. In such structures it may be advanta-
geous to make r not coincide with the location of the center of mass of the
rod. In such cases, deriving the equations of motion using the momentum
approach of the previous section may be unnecessarily complicated. A sim-
pler approach is the use of energy methods, whose full potential we explore
in Section 5.4. In the present section we simply rederive the equations of the
previous section in order to introduce the reader to energy methods.

Consider the Lagrangian function

L = T − V − Jξ

2
(
bT b − 1

)
, (5.29)

where ξ is the Lagrange multiplier responsible for enforcing the constraint
that b must remain unitary (5.6) and V is some appropriately defined po-
tential function. Assume once again that r coincides with the location of
the center of mass of the rod, i.e., f = 0. Following standard derivations as
shown at the end of the chapter we arrive at the equations of motion

m r̈ = fr, J b̈ = fb − Jξb, bT b − 1 = 0, (5.30)

where fr and fb are the vector of generalized forces acting on the rod written
in the coordinates q (see Section 5.2.1).

The difficulty in (5.30) is not solving for b̈ (which can be done easily
because J > 0) but avoiding the explicit calculation of the Lagrange multi-
plier ξ. This can be overcome once again by using the constraint (5.6), as
shown in the notes at the end of the chapter, where it is found that

ξ = (∥ḃ∥/∥b∥)2 + J−1bT fb/∥b∥2. (5.31)

Substituting ξ on (5.30) produces the rotational equations of motion

b̈ = J−1P(b) fb − (∥ḃ∥/∥b∥)2b, (5.32)

where P(b) is the projection matrix (5.27). Not surprisingly, the above
equation is the same as the one previously obtained in (5.28).

5.3 Class 1 Tensegrity Structures

The equations of motion developed in the previous section can be extended
to cope with general class 1 tensegrity structures in a fairly straightforward
way. Instead of presenting a lengthy and detailed derivation of the equations
of motion for general class 1 tensegrity systems, we shall limit ourselves to
indicate what are the steps needed to be taken in order to undertake such
generalizations based on the material presented so far.
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Because in class 1 tensegrity structures no rods touch each other, there
exists no extra constraint that should be taken into consideration beyond the
ones already considered in Section 5.2. In fact, using the energy approach
all that needed to derive equations of motion for a class 1 tensegrity system
with K rods is to define the combined Lagrangian

L =
k∑

j=1

Lj ,

where each Lj is a Lagrangian function written for each rod j = 1, . . . , k as
in (5.29) and following the procedure outlined in Section 5.2.4 for enforcing
the individual rod constraints and deriving the equations of motion. With
that in mind define the configuration matrix

Q =
[
R B

]
∈ R3×2k, (5.33)

where

R =
[
r1 · · · rk

]
, B =

[
b1 · · · bk

]
∈ R3×k. (5.34)

Note that in the absence of constraints (5.17) is still valid provided an ap-
propriate matrix Ψ ∈ Rn×2k is constructed. Likewise, generalized forces are
easily computed using (5.21)

FQ =
[
FR FB

]
∈ R3×2k, (5.35)

where

FR =
[
fr1 · · · frk

]
, FB =

[
fb1 · · · fbk

]
∈ R3×k. (5.36)

The relationship between each column of FB and torques is the same as
provided in Section 5.2.1.

A surprisingly compact matrix expression for the resulting equations of
motion is possible by combining (5.30) and (5.31) as follows:

(Q̈ + QΞ)M = FQ, (5.37)

where

M = diag[m1, . . . , mk, J1, . . . , Jk] (5.38)

is a constant matrix and

Ξ = diag[0, . . . , 0, ξ1, . . . , ξk], (5.39)

where ξj are Lagrange multipliers computed as in (5.31) for each individual
bar bj . The above discussion is summarized in the next theorem.
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Theorem 5.1 Consider an unconstrained class 1 tensegrity system with k
rigid fixed length rods. Define the configuration matrix (5.33)

Q =
[
R B

]
∈ R3×2k,

where the columns of R describe the center of mass of the k rods and the
columns of B describe the rod vectors. The Ψ ∈ Rn×2k and Y ∈ R3×n

are constant matrices that relate the n ≥ 2k nodes of the structure with the
configuration matrix through (5.17)

N = QΨT + Y, N,Y ∈ R3×n, Ψ ∈ Rn×2.

The dynamics of such unconstrained class 1 tensegrity systems satisfy
(5.37)

(Q̈ + QΞ)M = FQ,

where

M = diag[m1, . . . , mk, J1, . . . , Jk], Ξ = diag[0, . . . , 0, ξ1, . . . , ξk].

The Lagrange multipliers ξi, i = 1, . . . , k, are computed by

ξi = (∥ḃi∥/∥bi∥)2 + J−1
i bT

i fbi/∥bi∥2, (5.40)

where fbi are columns of the matrix FB which is part of the matrix of gen-
eralized forces

FQ =
[
FR FB

]
∈ R3×2k,

which is computed by (5.21)

FQ = [W − (QΨT + Y)CT
S ΓCS ]Ψ,

where CS is the string connectivity matrix, and the external force acting on
node ni is wi, and the matrix of all such external forces is

W =
[
w1 w2 · · · w2k

]
. (5.41)

By parametrizing the configuration in terms of the components of vec-
tors, the usual transcendental nonlinearities involved with the use of angles,
angular velocities, and coordinate transformations are avoided. Indeed, the
absence of trigonometric functions in this formulation leads to a simplicity in
the analytical form of the dynamics. This might facilitate more efficient nu-
merical solutions of the differential equations (simulations) and the design of
control laws. Actually, the simplicity of the structure of these equations (5.37)
is partly due to the use of the matrix form and partly due to the enlarged
space in which the dynamics are described. The actual degrees of freedom for
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each rod is 5, whereas the model (5.37) has as many equations as required for
6 degrees of freedom for each rod. That is, the equations are a non-minimal
realization of the dynamics. The mathematical structure of the equations are
simple, however. This will allow much easier integration of structure and
control design, since the control variables (string force densities) appear lin-
early, and the simple structure of the nonlinearities can be exploited in later
control investigations.

Example 5.4

Consider the tensegrity prism depicted in Figure 5.3. This structure has 6
nodes, 3 rods, and 12 strings. Let the node matrix be

N =
[
n1 n2 n3 n4 n5 n6

]
,

where each pair of nodes is a pair of bottom and top nodes on a rod. That is,

B =
[
ℓ−1
1 (n1 − n2) ℓ−1

2 (n3 − n4) ℓ−1
3 (n5 − n6)

]
.

Assuming that the mass mj of the jth rods is uniformly distributed then the
center of each rods is its center of mass

R =
1
2

[
n1 + n2 n3 + n4 n5 + n6

]
.

The nodes can be retrieved from the configuration matrix Q =
[
R B

]
through

(5.17) with

Ψ =
[

1 1 1 1 1 1
ℓ1/2 −ℓ1/2 ℓ2/2 −ℓ2/2 ℓ3/2 −ℓ3/2

]
,

and, because of the uniform mass distribution and the choice of R, we have that
fj = 0 and

Jj =
1
12

mjℓ
2
j , j = {1, 2, 3}.

The string connectivity is

CS =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 0 0
0 0 1 0 −1 0
−1 0 0 0 1 0
0 1 0 −1 0 0
0 0 0 1 0 −1
0 −1 0 0 0 1
0 1 −1 0 0 0
0 0 0 1 −1 0
−1 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With this information one can write the equations of motion (5.37).
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Figure 5.3: A class 1 tensegrity prism with 3 rods and 12 strings

5.4 Constrained Class 1 Tensegrity Structures

We now consider class 1 tensegrity structures in which nodes in some of
the rods may have linear kinematic constraints due to its interaction with
the environment. Still no rods touch each other. In such cases, it may be
advantageous to work with a reduced configuration vector as opposed to our
oversized configuration matrix Q, since the latter might not be well defined,
as in the next example.

Example 5.5

Let the z-coordinate of node r = v(0) of Example 5.3 be constrained to stay
at xy-plane, i.e., rz = 0. Define the reduced configuration vector

q =

⎛

⎝
rx

ry

b

⎞

⎠ .

In this case, the relationship between the configuration vector q and the
nodes is of the form

n = Φq + y. (5.42)

Note that when (5.17) holds then (5.42) is obtained from (5.17) by vectoriza-
tion with n = vecN, y = vecY, and Φ = Ψ ⊗ I3. In general, Φ ̸= Ψ ⊗ I3,
as in the next example. As shown at the end of the chapter, with external
forces wi added to each node (where the total external vector of forces is w),
generalized forces are computed as

fq = ΦT w − ΦT
(
CT

S ΓCS ⊗ I3

)
(Φq + y) . (5.43)
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Example 5.6

Consider the reduced configuration vector of Example 5.5. For the same
configuration of strings as in Example 5.3 we have

Φ =

⎡

⎢⎢⎢⎢⎣

E 0
E ℓ I3

0 0
0 0
0 0

⎤

⎥⎥⎥⎥⎦
, E =

[
I2

0

]
, y =

⎡

⎢⎢⎢⎢⎣

0
0
n3

n4

n5

⎤

⎥⎥⎥⎥⎦
. (5.44)

Note that Φ ̸= Ψ ⊗ I3.

5.4.1 Single Constrained Rigid Rod

Let r = v(σ) for some σ ∈ [0, 1] be a fixed point in the rod which may not
coincide with the rod’s center of mass and is subject to the linear constraint

Dr = r̄, (5.45)

where r = rank(D) < 3 and r̄ ∈ Rr constant. Let E ∈ R3×(3−r) be an
orthonormal matrix, i.e., ET E = I, such that DE = 0. Then all solutions to
(5.45) are parametrized by

r = D†r̄ + Ez, (5.46)

where z ∈ R3−r. Define the reduced configuration vector

q =
(

z
b

)
. (5.47)

Example 5.7

In Example 5.5 we have r = v(0) with

D =
[
0 0 1

]
, r̄ = 0.

Then

D† =

⎡

⎣
0
0
1

⎤

⎦ , E =
[
I2

0

]
.

The particular case when r = rank(D) = 3 is handled by defining the
reduced configuration vector as
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q = b, (5.48)

because r = D−1r̄ is simply a constant.
The above discussion also provides clues on how to compute matrices Φ

and y in Section 5.2.1. For instance, after one has computed Ψ and Y such
that

N = QΨT + Y,

where Q is the “non-reduced” configuration matrix (5.15), it becomes clear
that n and q should be related through (5.42) where

Φ = (Ψ ⊗ I3)
[
E 0
0 I3

]
, y = vecY + (Ψ ⊗ I3)

(
D†r̄
0

)
,

because

vecQ =
[
r
b

]
=

[
D†r̄ + Ez

b

]
=

[
E 0
0 I3

]
q +

(
D†r̄
0

)
.

Equations of motion

Since r may not be the center of mass, the equations of motion are expected
to be more complex than the ones seen so far. This is justified by the extra
work that is required to handle the constraint (5.6). As shown at the end of
the chapter, the equations of motion for a single constrained rod are of the
form

M(q) q̈ + g(q, q̇) = H(q) fq, (5.49)

where

M(q) :=
[
m I − f2J−1ET P(b)E 0

fJ−1P(b)E I

]
,

H(q) :=
[
I −fJ−1ET P(b)
0 J−1P(b)

]
,

g(q, q̇) := (∥ḃ∥/∥b∥)2
(
−f ET b

b

)
. (5.50)

When dealing with equations of motion of the form (5.49) an issue that arises
is that of solving for q̈ as a function of q and q̇. This is indeed the case in
most cases of interest where J is positive definite due to the following lemma
which is proved at the end of the chapter.

Lemma 5.1 Let J and M(q) be defined by (5.11) and (5.50), respectively.
If J ≻ 0 then M(q) is nonsingular for all q such that ∥b∥ = 1.



5.4. Constrained Class 1 Tensegrity Structures 173

5.4.2 General Class 1 Tensegrity Structures

The equations of motion developed in the previous section can be generalized
to cope with general constrained class 1 tensegrity structures as done in
Section 5.3.

After defining local configuration vectors qj , j = 1, . . . , K, we can follow
the derivations in the previous section and arrive at the system of differential
equations of the form (5.49), that is,

Mj(qj) q̈j + gj(qj , q̇j) = Hj(qj) fqj , j = 1, . . . , K, (5.51)

where Mj , gj , and Hj are as defined in (5.50) for the jth rod.

Example 5.8

Consider again the tensegrity prism of Example 5.4 depicted in Figure 5.3.
As before, the mass of the three rods is assumed to be uniformly distributed but
this time rj = v(0), for all j = {1, 2, 3},

σj = 0, =⇒ fj =
1
2
mjℓj , Jj =

1
3
mjℓj , j = {1, 2, 3},

that is, the vectors rj all point to one extreme node of each rod. Now set r1

to be the origin (r1 = 0) and consider that nodes r2 and r3 be constrained as
in (5.45) and (5.46) with

r̄2 = 0, D2 =
[
0 0 1

]
, E2 =

⎡

⎣
1 0
0 1
0 0

⎤

⎦ ,

r̄3 =
(

0
0

)
, D3 =

[
1 0 0
0 0 1

]
, E3 =

⎡

⎣
0
1
0

⎤

⎦ .

The above matrices reflect the fact that the z-coordinate of the bottom node of
the second rod (r2) is set to zero, i.e., it is free to move only in the xy-plane;
and the x- and z-coordinates of the bottom node of the third rod (r3) are set to
zero, i.e., it can move only on the y-axis. This set of six constraints eliminates
the six rigid body modes of the structure. The configuration vector of the system
q ∈ R12 is then q = (b1, z2,b2, z3,b3).

With the data on the above example one can construct the equations of
motion (5.51) with the exception of the generalized force vector fqj , which
should be computed using (5.43) and the data in the following example.

Example 5.9

For the same tensegrity prism depicted in Figure 5.3 of Examples 5.4 and 5.8
let the node matrix N ∈ R3×5 be

N =
[
n1 n2 n3 n4 n5

]
,
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with connectivity matrix

CS =

⎡

⎢⎢⎢⎢⎣

0 0 0 0 −1 −1 −1 −1 0 0 0 0
1 0 0 0 1 0 0 0 −1 −1 0 0
0 1 0 0 0 1 0 0 0 0 −1 −1
0 0 1 0 0 0 1 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1 0 1

⎤

⎥⎥⎥⎥⎦

T

∈ R12×5,

and the matrix

Φ =

⎡

⎢⎢⎢⎢⎣

ℓ1I 0 0 0 0
0 E2 0 0 0
0 E2 ℓ2I 0 0
0 0 0 E3 0
0 0 0 E3 ℓ3I

⎤

⎥⎥⎥⎥⎦
∈ R15×12.

Vector y ∈ R15 is equal to zero.

5.5 Chapter Summary

The equations of motion for any tensegrity system composed of rods and
strings are provided in simple form, to make computation and control design
easier. One might argue that the absence of simple equations for the dynamics
of tensegrity systems has been a limiting factor to the acceptance of tensegrity
in engineering practice.

Axially loaded elements (rods and strings) are used throughout. Two
kinds of constraints are treated in the dynamics. The length of rods are con-
stant, and position of any node may be fixed. The main contributions of the
chapter include both energy and Newtonian approaches, constrained and un-
constrained systems, non-minimal realizations of the constrained dynamics,
and finally a new matrix form of the equations in Theorem 5.1.

To obtain equations that are efficient for dynamic simulation, with con-
straints, there are many debates about which method is more efficient. Here
the energy and the Newtonian derivations produce the same equations. This
is done without using the classical angular velocity vector, since in our case
where a 5 DOF system is modeled by 6 DOF (non-minimal equations), the
angular velocity about the long axis of a rod is undefined. By using the vec-
tor along the rod as a generalized coordinate, the final equations are devoid
of the transcendental functions that complicate the form of the dynamics.
Putting these equations in matrix form allow the mathematical structure of
the equations to be extremely simple. The motivation for seeking simple
structure of the equations is the hope that control laws can be found to ex-
ploit the known simple structure of the dynamic model. This hope is high
enough, we believe, to justify the non-minimality of the equations. Quite
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often in mathematics the minimal number of equations are often the most
complex in form.

The constraints are treated with and without the use of Lagrange multipli-
ers. Without Lagrange multipliers it is shown that the correct equations are
obtained by linear algebra, to obtain a least squares solution which enforces
the constraints.

The distribution of members and forces are characterized as networks,
where efficient matrix methods simplify the description of forces and connec-
tions. A connectivity matrix is introduced that characterizes the topology
of all rod to string connections. These network equations, together with a
simple characterization of the dynamics of a rigid body, allow efficient forms
for the final equations.

By using force densities as the input variable (later to be the control
variable) the final equations of motion for the general nonlinear tensegrity
system has a bilinear structure (equations are nonlinear in the generalized
coordinates, but linear in the string force densities). This will offer great
advantage in control design.

5.6 Advanced Material

5.6.1 Dynamics of a Single Rigid Rod

Most of the quantities defined in Section 5.2 can be visualized directly from
Figure 5.1, from where (5.9) follows. The kinetic energy formula comes
from (5.9) after expanding

T =
1
2ℓ

∫ (1−σ)ℓ

−σℓ
ρ(σ + η/ℓ) (ṙT ṙ + 2η ṙT ḃ + η2 ḃT ḃ) dη =

1
2

q̇T (J(σ) ⊗ I) q̇.

Likewise, the angular momentum formula follows from

h = ℓ−1

∫ (1−σ)ℓ

σℓ
ρ(σ + η/ℓ) η2 (b̃ ḃ) dη = J b̃ ḃ.

Generalized forces and torques

The matrix of generalized forces (5.21) is obtained after analyzing the work
produced by the matrix of nodal forces W + F, where W is the matrix of
external forces and F is the matrix of internal string forces (that is, the ith
column of W summed with the ith column of F is the total force vector
acting on node ni). Hence, from string connectivity, F = −NCT

SΓCS , and
for an infinitesimal matrix displacement ∆N

trace((W + F)T ∆N) = trace(∆N)T (W + F) = trace∆T
N(W−NCT

SΓCS).
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Recalling that N = QΨT + Y so that ∆N = ∆QΨT , then

trace∆T
N(W + F) = traceΨ∆T

Q(W − NCT
SΓCS) = trace∆T

QFQ,

where FQ = (W − NCT
SΓCS)Ψ = (W − (QΨT + Y)CT

SΓCS)Ψ. In the
absence of external forces, expression (5.43) follows from vectorization:

fq =
(
ΨT ⊗ I3

)
w −

(
ΨT CT

S ΓCS ⊗ I3

)
((Ψ ⊗ I3)q + y) ,

and using Φ = Ψ ⊗ I3.

Equations of motion

Newtonian approach The two equations that describe the constrained
system are

J b̃ b̈ = τ, φ = bT b − 1 = 0. (5.52)

Here we will completely ignore the original constraint φ = 0 and its first
derivative, φ̇ = 0, but we will honor the second derivative of the constraint
φ̈ = 0. Assembling these into a single equation yields

[
b̃
bT

]
b̈ =

[
J−1τ
−∥ḃ∥2

]
. (5.53)

The task of solving (5.53) for b̈ is simply a linear algebra problem. Uniqueness
of the solution is guaranteed by linear independent columns of the matrix
coefficient of b̈. We prove this linear independence by noting that

[
b̃
bT

]T [
b̃
bT

]
= ∥b∥2I.

The above identity can be expanded to provide an expression for the square
of a skew-symmetric matrix

b̃2 = bbT − bT bI = −P(b)∥b∥2, (5.54)

in terms of the projection matrix (5.27).
Next we use the properties of the unique Moore–Penrose inverse [SIG98]

to conclude that the unique Moore–Penrose inverse of the coefficient matrix
of the left-hand side of (5.53) is

[
b̃
bT

]+

=
[
−b̃ b

]
/∥b∥2.

Using this fact and τ = b̃
∑n

i ηifi = b̃ fb, the unique solution of (5.53) is

b̈ = −J−1b̃ τ/∥b∥2 − b(∥ḃ∥/∥b∥)2

= J−1P(b) fb − b(∥ḃ∥/∥b∥)2,

where we have used (5.54).
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Lagrangian approach From the Lagrangian function (5.29) and with the
assumption that f = 0 the equations of motion of the rod are given by

m r̈ =
d

dt
∂ṙL = ∂rL = fr,

J b̈ =
d

dt
∂ḃL = ∂bL = fb − Jξb, (5.55)

0 = 2J−1∂ξL = bT b − 1. (5.56)

Now multiply (5.55) by bT on the left and differentiate (5.56) twice with
respect to time to obtain

J bT b̈ = bT fb − Jξ∥b∥2, bT b̈ + ∥ḃ∥2 = 0,

from where

ξ = (∥ḃ∥/∥b∥)2 + J−1bT fb/∥b∥2.

Equation (5.32) follows after substituting ξ into (5.55) and using the defini-
tion of the projection matrix (5.27). Hence, the final form of the equations
of motion is

m r̈ = fr,

J b̈ = P(b)fb − J(∥ḃ∥/∥b∥)2b. (5.57)

Note that the two terms on the right-hand side of (5.57) are orthogonal to
each other. This feature is expected to lend some efficiency to the numerical
simulations, although we have not tried to quantify this.

5.6.2 Constrained Class 1 Tensegrity Structures

Note that when Φ ̸= Ψ ⊗ I3 one should compute the vector of generalized
forces fq using the vectorial version of the principle of virtual work

δT
n f = δT

q tq,

after recalling that n = Φq + y so that δn = Φδq and consequently

δT
n f = δT

q ΦT f = δT
q tq,

where

tq = ΦT f = −ΦT (CT
SΓCS ⊗ I3)(Φq + y),

which is (5.43).
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Single constrained rigid rod

Here is a proof that M(q) is nonsingular when J ≻ 0. Matrix M(q) is block
lower-triangular; therefore, it is nonsingular whenever its diagonal blocks are
nonsingular. In this case this means that M(q) is nonsingular if and only if
its first diagonal block

Σ := m I − f2J−1ET P(b)E

is nonsingular. Recall that q ∈ Q implies b ̸= 0 so that P(b) is well defined
and that E is an orthonormal constant matrix, that is, it is full column rank
and ET E = I. Therefore,

Σ = ET ΘE, Θ := (m − f2J−1)I + f2J−1bbT /∥b∥2.

Because J ≻ 0 we have that J > 0 and m > f2J−1 ≥ 0. Therefore,

Θ ≽ (m − f2J−1)I ≻ 0 =⇒ Σ = ET ΘE ≻ 0.

Hence M(q) is nonsingular.



Chapter 6

Closed-Loop Control of
Tensegrity Structures

In this chapter we address the problem of designing closed loop control algo-
rithms for tensegrity structures. In the literature, most closed-loop control
algorithms for tensegrity structures have been developed for planar struc-
tures. This is understandable, since dynamic models for planar structures
can be obtained using a minimal set of coordinates and ordinary differential
equations (see [ASKD03, AS03]). In three dimensions, as shown in Chapter 5,
one has to deal with differential-algebraic equations. No minimal ordinary
differential equation model is possible. The options are to deal with singu-
larities of the mass matrix, or to describe the system in a non-minimal set
of coordinates without singularities, as done in Chapter 5. An additional
nontrivial difficulty is to correctly model the strings, which are elements that
cannot take compression. This can be thought of as a type of control sat-
uration, which significantly complicates control design. In this chapter we
present a control strategy for three-dimensional tensegrity structures that
can address both of these issues.

The dynamic models are constructed using the same assumptions adopted
in Chapter 5. In addition, we assume that the connectivity of the structure
cannot be changed by the controller and that actuation is performed exclu-
sively by changing the rest length of strings.

As for the control methodology, first a change-of-variables on the control
inputs will be proposed that makes the nonlinear model affine on the control.
Then a Lyapunov-based control design is introduced that can drive the system
from an initial configuration toward the desired constant target coordinates
satisfying the (string) control saturation constraints. The presentation closely
follows that of [WdOS09].

R.E. Skelton, M.C. de Oliveira, Tensegrity Systems, 179
DOI 10.1007/978-0-387-74242-7 6, c⃝ Springer Science+Business Media, LLC 2009
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6.1 Control of Tensegrity Systems

As in Chapter 5 we start by considering the simpler case of a single rigid rod.

6.1.1 A Single Rigid Rod

Let us first recall the form of the equations of motion obtained in Section 5.4
for general constrained class 1 tensegrity structures. We do this in the form
of a lemma. The proof is in Section 5.4.

Lemma 6.1 Let a rigid thin rod of mass m > 0 and length ℓ > 0 be given as
in Figure 5.1. Let the constant σ ∈ [0, 1] be given so that the vector r = v(σ)
is a fixed point in the rod. Assume that r is subject to the linear constraint

Dr = r̄ (6.1)

where r = rank(D) < 3 and r̄ ∈ Rr constant. Let z ∈ R3−r and E ∈ R3×(3−r)

be an orthonormal matrix, i.e., ET E = I, such that all solutions to the above
equation are parametrized by

r = D†r̄ + Ez.

Define the configuration vector

q =
(

z
b

)
, (6.2)

and the orthogonal projection matrix

P(b) := I − (bbT )/∥b∥2. (6.3)

The equations of motion governing the dynamics of the rigid rod are given by

M(q) q̈ = g(q, q̇) + H(q) tq, (6.4)

where

M(q) :=
[
m I − f2J−1ET P(b)E 0

fJ−1P(b)E I

]
,

H(q) :=
[
I −fJ−1ET P(b)
0 J−1P(b)

]
,

g(q, q̇) :=
(

f(∥ḃ∥/∥b∥)2ET b
−(∥ḃ∥/∥b∥)2b

)
, (6.5)

and tq are the generalized forces acting on the rod written in the coordinate q.
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Equation (6.4) is minimal with respect to the constraints against move-
ment of the “pinned” coordinates, but they are not minimal with respect
to the nonlinear constraints against changes in the bar length, as in (5.6).
See Section 5.4 for details. The unconstrained (free rod) case, as in [SPM01,
Ske05, dO06], can be obtained as a particular case of the above theorem
where

z = r, E = I.

Indeed, in the unconstrained case, one can choose r to coincide with the
center of mass of the rod without loss of generality, in which case f = 0 with
much simplification to (6.4). In particular, the mass matrix M(q) becomes
constant, as in [SPM01, Ske05, dO06].

In [WdOS09], we formally prove that one can ensure local existence and
uniqueness of solutions to the above equations of motion when tq(t) is as-
sumed to be a piecewise continuous function of t. It is also shown that
constraint (5.6), which has been eliminated from the constrained equations
of motion is indeed satisfied at the solutions of the unconstrained equations
of motion (6.4) regardless of the forces tb, which we will use to control the
rod.

6.1.2 Control Inputs

A detailed discussion of string force is presented in Section 5.2.2. The
Hookean assumption implies that the string stiffness is constant, so that
control action is achieved by changing the rest length of the strings. For that
matter we introduce the scalar control inputs

ui := ki(∥si∥ − l0i )∥/∥si∥ ≥ 0, i = 1, . . . , M. (6.6)

The vector si denotes the ith string vector. Of course, for any si such that
∥si∥ ≥ l0i there exists a corresponding ui ≥ 0. Conversely, for any ui ≥ 0
there exists a rest length l0i and a material choice ki to satisfy

l0i = ∥si∥(1 − ui/ki).

However for a fixed material choice note that l0i may be negative, which is not
physically possible. However, in practice, the use of sufficiently stiff strings,
i.e., with ki → ∞, prevents this event from ever happening.

The main advantage of the above change-of-variable is that ti as given
in (5.18) can be replaced by the simpler expression

ti = −ui si, ui ≥ 0, (6.7)

which is linear on the scalar control variable ui that is subject to a positivity
constraint. This feature will be important when deriving the control algo-
rithm in the forthcoming sections. We assume that the strings can be made
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sufficiently stiff and long in order to realize the control laws to be obtained
this way.

The change of variables (6.7) can be included in the generalized forces
discussed in 5.2.1 by noticing that

tq = −ΦT
M∑

i=1

(CT
Si

⊗ I3) si ui,= −ΦT
M∑

i=1

(CT
Si

CSi
⊗ I3)(Φq + y)ui. (6.8)

Note that tq is still affine on the transformed control vector u. In the above
formula, matrices Φ, q and y relates the node vector n to the configuration
vector q through (5.42). Matrix CS is the string connectivity matrix as
defined in Sections 2.2 and 5.2.2.

6.1.3 General Class 1 Tensegrity Structures

Before proceeding with control design, we introduce notation that will sim-
plify the exposition. Lemma 6.1 implies that the equations of motion of a
single rod be written in the compact form

M(q) q̈ = g(q, q̇) + H(q) tq

for some well-defined configuration vector q. These equations of motion can
be extended to cope with general class 1 tensegrity structures in a fairly
straightforward way as done in Sections 5.4.2 and 5.4.2. There we have
shown that the equations of motion for a general possibly constrained class
1 tensegrity system can be written as

Mj(qj)q̈j = gj(qj , q̇j) + Hj(q) tqj , j = 1, . . . , K,

where Mj , gj , and Hj are as defined in Lemma 6.1 for the jth rod. Recall
from Lemma 5.1 that Mj(q) is well defined and nonsingular when Jj ≻ 0.
No changes are required on the string forces and, consequently, on the control
inputs. Defining the augmented configuration vector

q =
(
qT

1 · · · qT
K

)T
,

an associated constant matrix Φ and vector y can be constructed. Indeed,
for a tensegrity system with M strings, one should still obtain an expression
for the generalized force of the form (6.8), where tq now reflects the structure
of the augmented configuration vector.

When developing control algorithms it is convenient to define the matrix

B(q) :=
[
(CT

S1
CS1

⊗ I3)(Φq + y) · · · (CT
SM

CSM
⊗ I3)(Φq + y)

]
. (6.9)

The complete equations of motion can then be rewritten in the form

M(q) q̈ = g(q, q̇) − H(q)ΦT B(q)u, u := (u1, · · · , uM ) ≥ 0. (6.10)
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The above notation emphasizes the fact that dependence of the equations of
motion on the transformed control input u is affine. The constraint on the
control follows from the discussion in Section 6.1.2.

6.2 Lyapunov-Based Control Design

Our task is to design a controller for the non-minimal realization of the
form (6.10). We focus on set-point control, that is, the task of designing
control inputs that lead the system from some initial condition to a given
constant set of coordinates. The results can be easily generalized to path-
following control problems, which will not addressed in this book.

6.2.1 A Single Rigid Rod

Again to simplify the discussion consider the case of a single rigid rod. Define
error vectors from the current coordinates q = (z,b) to the desired target
coordinates qd = (zd,bd)

eq :=
(
ez

eb

)
, ez := z − zd, eb := b − bd. (6.11)

Consider a quadratic Lyapunov function candidate

V (q, q̇) = Vz(z, ż) + Vb(b, ḃ) (6.12)

where

Vz(z, ż) =
1
2

(
ez

ż

)T [
Xz Yz

YT
z Zz

](
ez

ż

)
,

Vb(b, ḃ) =
1
2

(
eb

ḃ

)T [
Xb Yb

YT
b Zb

](
eb

ḃ

)
. (6.13)

The term Vz involves only the translational coordinates and Vb only the
rotational coordinates. If

Qz =
[
Xz Yz

YT
z Zz

]
≻ 0, Qb =

[
Xb Yb

YT
b Zb

]
≻ 0, (6.14)

then Vz(z, ż) > 0 for all z ̸= zd and ż ̸= 0 and Vb(b, ḃ) > 0 for all b ̸= bd

and ḃ ̸= 0. Therefore, V (q, q̇) > 0 for all q ̸= qd and q̇ ̸= 0.
As the coordinates q are not minimal, it is interesting to try to relate the

Lyapunov function candidate (6.12) to some angular minimal coordinates.
For instance, consider the three-dimensional entity b parametrized by two
parameters θ and φ,



184 Chapter 6. Closed-Loop Control of Tensegrity Structures

0
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π−π

Figure 6.1: The Lyapunov landscape of Vφ(φ, φ̇) with system trajectory from
Lyapunov-based control design with δ = 0.20 and optimization of ∥u∥2. This
Lyapunov function uses α = β = 1 and γ = 3/2

b =

⎛

⎝
cos θ sin φ
sin θ sin φ

cos φ

⎞

⎠ , ∥b∥ = 1,

ḃ = sin φθ̇

⎛

⎝
− sin θ
cos θ

0

⎞

⎠ + φ̇

⎛

⎝
cos θ cos φ
sin θ cos φ
− sin φ

⎞

⎠ , ∥ḃ∥ =
√

sin2 φθ̇2 + φ̇2,

where θ ∈ (−π,π] and φ ∈ [0,π]. Now assume without loss of generality that
bd = (0, 0, 1) so that

bT
d

[
b ḃ

]
=

[
cos φ − sin φφ̇

]
. (6.15)

For illustration only, consider the particular choice Xb = αI, Yb = βI, Zb =
γI, with αγ ≥ β2, in which case

Vb(b, ḃ) =
α

2
∥b − bd∥2 + β(b − bd)T ḃ +

γ

2
∥ḃ∥2

= Vφ(φ, φ̇) + Vθ(φ, θ̇), (6.16)

where

Vφ(φ, φ̇) = α(1 − cos φ) + β sinφφ̇ +
γ

2
φ̇2, Vθ(φ, θ̇) =

γ

2
sin2 φθ̇2. (6.17)

Notice the added complexity required to express the same Lyapunov function
in a minimal coordinate system, here represented by (θ,φ, θ̇, φ̇). A contour
plot of Vφ(φ, φ̇) is shown in Figure 6.1. Yet, the expressions (6.17) are possibly
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the simplest ones, a consequence of the particular choice bd = (0, 0, 1). Any
other choice in which the first and second components of bd are not zero will
make the resulting expressions significantly more involved. While from the
point of view of simplifying Vb the choice bd = (0, 0, 1) may seem a good idea
that comes at the expense of extra complications. First, Vb is not a positive
function of the state (θ,φ, θ̇, φ̇) (indeed, Vb = 0 for all φ = 0 with θ and θ̇
arbitrary), which requires more involved stability analysis. Second, the mass
matrix, which in minimal coordinates is a function of (θ,φ, θ̇, φ̇), is singular
at φ = φd = 0, in which case a state space realization becomes numerically
troubled near the intended equilibrium. All such concerns are absent in the
control strategy to be presented in the sequel obtained with non-minimal
coordinates.

6.2.2 A Control Design Problem

The next theorem shows how to compute u(t) as a function of time t based
on the above Lyapunov function candidate in order to stabilize the tensegrity
system.

Theorem 6.1 Consider a system with a single rigid thin rod of mass m > 0,
length ℓ > 0, inertia J ≻ 0, and M controlled strings. Choose a configuration
vector q = (z,b) according to Lemma 6.1, depending on the constraints on
the rod nodes. Let the matrix of nodes of the system be N ∈ R3×N , which
locates the nodes where the rod and the strings connect to each other and to an
inertial frame. Define the constant connectivity matrix CS ∈ RM×N which
relates the matrix of string vectors S ∈ R3×M to the node matrix through
S = NCT

S , and the constant matrix Φ and constant vector y relating the
configuration vector q to the matrix of nodes through vectorN = Φq + y.
Define matrices M(q), g(q, q̇), and H(q) using the expressions (6.5) given
in Lemma 6.1, and matrix B(q) as in (6.9). The motion of the system is
governed by the differential equation

M(q) q̈ = g(q, q̇) − H(q)ΦT B(q)u, u ≥ 0, (6.18)

where M(q) is invertible for all q. Let qd = (zd,bd), q(0) ̸= qd, q̇(0)
and δ > 0 be given, where ∥b(0)∥ = 1. Assume that qd is an equilibrium
point of system (6.18), that is, there exists ud ≥ 0 such that ∥bd∥ = 1 and
g(qd,0) = H(qd)ΦT B(qd)ud. Select constant matrices Xb, Yb, and Zb so
that Zb ≻ 0 and Xb − YY

b Z−1
b YT

b ≻ 0 ensuring Qb ≻ 0. Xz, Yz, and Zz

should satisfy the same criteria. Define V (q, q̇) as in (6.12) and

β (q, q̇) := γ(q, q̇) + a(q, q̇)T g(q, q̇), (6.19)

f(q, q̇) := B(q)T ΦH(q)T a(q, q̇), (6.20)
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where

γ (q, q̇) :=
(

XT
z (z − zd) + YT

z ż
XT

b (b − bd) + YT
b ḃ

)T

q̇,

a(q, q̇) := M−T (q)
(

ZT
z ż + YT

z (z − zd)
ZT

b ḃ + YT
b (b − bd)

)
. (6.21)

If for all t ≥ 0 there exists a control input u(t) such that

f(q(t), q̇(t))T u(t) = β (q(t), q̇(t)) + δ V (q(t), q̇(t)), u(t) ≥ 0, (6.22)

then limt→∞ q(t) = qd.

A sketch of proof of the above theorem is given at the end of the chapter.
See also [WdOS09]. Some remarks are in order. Several aspects of the above
theorem present subtle technical difficulties. First, because of the presence
of the inequality constraint in (6.22), it does not seem easy to guarantee that
a feasible solution exists for all t ≥ 0, therefore, leading the state asymptot-
ically to the desired target. In order to characterize such property, one may
need to impose restrictions on the initial conditions (q(0), q̇(0)), the target
configuration qd and the rate of convergence δ. Nevertheless, as it will be
illustrated by the examples in Section 6.3, the above construction is useful
enough so that (6.22) remained feasible throughout the entire simulation time
for the considered tensegrity structures. While this cannot be expected to
be true in general, it should be pointed out that the initial conditions and
target configurations were both feasible and stable tensegrity structures, that
is, q(0) and qd were selected such that

∃u ≥ 0, u ̸= 0 so that g(q, q̇) − H(q)ΦT B(q)u = 0,

and with an associated choice of material properties satisfying (6.6) made so
as that q(0) and qd were local minima of the total potential energy stored
in the strings. These constraints are natural in tensegrity control, basically
ensuring that one starts with a feasible tensegrity structure in static equilib-
rium that is taken to a different stable equilibrium configuration. Moreover,
the results of the next section can at least be fully characterized when (6.22)
has a solution or not.

On the theoretical side, the presence of the positivity constraint in (6.22)
also significantly complicates the proof of Theorem 6.1. This is due to the
fact that u(t) is not necessarily a continuous function, hence not Lipschitz,
of the state (q, q̇), as it would be the case if u(t) in (6.22) were uncon-
strained. Therefore, one cannot utilize a standard Lyapunov stability result
such as [Kha96, Theorem 3.1]. Instead, one has to resort to more sophisti-
cated tools that can handle differential equations with discontinuous right-
hand sides, such as the ones described in [BR05]. Another contribution of
the complete characterization of the solutions to (6.22) to be presented in
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the next section is the identification of a solution that is at least a contin-
uous, although not differentiable, function of the state (q, q̇). The proof at
the end of the chapter covers just this simpler case. The results of the next
section and some of the examples also consider solutions to (6.22) which are
discontinuous.

One may wonder whether the choice of a more complex Lyapunov function
V would be beneficial. While future research may prove this to be the case,
as discussed previously, the function V , even though is a “simple” quadratic
on the chosen set of non-minimal coordinates, gets fairly complicated if trans-
lated to a minimal set of coordinates. It is also reassuring that such a choice
leads to a continuous control, when it is known that for the particular class
of nonlinear systems that are affine on the control such control exists, as
in [Art83].

Finally, as discussed in Section 6.1.3, the equations of motion for general
class 1 tensegrity structures (6.10) is no different than equations of motion
of a single rod (6.18). Indeed, if we define a combined Lyapunov function
candidate of the form

V =
K∑

j=1

Vj

where each Vj is a Lyapunov function candidate written for each rod j =
1, . . . , K as in (6.12), then Theorem 6.1 applies verbatim to entire tensegrity
systems with more than one rod.

6.2.3 Admissible Control Inputs

Theorem 6.1 defines the constrained linear problem (6.22) that, if solvable for
all t ≥ 0, guarantees convergence to the target configuration qd. Some insight
on the conditions for solvability can be obtained even before examining the
complete solution. First note that if for some t ≥ 0 we have β + δV ̸= 0,
then a necessary condition for solvability of (6.22) is that a ̸= 0. Of course,
if β + δV = 0 then u = 0 is a trivial solution, regardless of a. The condition
that a ̸= 0 requires that one selects Yb ̸= 0 and Yz ̸= 0 because

Yb = 0, Yz = 0, =⇒ a(q,0) ≡ 0 for all q.

This means that the system would be essentially “uncontrollable” from initial
conditions with zero initial velocity. Even if this is not the case, i.e., q̇(0) ̸= 0,
it would likely create very high control inputs as the system approaches the
target qd.

At a given time t ≥ 0, the constrained control condition (6.22) may have
multiple or no solutions. In the sequel we completely characterize solutions
that minimize some norm of the control u(t). We consider three possibilities
by minimizing the p-norms of the control input (∥u∥p) for the case p =
{1, 2,∞}. In all cases, explicit solutions for the constrained u(t) are available
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or can be proved not to exist. The problem we want to solve is, given t ≥ 0
and q(t), q̇(t), and δ > 0, determine

min
u(t)

{∥u(t)∥p : f(q(t), q̇(t))T u(t) = β (q(t), q̇(t)) + δ V (q(t), q̇(t)),

u(t) ≥ 0}, (6.23)

where f , β, and V are as defined in Theorem 6.1. The key is the following
lemma, in which v+ denotes a vector where all negative entries of v ∈ Rn

are equal to zero. In other words, if v is an arbitrary vector in Rn then v+

is its two-norm projection on the positive orthant.
The next lemma is proved at the end of the chapter.

Lemma 6.2 Let v = (v1, . . . , vn) ∈ Rn and α ∈ R, α ̸= 0, be given. The
constrained optimization problem

up = arg min
u

{∥u∥p : vT u = α, u ≥ 0} (6.24)

has a solution if and only if

γ := max
i

(α−1vi) > 0. (6.25)

If so, a solution is given by

(a) u1 = (u1, · · · , un), where ui = 0 if i ̸= i∗ and ui∗ = γ−1 > 0 for
any i∗ such that α−1vi∗ = γ,

(b) u2 = (α−1v)+/∥(α−1v)+∥2
2,

(c) u∞ = (u1, · · · , un), where ui = 0 if i is such that α−1vi ≤ 0 and
ui = 1/[(α−1v)T

+1] if i is such that α−1vi > 0,

for the values of p = {1, 2,∞}.

The above lemma provides a solution to the control problem (6.23) by
setting

v = f(q(t), q̇(t)), α = β(q(t), q̇(t)) − δV (q(t), q̇(t)).

Although the existence of a solution does not depend on p, different choices
of p can yield vastly different control strategies. For example, the 1-norm
solutions are realized using only one control (string) at a time, which may
cause some undesired chattering between strings. On the other extreme, the
∞-norm solution applies equal force densities to all strings being actuated at
time t. Both solutions yield in general, discontinuous controls u(t). In the
u1(t) case this happens because even though γ, v and α are continuous func-
tions of (q, q̇(t)), i∗ will change abruptly depending on γ. In the u∞(t) case,
a particular control channel ui may suddenly switch from the positive value
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1/[(αv)T
+1] > 0 to 0 when α−1vi becomes non-positive. In contrast, u2(t) is a

continuous function of (q(t), q̇(t)) because α−1v and its two-norm projection
on the positive orthant are continuous functions of (q(t), q̇(t)). Moreover, it
is bounded whenever a solution exists since v = f and α are bounded because
(q(t), q̇(t)) is bounded. Notice that the assumption that α is not zero can be
imposed without loss of generality, since a small perturbation on δ can yield
α ̸= 0 without compromising the control objectives.

The availability of closed formulas for the optimal control up at any time t
means that this control can be readily implemented at very little computa-
tional cost provided that the state is available. The authors are currently
investigating the design of state estimators which could be combined with
the present results to construct output feedback controllers for tensegrity
structures.

The control algorithm collapses if at some t ≥ 0 it is found that γ ≤ 0.
In this case the forces needed to reduce the Lyapunov function cannot be
realized by strings. In certain cases it may be possible to change the rate
of convergence δ > 0 in order to make γ > 0. In the numerical examples
presented later in this chapter this problem never occurs. That shall be the
case on most well-posed tensegrity problems where the choice of the desired
target configuration, or a target trajectory, leads the tensegrity structure to
a known stable equilibrium point.

Lemma 6.2 can be easily modified in order to find explicit expressions for
the control inputs above certain threshold values. This may be important in
cases where a residual level of pretension is required. Compare the above so-
lution with the one for planar tensegrity structures proposed in [WdOS06a],
which involves the solution of a much more complicated optimization prob-
lem.

6.3 Some Simple Examples

The theory developed so far is now illustrated by some simple examples.

Example 6.1

The simplest possible three-dimensional example of control of a class 1
tensegrity system is the case of a single rod pinned at one end actuated by
three strings, as shown in Figure 6.2. A uniform mass distribution is assumed
with

m = 1, ℓ = 1, σ = 0 =⇒ f =
1
2
, J =

1
3
.

The choice σ = 0 is made so that r coincides with one end of the rod which
is fixed at the origin with a ball joint, i.e., r = 0. The dynamics are described
therefore by Lemma 6.1 with q = b. The string connectivity matrix CS ∈ R3×4
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Figure 6.2: A single pinned rod and three strings

and the node matrix N ∈ R3×4 are given by

C =
[
1 −I

]
, N =

[
n1 n2 n3 n4

]
.

Matrix Φ ∈ R12×3 and vector y ∈ R12 as in (6.1.2) are

Φ =
[
ℓ I 0 0 0

]T y =
(
0T nT

2 nT
3 nT

4

)T
.

The parameters of choice in the control design are the decay rate of the Lyapunov
function, represented by the scalar δ, and the matrices Xb, Yb, and Zb, all
∈ R3×3. Here

δ = 0.15, Xb = Yb = I, Zb =
3
2
I.

The initial and desired target configurations and the nodes ni are

b(0) =
1√
3

⎛

⎝
0

−
√

2
1

⎞

⎠ , bd =
1√
5

⎛

⎝
1√
2√
2

⎞

⎠ ,

ni = 1.2

⎛

⎝
cos[2π(i − 2)/3]
sin[2π(i − 2)/3]

0

⎞

⎠ , i = 2, . . . , 4

Nodes ni, i = 2, . . . , 4, represent fixed attachment points for the strings on the
reference frame.

Figure 6.3 shows system trajectories from three simulations of the Lyapunov-
based control design with different norm optimization, namely ∥u∥2 (blue tra-
jectory), ∥u∥1 (green trajectory), and ∥u∥∞ (red trajectory). Detailed plots of
the simulations including the trajectories, control input, and rod force (Lagrange
multiplier), in the cases p = 2, p = 1, and p = ∞ are shown, respectively, in
Figures 6.4, 6.5, and 6.6. The case p = 1 and p = ∞ exhibits discontinuity
and chattering, particularly in the case p = 1. For illustration, the corresponding
trajectory obtained in the case p = 2 is plotted on top of the contour plots
of the Lyapunov function Vφ in Figure 6.1 in terms of the minimal coordinate
angles (φ, φ̇).

A more complex example is a class-1 tensegrity prism with 3 rods and 12
strings. Dynamics for such structure have been developed in Example 5.4.
This example is developed next.
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Figure 6.3: The system trajectories from simulations of the Lyapunov-based
control design with δ = 0.15 and optimization of ∥u∥2, ∥u∥1 and ∥u∥∞,
colored blue, green and red respectively. The rod (black) is shown in the
final configuration at t = 60s
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Figure 6.4: Data from simulation of the pinned single rod using the Lyapunov-
based control design with δ = 0.15 and optimization of ∥u∥2. For coordinates
blue, green, and red denote x-, y-, and z-components respectively. Solid lines
denote actual values, while dotted lines denote desired constant target values.
The dashed black line in the coordinates subplot denote ∥b∥2. Further, the
three strings are numbered from the one attached to position (1,0,0) and
counterclockwise
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Figure 6.5: Data from simulation of the pinned single rod using the Lyapunov
based control design with δ = 0.15 and optimization of ∥u∥1. For coordinates
blue, green, and red denote x-, y-, and z-components, respectively. Solid lines
denote actual values, while dotted lines denote desired constant target values.
The dashed black line in the coordinates subplot denote ∥b∥2. Further, the
three strings are numbered from the one attached to position (1,0,0) and
counterclockwise
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Figure 6.6: Data from simulation of the pinned single rod using the Lyapunov-
based control design with δ = 0.15 and optimization of ∥u∥∞. For coordinates
blue, green, and red denote x-, y-, and z-components, respectively. Solid lines
denote actual values, while dotted lines denote desired constant target values.
The dashed black line in the coordinates subplot denote ∥b∥2. Further, the
three strings are numbered from the one attached to position (1,0,0) and
counterclockwise

Example 6.2

Consider the tensegrity structure prism with three rods and twelve strings dis-
cussed in Examples 5.4 through 5.8 depicted in Figure 5.3. The control objective
is to move from one stable configuration to another. The chosen parameters for
the control design are the same for all three rods, that is,

δ = 1, Xbi = Ybi = Xri = Yri = I,

Zbi = Zri =
3
2
I, i = {1, 2, 3}.
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Figure 6.7: System trajectories from simulation of the tensegrity prism. The
blue lines denote the trajectories of the nodes with the Lyapunov-based con-
trol design. The rods (black) are shown in their final configuration after
10s

The initial and desired target configurations for this structure are chosen so that
both initial condition and target configuration are in static equilibrium. Such
initial conditions are given by the initial vectors

z2(0) =
(

0.4659
0.2690

)
, z3(0) = 0.5379,

b1(0) =

⎛

⎝
0.4243
0.4243
0.8000

⎞

⎠ , b2(0) =

⎛

⎝
−0.5796
0.1553
0.8000

⎞

⎠ , b3(0) =

⎛

⎝
0.1553
−0.5796
0.8000

⎞

⎠ ,

associated with a symmetric and stable configuration of height equal to 0.8 m,
and the desired target vectors

z2d =
(

0.6212
0.3586

)
z3d = 0.7173,

b1d =

⎛

⎝
0.5657
0.5657
0.6000

⎞

⎠ , b2(0) =

⎛

⎝
−0.7727
0.2071
0.6000

⎞

⎠ b3d =

⎛

⎝
0.2071
−0.7727
0.6000

⎞

⎠ ,

associated with a symmetric and stable configuration of height 0.6 m.
Figure 6.7 shows the trajectories of nodes for the Lyapunov-based control

design (blue trajectories) for the tensegrity prism where the control norm is
optimized for p = 2. Figure 6.8 presents essential data from the simulation of
this system.



194 Chapter 6. Closed-Loop Control of Tensegrity Structures

0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10
0

0.05

0.1

0.15

0 5 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

Controls u1 …u12
Errors eb1

… er3 Lagrange multipliers λ1 … λ3

E
rr

or
 [m

]

Time [s]

F
or

ce
 d

en
si

ty
 [N

/m
]

Time [s]

F
or

ce
 d

en
si

ty
 [N

/m
]

Time [s]

Figure 6.8: Data from simulation of the tensegrity prism with Lyapunov-
based control design and optimization of ∥u∥2. For coordinates blue, green,
and red denote x-, y-, and z-components, respectively. For the error norms
we use blue, green, and red for errors related to rod 1, 2, and 3, respectively.
That gives ∥eb1∥, ∥eb2∥, ∥eb3∥, ∥er1∥, ∥er2∥, ∥er3∥. Further, Solid lines
denote the errors bi, i =1, 2 and 3, while dashed lines denote the errors ri,
i =1, 2 and 3. The color code for control inputs, and strings, are u1, u2,
u3, u4, u5, u6, and u7. This combination is repeating for systems with more
than seven inputs, such as this one

6.4 Chapter Summary

The control objective is to maneuver the system continuously from one con-
figuration to another without any a priori information about a preferred tra-
jectory. We have chosen a path that minimizes the total control magnitude
at each step along the path. That is, the system continuously searches for
the next step on a path toward the target configuration that minimizes some
function of control inputs.

This control design is based on Lyapunov stability theory and yields in
general a large degree of freedom to the optimization/allocation of control
signals. For the tensegrity prims in Section 6.3, only one single scalar func-
tion needs to be matched by a combination of system inputs. The path from
one configuration to another is therefore determined during the optimization
problem. Algebraic constraints could be augmented to the optimization prob-
lem in order to decrease the inherent freedom of this design and to impact
the choice of path toward the target configuration.

In Section 6.3, the convergence rate of the Lyapunov function was chosen
to be exponentially stable, namely V̇ = −δV , δ > 0. A sufficient requirement
is V̇ < 0. The strict enforcement of this equality constraint also has a signif-
icant impact on the path chosen. An interesting feature, seen in Figures 6.4,
6.5, 6.6, and 6.8 is that even though the convergence of V is uniform, the
convergence of system coordinates is not. The reason for this is the presence
of algebraic constraints between system coordinates that need to be satisfied
for all instants of time.
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The choices of tunable parameter matrices Xb, Yb, Zb, Xr, Yr, and Zr

would naturally also alter the system trajectory. A general trend is that the
system becomes slower and control inputs become larger with increasing di-
agonal elements of the matrices Zz and Zb. The reason is that these elements
penalize velocity, while V must decrease according to the convergence rate δ.
Control inputs also become larger when reducing the diagonal terms of Yz

and Yb. This is because control inputs are directly multiplied by Yz and
Yb in both designs, and that this term becomes dominant when ż → 0 and
ḃ → 0. The system may become slower when increasing the diagonal terms
of Yz and Yb.

The optimization problem, which must be solved in order to provide a
suitable combination of control inputs, has traditionally been solved using
numerical iteration procedures. See, for instance [ASKD03, AS05, AS06,
WdOS06a]. The proposed design presents explicit solutions to this problem,
for all possible norms of the control inputs. An optimization of the two-norm
presents a combination of continuous control signals where, in general, all
strings gave a force contribution. An optimization of the one-norm gave a
combination of control signals with discontinuities where only one string has
a nonzero value at a given time. Also optimization of the infinity-norm gave
a combination of control signals with discontinuities, here with all nonzero
control signals having the same value.

There are several issues related to the implementation of these control
laws, such as the constraint associated with the realizability of the control
through strings being the most challenging one. In case the control problem
proposed in this section has no admissible control solution, one possibility
would be to use a passive control law that could be realized only with strings.
One could switch into a passive mode while waiting for solvability of the
control problem to be regained or a passive equilibrium is reached. Another
source of concern is the loss of controllability at some configurations. For
instance, in the pinned single rod example, if the rod vector is in the xy-
plane, one has no control in the z-direction. How to avoid such singularities
is still an open problem.

6.5 Advanced Material

6.5.1 Proof of Theorem 6.1

Use Lemma 6.1 and the discussion of the previous section to assemble the
differential equation (6.18), which is affine on the control input u ≥ 0. First
note that because J ≻ 0 we have M(q) is invertible (see Lemma 5.1). There-
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fore, system (6.18) can be written in state space form

ẋ = k(x) − l(x)u, x =
(
q
q̇

)
,

k(x) =
(

q̇
M(q)−1g(q)

)
, l(x) =

(
0

M(q)−1H(q)ΦT B(q)

)
,

where k and l are continuous functions of x. In fact, functions k and l are
continuously differentiable functions for all x such that b ̸= 0 (see [WdOS09,
Lemma 1]). That implies k and l are locally Lipschitz for all x such that
b ̸= 0. Clearly V (q, q̇) is also continuously differentiable.

The main theoretical difficulty in the closed-loop stability analysis arises
from the feedback control u(t) given in (6.22), which may not necessarily
be a Lipschitz function of q. However, as shown in Section 6.2.3, if (6.22)
remains feasible up to sometime T ≥ 0, then there exists a u(t) ≥ 0 satis-
fying (6.22) that is a continuous and bounded function of q(t) for t ∈ [0, T ].
Continuity of u(t) can be used to ensure the local existence of solutions to
the differential equations (6.18), while boundedness of u(t) can be used to
construct a suitable version of Lyapunov stability, for instance by using the
sample-and-hold ideas of [CLSS97]. Indeed, because k and l are Lipschitz,
solutions (q(t), q̇(t)) for a constant u(t) = u(τ) with u(τ) bounded exist and
are unique and continuous in t ∈ [τ, τ + δ] for some δ > 0 (see [WdOS09,
Lemma 4]).

Equipped with a proper Lyapunov stability theorem now verify that
V (qd,0) = 0. Furthermore, with (6.14), V (q, q̇) > 0 for all (q, q̇) ̸= (qd,0).
Show that the time derivative of the Lyapunov function candidate (6.12) is

V̇ (q, q̇, q̈) = γ (q, q̇) + a(q, q̇)T M(q) q̈.

Substitute M(q)q̈ from (6.18) in V̇ above to obtain

V̇ (q, q̇,u) := V̇ (q, q̇, g(q, q̇) − H(q)ΦT B(q)u) = β (q, q̇) − f(q, q̇)T u.

Because (6.22) is assumed to be satisfied for all t ≥ 0, use the above expression
to show that

V̇ (q(t), q̇(t),u(t)) = −δ V (q(t), q̇(t)) < 0

for all t ≥ 0. Moreover,

V (q(t), q̇(t)) = e−δtV (q(0), q̇(0))
=⇒ lim

t→∞
V (q(t), q̇(t)) = 0 =⇒ lim

t→∞
q = qd.

if (6.22) is solvable for all t ≥ 0.
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6.5.2 Proof of Lemma 6.2

First let us prove the condition for the existence of a solution (6.25). For that
we use Farkas’ Lemma [BV04], which states that Ax = b has no solution
x ≥ 0 if and only if AT y ≥ 0 has some solution bT y < 0. In the above
problem, A = α−1vT and b = 1 so that no solution exists if and only if

y α−1v ≥ 0, y < 0,

or, in other words, α−1v ≤ γ1 ≤ 0, where 1 = (1, · · · , 1). Therefore, γ must
be positive for a solution to exist. The following auxiliary lemma will be
used. A proof can be found in [WdOS09, Lemma 6].

Lemma 6.3 Let u∗ be the optimal solution to problem (6.24). Then u∗
j = 0

for all j such that α−1vj ≤ 0.

Now consider the optimization problem in the 1-norm first, here reformu-
lated as the linear program

σ = min
u

{1T u : u ≥ 0, α−1vT u = 1}.

Assume that the above problem has some feasible solution, that is, γ > 0. In
this case, its dual linear program

ρ = max
y

{y : y α−1v ≤ 1}

should also have a solution. The dual problem, however, has a trivial solution
ρ = y∗ = γ−1. From the dual solution a primal feasible optimal solution can
be constructed as indicated in the lemma. Note that for u = u1 ≥ 0 we have
σ = ∥u1∥1 = ρ = γ−1.

We now reformulate problem (6.24) in the case p = 2 as

u2 = arg min
u

{1
2
uT u : (α−1v)T

+u = 1, u ≥ 0},

where (α−1v)+ ≥ 0. Because of Lemma 6.3, problem (6.24) and the above
must have the same optimal solution. The above problem, in its turn, has
the same solution as the relaxed optimization problem

u# = arg min
u

{1
2
uT u : (α−1v)T

+u = 1}

where u is not required to be nonnegative. Indeed, the optimality conditions
for the above problem are such that

u# = λ(α−1v)+ =⇒ (α−1v)T
+u# = λ∥(α−1v)+∥2

2 = 1

=⇒ λ = 1/∥(α−1v)+∥2
2.
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Consequently

u2 = u# = (α−1v)+/∥(α−1v)+∥2
2 ≥ 0.

The case p = ∞ can be formulated as the linear program

(ζ,u∞) = arg min
y,u

{y : 0 ≤ u ≤ y1, α−1vT u = 1}.

Invoking Lemma 6.3 the above problem can be reformulated as

(ζ,u∞) = arg min
y,u

{y : 0 ≤ u ≤ y1, (α−1v)T
+u = 1}.

For any feasible u and y we must have (y1 − u) ≥ 0 so that

0 ≤ (α−1v)T
+(y1 − u) = y (α−1v)T

+1 − 1 =⇒ y ≥ 1
(α−1v)T

+1
.

This bound is tight and equality holds, for instance, with u∞ given in the
theorem. By verifying that

(ζ,u∞) = (1/[(α−1v)T
+1],u∞)

is a feasible solution to the original problem, one concludes optimality.
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Box, 75, 103
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unit self-similar rule, 104
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string, 1
tensegrity, 1, 3

Connectivity, 45
bar, 51
connectivity matrix, 46, 52
rigid body, 1
string, 1, 3, 51, 73
string connectivity, 164, 168, 169,

174, 175, 182
Control, 179

actuator constraint, 42
assumptions, 179
change-of-variables, 179, 181
class 1 tensegrity, 182, 187
closed loop performance, 39
control inputs, 181

admissible solutions, 187
constraint, 183, 186
minimum norm, 188

generalized forces, 182
instrument selection, 39
Lyapunov based control, 179, 183,

185
Lyapunov function, 183, 184

quadratic, 183

pinned rigid rod, 189
single rigid rod, 180, 183
string control, 38, 181
tensegrity prism, 192
vibration control, 41

D-Bar, 75, 94
material failure by yielding, 78,

100
self-similar rule, 97

bar mass, 98
minimum mass, 98
string mass, 98

three dimensional system, 101
minimum mass, 102

unit, 94
bar mass, 96
equilibrium, 94
minimum mass, 96
string mass, 96

unit self-similar rule, 105
Deployment, 23

tensegrity column, 27
tensegrity plate, 30

Dynamics, 157
assumptions, 157
class 1 tensegrity, 166

configuration matrix, 167–169
equations of motion, 167

constrained class 1 tensegrity, 170,
173

configuration vector, 170, 173
equations of motion, 173, 177

equations of motion, 176
Lagrange multiplier, 166–168
Lagrangian approach, 166, 177
Newtonian approach, 165, 176
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external forces, 168, 170
generalized forces, 164, 167, 175
nodes and configuration, 163, 170,

172
notation, 157
pinned rigid rod, 163
projection matrix, 165, 166, 176,

177, 180
reference frame, 158
rigid body modes, 173
single constrained rigid rod, 171

configuration vector, 180
equations of motion, 172, 178,

180
linear constraint, 171
reduced configuration vector,

171
single rigid rod, 159, 175

angular momentum, 160
configuration matrix, 162
configuration vector, 160
equations of motion, 165
kinetic energy, 160
length constraint, 159
lumped masses, 162
uniform mass distribution, 161

string forces, 164
tensegrity prism, 169, 173

Equilibrium, 50
stable, 2, 63
unstable, 2, 63
with external forces, 66

Farkas’ Lemma, 197
Force, 47

equilibrium, 50
external, 2, 3, 66
force density, 48, 52, 181
linear spring, 49
linear string, 49, 164

Fractals, 13, 73

Joints
ball joint, 1, 4, 6
elbow and foot, 7

Kronecker product, 47

Material failure

by buckling, 7, 28, 78
by yielding, 7, 77

minimum volume, 66
Members, 45
Michell topology, 130

definition, 132
equilibrium, 133, 149

propagation of forces, 135
material volume, 139
Michell spiral, 129

definition, 129
under single bending load

equilibrium, 137, 150
limit as complexity grows, 143
mass penalty on joint mass, 146
material volume, 139
minimum mass, 141

Michell truss, 129
Minimum mass, 6, 22, 74

D-Bar self-similar system, 98
D-Bar unit, 96
in bending, 74
in compression, 74
Michell topology, 141
T-Bar self-similar system, 85
T-Bar constant width column, 88
T-Bar unit, 83
tensegrity column, 28, 110
tensegrity plate, 31, 118

hexagonal 3-bar flat plate, 121
tensegrity prism, 110

Nodes, 45

Optimum structures, 18, 73

Pinned rigid rod
control, 189
dynamics, 163

Potential, 47
Prestress, 3, 24

Red blood cell, 10
Rigid body

connectivity, 1

Schur complement, 162
Self-similar, 13, 73

member self-similar, 103
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Simple planar tensegrity, 53

dual, 56
elastic modes, 61
eliminating internal modes, 65
equilibrium, 64
rigid body modes, 61
stiffness matrix, 59

Spider fiber, 9
Spring

rest length, 49
Stability, 63

mechanisms, 64
infinitesimal mechanisms, 64

Statics, 45
Station-keeping buoy, 34
Stiffness, 23, 24

elastic modes, 60
modal vectors, 59, 70
modes, 59, 70

eliminating internal modes, 64
rigid body modes, 60

elimination, 62
stiffness matrix, 50, 57, 70

material component, 58
prestress component, 58

tensegrity prism, 23
String

connectivity, 1, 3, 51
rest length, 49
tension, 50

T-Bar, 75
constant width column, 87

minimum mass, 88
material failure by yielding, 78, 91
self-similar rule, 84

bar mass, 84
minimum mass, 85
string mass, 85

three dimensional system, 91
minimum mass, 94

unit, 80
bar mass, 81
equilibrium, 81
minimum mass, 83
string mass, 82

unit self-similar rule, 105
Tensegrity

affine transformation, 54, 69
class 1, 3, 9, 10, 12, 30

connectivity matrix, 57
dynamics, 37, 166
statics, 56, 69

class 2, 4, 7, 16, 27
class 3, 4, 7
class k, 3
configuration, 1–3, 6, 73
control, 37
definition, 1
dynamics, 18, 37
equilibrium, 2, 50
form-finding, 18
in architecture, 14
in art, 4, 11
in biology, 10
in nature, 7
in science and engineering, 17
primal and dual, 21, 55
statics, 18
stiffness, 14
system

stable, 2
unstable, 2

tents and shelters, 27
under bending load, 129
under compressive load, 7, 73

Tensegrity bed, 33
Tensegrity column, 27, 29, 110

minimum mass, 110
unit self-similar rule, 110

Tensegrity cross
affine transformation, 55
class 1, 57
dual, 56
elastic modes, 60
equilibrium, 51, 64
rigid body modes, 60

elimination, 63
stiffness matrix, 58

Tensegrity plate, 30, 113
3-bar, 114, 127

equilibrium, 114, 115
topology A, 114, 127
topology B, 115, 127

antenna, 31
area coverage overlap, 118
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hexagonal 3-bar flat plate, 119
area coverage overlap, 121
minimum mass, 121

minimum mass, 118
stiffness, 32
under compressive load, 117

Tensegrity prism, 19, 106
bar mass, 109
control, 192
dynamics, 169, 173
equilibrium

minimal and regular, 107

non-minimal and regular, 123,
125

minimal, 19, 22, 27, 106
minimum mass, 23, 110
non-minimal, 23, 122
regular, 19, 22, 27, 106
stiffness, 23
string mass, 110
twist angle, 21
under compressive load, 108

Tensegrity wing, 33

vec operator, 47


