
1
Introduction

An AVR is a type of microcontroller, and not just any microcontroller- AVRs
are some of the fastest around. I like to think of a microcontroller as a useless
lump of silicon with amazing potential. It will do nothing without but almost
anything with the program that you write. Under your guidance, a potentially
large conventional circuit can be squeezed into one program and thus into one
chip. Microcontrollers bridge the gap between hardware and software - they run
programs, just like your computer, yet they are small, discrete devices that can
interact with components in a circuit. Over the years they have become an indis-
pensable part of the toolbox of electrical engineers and enthusiasts as they are
perfect for experimenting, small batch productions, and projects where a certain
flexibility of operation is required.

Figure 1.1 shows the steps in developing an AVR program.

Figure 1.1

2 Introduction

The AVR family covers a huge range of different devices, from Tiny 8-pin
devices to the Mega 40-pin chips. One of the fantastic things about this is that
you can write a program with one type of AVR in mind, and then change your
mind and put the program in a different chip with only minimal changes.
Furthermore, when you learn how to use one AVR, you are really learning how
to use them all. Each has its own peculiarities- their own special features - but
underneath they have a common heart.

Fundamentally, AVR programming is all to do with pushing around numbers.
The trick to programming, therefore, lies in making the chip perform the desig-
nated task by the simple movement and processing of numbers. There is a
specific set of tasks you are allowed to perform on the number s - these are
called instructions. The program uses simple, general instructions, and also
more complicated ones which do more specific jobs. The chip will step through
these instructions one by one, performing millions every second (this depends
on the frequency of the oscillator it is connected to) and in this way perform its
job. The numbers in the AVR can be:

1. Received from inputs (e.g. using an input 'port')
2. Stored in special compartments inside the chip
3. Processed (e.g. added, subtracted, ANDed, multiplied etc.)
4. Sent out through outputs (e.g. using an output 'port')

This is essentially all there is to programming ('great' you may be thinking).
Fortunately there are certain other useful functions that the AVR provides us
with such as on-board timers, serial interfaces, analogue comparators, and a
host of 'flags' which indicate whether or not something particular has happened,
which make life a lot easier.

We will begin by looking at some basic concepts behind microcontrollers,
and quickly begin some example projects on the AT90S 1200 (which we will call
1200 for short) and Tiny AVRs. Then intermediate operations will be intro-
duced, with the assistance of more advanced chips (such as the AT90S2313).
Finally, some of the more advanced features will be discussed, with a final
project based around the 2313. Most of the projects can be easily adapted for
any type of AVR, so there is no need for you to go out and buy all the models.

Short bit for PIC users

A large number of readers will be familiar with the popular PIC microcon-
troller. For this reason I'll mention briefly how AVRs can offer an improvement
to PICs. For those of you who don't know what PICs are, don't worry too much
if you don't understand all this, it will all make sense later on!

Basically, the AVRs are based on a more advanced underlying architecture,
and can execute an instruction every clock cycle (as opposed to PICs which
execute one every four clock cycles). So for the same oscillator frequency, the
AVRs will run four times as fast. Furthermore they also offer 32 working regis-

Introduction 3

ters (compared with the one that PICs have), and about three times as many
instructions, so programs will almost always be shorter. It is worth noting,
however, that although the datasheets boast 90-120 instructions, there is consid-
erable repetition and redundancy, and so in my view there are more like 50
distinct instructions.

Furthermore, what are known as special function registers on PICs (and
known as input/output registers on the AVR) can be directly accessed with PICs
(e.g. you can write directly to the ports), and this cannot be done to the same
extent with AVRs. However, these are minor quibbles, and AVR programs will
be more efficient on the whole. All AVRs have flash program memory (so can
be rewritten repeatedly), and finally, as the different PICs have been developed
over a period of many years there are some annoying compatibility issues
between some models which the AVRs have managed to avoid so far.

Number systems

It is worth introducing at this stage the different numbering systems which are
involved in AVR programming: binary, decimal and hexadecimal. A binary
number is a base 2 number (i.e. there are only two types of digit (0 and 1)) as
opposed to decimal- base 1 0 - with 10 different digits (0 to 9). Likewise hexa-
decimal represents base 16 so it has 16 different digits (0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E and F). The table below shows how to count using the different
systems:

binary (8 digit) decimal(3 digit) hexadecimal(2 digit)_
00000000 000 O0
00000001 001 01
00000010 002 02
00000011 003 03
00000100 004 04
00000101 005 05
00000110 006 06
00000111 007 07
00001000 008 08
00001001 009 09
00001010 010 0A
00001011 011 0B
00001100 012 0C
00001101 013 0D
00001110 014 0E
00001111 015 OF
00010000 016 10
00010001 017 11
etc.

4 Introduction

The binary digit (or bit) furthest to the right is known as the least significant
bit or lsb and also as bit 0 (the reason the numbering starts from 0 and not from
1 will soon become clear). Bit 0 shows the number of 'ones' in the number.
One equals 2 ~ The bit to its left (bit 1) represents the number of ' twos', the
next one (bit 2) shows the number of 'fours' and so on. Notice how two = 21
and four = 22, so the bit number corresponds to the power of two which that
bit represents, but note that the numbering goes from right to left (this is very
often forgotten!). A sequence of 8 bits is known as a byte. The highest number
bit in a binary word (e.g. bit 7 in the case of a byte) is known as the most signif-
icant bit (msb).

So to work out a decimal number in binary you could look for the largest
power of 2 that is smaller than that number and work your way down.

Example 1.1 Work out the binary equivalent of the decimal number 83.
Largest power of two less than 83 = 64 = 2 6. Bit 6 - 1
This leaves 83 - 64 = 19 32 is greater than 19 so bit 5 - 0,

16 is less than 19 so bit 4 = 1,
This leaves 19 - 16 = 3 8 is greater than 3 so bit 3 = 0,

4 is greater than 3 so bit 2 = 0,
2 is less than 3 so bit 1 = 1,

This leaves 3 - 2 = 1 1 equals 1 so bit 0 - 1.

So 1010011 is the binary equivalent.

There is, however, an alternative (and more subtle) method which you may find
easier. Take the decimal number you want to convert and divide it by two. If
there is a remainder of one (i.e. it was an odd number), write down a one. Then
divide the result and do the same writing the remainder to the left of the
previous value, until you end up dividing one by two, leaving a one.

Example 1.2 Work out the binary equivalent of the decimal number 83.
Divide 83 by two.
Divide 41 by two.
Divide 20 by two.
Divide 10 by two.
Divide 5 by two.
Divide 2 by two.
Divide 1 by two.

Leaves 41, remainder 1
Leaves 20, remainder 1
Leaves 10, remainder 0
Leaves 5, remainder 0
Leaves 2, remainder 1
Leaves 1, remainder 0
Leaves 0, remainder I

So 1010011 is the binary equivalent.

EXERCISE 1.1 Find the binary equivalent of the decimal number 199.

EXERCISE 1.2 Find the binary equivalent of the decimal number 170.

Introduction 5

Likewise, bit 0 of a hexadecimal is the number of ones (16 o = 1) and bit 1 is the
number of 16s (161 = 16) etc. To convert decimal to hexadecimal (it is often
abbreviated to just 'hex') look at how many 16s there are in the number, and
how many ones.

Example 1.3 Convert the decimal number 59 into hexadecimal. There are 3
16s in 59, leaving 59 - 4 8 = 11. So bit 1 is 3. 11 is B in hexadecimal, so bit 0
is B. The number is therefore 3B.

EXERCISE 1.3 Find the hexadecimal equivalent of 199.

EXERCISE 1.4 Find the hexadecimal equivalent of 170.

One of the useful things about hexadecimal, which you may have picked up
from Exercise 1.4, is that it translates easily with binary. If you break up a
binary number into 4-bit groups (called nibbles, i.e. small bytes), these little
groups can individually be translated into 1 hex digit.

Example 1.4 Convert 01101001 into hex. Split the number into nibbles: 0110
and 1001. It is easy to see 0110 translates as 4 + 2 = 6 and 1001 is 8 + 1 = 9.
So the 8-bit number is 69 in hexadecimal. As you can see, this is much more
straightforward than with decimal, which is why hexadecimal is more
commonly used.

EXERCISE 1.5 Convert 11100111 into a hexadecimal number.

Adding in binary
Binary addition behaves in exactly the same way as decimal addition. Examine
each pair of bits.

0 + 0 = 0 no carry
1 + 0 = 1 no carry
1 + 1 = 0 carry 1

1 + 0 + 0 = 1 no carry
1 + 1 + 0 = 0 carry 1
1 + 1 + 1 = 1 carry 1

Example 1.5 4 + 7 = 1 1
1
0100
0111
1011 = 11 in decimal

6 Introduction

EXERCISE 1.6 Find the result of 01011010 + 00001111 using binary addition.

Negative numbers
We have seen how positive decimal numbers translate into binary, but how do
we translate negative numbers? We have to sacrifice a bit towards giving the
number a sign, so for a 4-bit signed number, the range of values might b e - 7 to
+8. There are various representations for negative numbers, including two
complement. With this method, to make a positive number onto its negative
equivalent, you invert all the bits and then add one:

Example 1.6 0 1 1 1 = 7
Invert all bits: 1000
Add one: 1001
1 0 0 1 = - 7

Example 1.7 1 0 0 0 = 8

Invert: 0111
Add one: 1000
1 0 0 0 = - 8 = + 8 FA/Li

As you can see in Example 1.7, we cannot use -8 because it is indistinguishable
from +8. This asymmetry is recognized as an unfortunate consequence of the
two's complement method, but it has been accepted as the best given the short-
comings of other methods of signing binary numbers. Let's test these negative
numbers by looking at -2 + 7:

Example 1.8 2 = 0010 therefore -2 = 1110

1110 - - 2
+0111 = 7

0101 = 5 Which is what we would expect!

EXERCISE 1.7 Find the 8-bit two's complement representation of-40, and show
that -40 + 50 gives the expected result.

A result of this notation is that we can simply test the most significant bit (msb)
to see whether a number is positive or negative. A 1 in the msb indicates a nega-
tive number, and a 0 indicates positive. However, when dealing with the result
of addition and subtraction with large positive or negative numbers, this can be
misleading.

Introduction 7

Example 1.9 69 + 120 = ...
1
01000101 = + 69
01111000 = + 120
10111101 = + 189 o r - 6 7

In other words, in the two's complement notation, we could interpret the result
as having the msb 1 and therefore negative. There is therefore a test for 'two's
complement overflow' which we can use to determine the real sign of the result.
The 'two's complement overflow' occurs when:

�9 both the msb's of the numbers being added are 0 and the msb of the result
is 1

�9 both the msb's of the numbers being added are 1 and the msb of the result
is 0

The real sign is therefore given by a combination of the 'two's complement
overflow' result, and the state of the msb of the result:

Two's complement
overflow?
No 0
No 1
Yes 0
Yes 1

MSB of result Sign

Positive
Negative
Negative
Positive

As you can see from Example 1.10, there is a two's complement overflow, and
the msb of the result is 1, and so the sign of the answer is positive (+ 189) as we
would expect. You will be relieved to hear that much of this is handled auto-
matically by the AVR.

The one's complement is simply the result of inverting all the bits in a
number.

An 8-bit RISC Flash microcontroller?

We call the AVR an 8-bit microcontroller. This means it deals with numbers 8
bits long. The binary number 11111111 is the largest 8-bit number and equals
255 in decimal and FF in hex (work it out!). With AVR programming, different
notations are used to specify different numbering systems (the decimal number
11111111 is very different from the binary number 11111111)! A binary
number is shown like this: 0b00101000 (i.e. 0b...). Decimal is the default
system, and the hexadecimal numbers are written with a 0x, or with a dollar
sign, like this: 0x3A or $3A. Therefore:

8 Introduction

0b00101011 is equivalent to 43 which is equivalent to 0x2B

When dealing with the inputs and outputs of an AVR, binary is always used,
with each input or output pin corresponding to a particular bit. A 1 corresponds
to what is known as logic 1, meaning the pin of the AVR is at the supply voltage
(e.g. +5 V). A 0 shows that the pin is at logic O, or 0 V. When used as inputs,
the boundary between reading a logic 0 and a logic 1 is half of the supply
voltage (e.g. +2.5 V).

You will also hear the AVR called a RISC microcontroller. This means it is a
Reduced Instruction Set Computer, i.e. has relatively few instructions. This
makes life slightly harder for the programmer (you or me), but the chip itself is
more simple and efficient.

The AVR is sometimes called a Flash microcontroller. This refers to the fact
that the program you write for it is stored in Flash memory - memory which
can be written to again and again. Therefore you can keep reprogramming the
same AVR c h i p - for hobbyists this means one chip can go a long way.

Initial steps

The process of developing a program consists of five basic steps:

1. Select a particular AVR chip, and construct a program flowchart
2. Write program (using Notepad, AVR Studio, or some other suitable devel-

opment software)
3. Assemble program (changes what you've written into something an AVR

will understand)
4. Simulate or Emulate the program to see whether or not it works
5. Program the AVR. This feeds what you've written into the actual AVR

Let's look at some of these in more detail.

Choosing your model

As there are so many different AVRs to choose from, it is important you think
carefully about which one is right for your application. The name of the AVR
can tell you some information about what it has, e.g.:

AT90S 1200

I'
SRAM memory 'size 0' = no SRAM
CPU model No. 0
EEPROM data memory 'size 2' = 64 bytes
1 Kb of flash program memory

Introduction 9

Memory sizes:

0 1 2 3 4 5 6 7 8 9 A B
0 32 64 128 256 512 1K 2K 4K 8K 16K 32K

bytes bytes bytes bytes bytes

The meaning of these terms may not be familiar, but they will be covered
shortly. The Tiny and Mega family have slightly different systems. You can get
a decent overview of some of the AVRs and their properties by checking out
Appendix A.

EXERCISE 1.8 Deduce the memory properties of the AT90S8515.

One of the most important features of the AVR, which unfortunately is not
encoded in the model name, is the number of input and output pins. The 1200
has 15 input/output pins (i.e. they have 15 pins which can be used as inputs or
outputs), and the 8515 has up to 32!

Example 1.10 The brief is to design a device to count the number of times a
push button is pressed and display the value on a single seven segment display

- when the value reaches nine it resets.

1. The seven segment display requires seven outputs
2. The push button requires one input

This project would therefore need a total of eight input/output pins. In this case
a 1200 would be used as it is one of the simplest models and has enough pins.

A useful trick when dealing with a large number of inputs and outputs is
called strobing. It is especially handy when using more than one seven segment
display, or when having to test many buttons. An example demonstrates it best.

Example 1.11 The brief is to design a counter which will add a number
between 1 and 9 to the current two-digit value. There are therefore nine push
buttons and two seven segment displays.

It would first appear that quite a few inputs and outputs are necessary:

1. The two seven segment displays require seven outputs each, thus a total
of 14

2. The push buttons require one input each. Creating a total of nine

The overall total is therefore 23 input/output pins, which would require a large
AVR such as the 8515 (which has 32 I/O pins); however, it would be unneces-
sary to use such a large one as this value can be cut significantly.

By strobing the buttons, they can all be read using only six pins, and the two

10 Introduction

seven segment displays can be controlled by only nine. This creates a total of 15
input/output (or I/O) pins, which would just fit on the 1200. Figure 1.2 shows
how it is done.

By making the pin labelled PB0 logic 1 (+5 V) and PB 1, PB2 logic 0 (0 V),
switches 1, 4 and 7 are enabled. They can then be tested individually by exam-
ining pins PB3 to PB5. Thus by making PB0 to PB2 logic 1 one by one, all the
buttons can be examined individually. In order to work out how many I/O pins
you will need for an array of X buttons, find the pair of factors of X which have
the smallest sum (e.g. for 24, 6 and 4 are the factors with the smallest sum,
hence 6 + 4 = 10 I/O pins will be needed). It is better to make the smaller of the
two numbers (if indeed they are not the same) the number of outputs, and the
larger the number of inputs. This way the program takes less time to scroll
through all of the rows of buttons.

Strobing seven segment displays basically involves displaying a number on
one display for a short while, and then turning that display off while you display
another number on another display. PD0 to PD6 contain the seven segment code
for both displays, and by making PB6 or PB7 logic 1, you can turn the indi-
vidual displays on. So the displays are in fact flashing on and off at high speed,
giving the impression that they are constantly on. The programming require-
ments of such an arrangement will be examined at a later stage.

EXERCISE 1.9 With the help of Appendix A, work out which model AVR you
would use for a four-digit calculator with buttons for digits 0-9 and five oper-
ations: + , - , x, + and = .

Flowchart

After you have worked out how many I/O pins you will need, and thus selected
a particular AVR, the next step is to create a program flowchart. This basically
forms the backbone of a program, and it is much easier to write a program from
a flowchart than from scratch.

A flowchart should show the fundamental steps that the AVR must perform
and a clear program structure. Picture your program as a hedge maze. The flow-
chart is a rough map showing key regions of the maze. When planning your
flowchart you must note that the maze cannot lead off a cliff (i.e. the program
cannot simply end), or the AVR will run over the edge and crash. Instead the
AVR is doomed to navigate the maze indefinitely (although you can send it to
sleep!). A simple example of a flowchart is shown in Figure 1.3.

Example 1.12
being pressed.

The flowchart for a program to turn an LED on if a button is

(The Set-up box represents some steps which must be taken as part of the start
of every program, in order to set up various functions - this will be examined

I
I_1_1

0
~

~JO

12 Introduction

Figure 1.3

Set-up 1
J

NO

Turn on LED

I.,A
Turn off LED

later.) Rectangles with rounded corners should be used for start and finish
boxes, and diamond-shaped ones for decisions. Conditional jumps (the
diamond shaped boxes) indicate ' i f something happens, then jump somewhere'.

The amount of code any particular box will represent varies considerably, and
is really not important. The idea is to get the key stages, and come up with a
diagram that someone with no knowledge of programming would understand.
You will find it much easier to write a program from a flowchart, as you can
tackle each box separately, and not have to worry so much about the overall
structure.

EXERCISE 1.10 Challenge/Draw the flowchart for an alarm with three push
buttons. Once the device is triggered by a pressure sensor, the three buttons
must be pressed in the correct order, and within 10 seconds, or else the alarm
will go off. If the buttons are pressed in time, the device returns to the state it
was in before being triggered. If the wrong code is pressed the alarm is trig-
gered. (The complexity of the answers will vary, but to give you an idea, my
answer has 13 boxes.)

Writing
Once you have finished the flowchart, the next step is to load up a program
template (such as the one suggested on page 19), and begin writing your
program into it. This can be done on a basic text package such as Notepad
(the one that comes with Microsoft Windows@), or a dedicated development
environment such as AVR Studio.

Introduction 13

Assembling
When you have finished writing your program, it needs to be assembled before
it can be transferred onto a chip. This converts the program you've written into
a series of numbers which can be fed into the Flash Program Memory of the
AVR. This series of numbers is called the hex code or hexf i le- a hex file will
have .hex after its name. The assembler will examine your program line by line
and try to convert each line into the corresponding hex code. If, however, it fails
to recognize something in one of the lines of your code, it will register an error
for that line. An error is something which the assembler thinks is definitely
w r o n g - i.e. it can't understand it. It may also register a w a r n i n g - something
which is probably wrong, i.e. definitely unusual but not necessarily wrong. All
this should be made much more clear when we actually assemble our first
program.

Registers
One of the most important aspects to programming with AVRs and microcon-
trollers in general are the registers. I like to think of the AVR as having a large
filing cabinet with many drawers, each containing an 8-bit number (a byte).
These drawers are registers - more specifically we call these the I/0 registers.
In addition to these I/O registers, we have 32 'working' registers - these are
different because they are not part of the filing cabinet. Think of the working
registers as the filing assistants, and yourself as the boss. If you want something
put in the filing cabinet, you give it to the filing assistant, and then tell them to
put it in the cabinet. In the same way, the program writer cannot move a number
directly into an I/O register. Instead you must move the number into a working
register, and then copy the working register to the I/O register. You can also ask
your filing assistants to do arithmetic etc. on the numbers they h o l d - i.e. you
can add numbers between working registers. Figure 1.4 shows the registers on
the 1200.

As you can see, each register is assigned a number. The working registers are
assigned numbers R0, R 1 , . . . , R31. Notice, however, that R30 and R31 are
slightly different. They represent a double register called Z - an extra long
register that can hold a 16-bit number (called a word). These are two filing
assistants that can be tied together. They can be referred to independently- ZL
and ZH - but can be fundamentally linked in that ZL (Z Lower) holds bits 0-7
of the 16-bit number, and ZH (Z Higher) holds bits 8-15.

Example 1.13

ZH ZL --+ add one to ZL --+ ZH ZL
00000000 11111111 00000001 00000000

14 Introduction

Figure 1.4

Example 1.14

ZH ZL ~ add one t o Z L ~ ZH ZL
11111111 11111111 00000000 00000000

Note that this linking only occurs with certain instructions. Assume that an
instruction doesn't have the linking property unless explicitly stated.

Introduction 15

You will find it easier to give your working registers names (for the same
reason you don't call your filing assistants by their staff numbers), and you will
be able to do this. It is sensible to give them a name according to the meaning
of the number they are holding. For example, if you were to use register R5 to
store the number of minutes that have passed, you might want to call it some-
thing like Minutes. You will be shown how to give names to your registers
shortly, when we look at the program template. We will also see later that the
working registers numbers R16-R31 are slightly more powerful than the
others.

The I/O registers are also assigned numbers (0-63 in decimal, or $0-$3F in
hexadecimal). Each of these performs some specific function (e.g. count the
passage of time, or control serial communications etc.) and we will go through
the function of each one in due course. I will, however, highlight the functions
of PORTB, PORTD, PINB and PIND. These I/O registers represent the por t s -
the AVR's main link with the outside world. If you're wondering what happened
to Ports A and C, it's not really very important. All four (A, B, C and D) appear
on larger types of AVR (e.g. 8515); smaller AVRs (e.g. 1200) have only two.
These two correspond to the two on larger AVRs that are called B and D, hence
their names.

Figure 1.5 shows the pin layout of the 1200. Notice the pins labelled PB0,
PB 1 , . . . , PB7. These are the Port B pins. Pins PD0-PD6 are the Port D pins.
They can be read as inputs, or controlled as outputs. If behaving as an input,
reading the binary number in PINB or PIND tells us the states of the pin, with
PB0 corresponding to bit 0 in PINB etc. If the pin is high, the corresponding bit
is 1, and vice versa. Note that Port D doesn't have the full 8 bits.

RESET r--

PDO F-

PD1 F-

XTAL2 F-

XTAL1 ["-

(INTO) PD2 [--"

PD3 F'-

(TO) PD4 F-

PD5

GND r -

_J
1 20

2 19

3 18

4 17

5 16

6 15

7 14

8 13

9 12

10 11

'7 vcc

-7 PB7 (SCK)

--~ PB6 (MISO)

'"] PB5 (MOSI)

- '] PB4

--] PB3

-�86 PB2

-"] PB1 (AIN1)

-7 PB0 (AINO)

--'] PD6

Figure 1.5

16 Introduction

Example 1.15 All of PB0-PB7 are inputs. They are connected to push buttons
which are in turn connected to the +5 V supply rail. When all the buttons are
pressed, the number in PINB is 0bl 1111111 or 255 in decimal. When all
buttons except PB7 are pressed, the number in PINB is 0b01111111 or 127 in
decimal.

In a similar way, if the pin is an output its state is controlled by the corre-
sponding bit in the PORTx register. The pins can sink or source 20 mA, and so
are capable of driving LEDs directly.

Example 1.16 All of PB0-PB7 are outputs connected to LEDs. The other legs
of the LEDs are connected to ground (via resistors). To turn on all of the LEDs,
the number 0bl 1111111 is moved into PORTB. To turn off the middle two
LEDs, the number 0b 11100111 is moved into PORTB.

EXERCISE 1.11 Consider the example given above where all of PB0-PB7 are
connected to LEDs. We wish to create a chase of the eight LEDs (as shown in
Figure 1.6), and plan to move a series of numbers into PORTB one after the
other to create this effect. What will these numbers be (in binary, decimal and
hexadecimal)?

Figure 1.6

EXERCISE 1.12 PD0, PD 1 and PD2 are connected to push buttons which are in
turn connected to the +5 V supply rail. These push buttons are used in a
controller for a quiz show. What numbers in PIND indicate that more than one
button is being pressed at one time (in binary, decimal and hexadecimal)?

Introduction 17

Instructions

We will now begin looking at some instructions. These are summarized in
Appendix C at the back of the book. AVRs generally have about a hundred
different instructions supported on them. This may sound quite daunting at first,
but you will be relieved to hear that there is a fair amount of repetition. In fact
there are only really about 40 that you really need to remember, and many are
quite easy to remember with familiar sounding names like add or jmp.
Fortunately, there a few general rules to help you decipher an unknown instruc-
tion. First, whenever you come across the letter i in an instruction, it will often
stand for immediate, i.e. the number which immediately follows the instruction
or I/O register. A b will often stand for bit or branch (i.e. jump to a part of the
program). Let's take a look at the format of an instruction line.

Example 1.17

(Label:) sbi portb, 0 ; turns on LED

The optional first part of the line is the label. This allows another part of the
program to jump to this line. Note that a label cannot start with a number, and
should not be given the same name as an instruction, or a file register (as this
will confuse the AVR greatly!). The label is always immediately followed by a
colon (this is easy to leave off and can be a common source of errors if you
aren't careful). Note that the label doesn't actually have to be on the same line
as the instruction it's labelling. For example, the following is just as valid:

Label:
sbi portb, 0 ; turns on LED

After the label comes the actual instruction: sbi, i.e. what you are doing, and
then comes what you are doing it to: portb , 0 (these are called the operands).
Lastly, and just as important, is a semicolon followed by a comment on what
the line is actually doing in your own words. It is worth noting that you can
write whatever you want in an AVR program as long as it comes after a semi-
colon. Otherwise the assembler will try to translate what you've written (e.g.
'turns on LED') and obviously fail and register an ERROR. As the assembler
scans the program line by line, it skips to the next line when it encounters a
semicolon.

I must stress how important it is to explain every line you write, as shown
above. There are a number of reasons for this. First, what you've written may
make sense to you as you write it, but after a few coffee breaks, or a week later,
or a month later, you'll be looking at the line and wondering what on earth you
were intending to do. Second, you may well be showing your program to other
people for advice. I am sent programs that, with alarming regularity, contain

18 Introduction

very few or in some cases no comments at all. There is not much one can do in
this situation, as it is almost impossible to deduce the intended operation of the
program by looking at the bare code. Writing good comments is not necessarily
e a s y - they should be very clear, but not too long. It is particularly worth
avoiding falling into the habit of just copying out the meaning of the line.

Example 1.18

sbi PortB, 0 ; sets bit 0 of register PortB

A comment like the one above means very little at all, as it doesn't tell you why
you're setting bit 0 of register PortB, which after all is what the comment is
really about. If you want to get an overview of all the instructions offered, have
a good look at Appendix C and you can get a feel of how the different instruc-
tions are arranged. They will be introduced one by one through the example
projects which follow.

Program template
Most programs will have a certain overall structure, and there are certain
common elements needed for all programs to work. To make life easier, there-
fore, we can put together a program template, save it, and then load it every time
we want to start writing a program. A template that I like to use is shown in
Figure 1.7.

The box made up of asterisks at the top of the template is the program header
(the asterisks are there purely for decorative purposes). Filling these in makes it
easier to find out what the program is without having to scroll down and read
the code and it helps you ensure that you are working on the most up-to-date
version of your program. Note that the contents of the box have no bearing on
the actual functioning of your program, as all the lines are preceded by semi-
colons. The 'clock frequency:' line refers to the frequency of the oscillator (e.g.
crystal) that you have connected to the chip. The AVR needs a steady signal to
tell it when to move on to the next instruction, and so executes an instruction
for every oscillation (or clock cycle). Therefore, if you have connected a 4 MHz
crystal to the chip, it should execute about 4 million instructions per second.
Note that I say about 4 million, because some instructions (typically the ones
which involve jumping around in the program) take two clock cycles. 'for
AVR:' refers to which particular AVR the program is written for. You will also
need to specify this further down.

Now we get to the lines which actually do something..device is a directive
(an instruction to the assembler) which tells the assembler which device you are
using. For example, if you were writing this for the 1200 chip, the complete line
would be:

Introduction 19

. *

�9 writ ten by: *
; date: *
; version" *
; file saved as: *
; for AVR: *
; clock frequency: *
. *

; P rogram Function:

.device

.nolist

.include

.list

XXXXXXXX

"C AProgram FilesL~tmelkAVR StudiokAppnotesL~xxxxx.inc"

; Declarations:

.def temp =r16

; Start of P rogram

r jmp Init ; first line executed

Init: ldi temp, 0bxxxxxxxx ; Sets up inputs and outputs on PortB
out DDRB, temp ;
ldi temp, 0bxxxxxxxx ; Sets up inputs and outputs on PortD
out DDRD, temp ;

ldi temp, 0bxxxxxxxx
out PortB, temp
ldi temp, 0bxxxxxxxx
out PortD, temp

; Sets pulls ups for inputs of PortB
; and the initial states for the outputs
; Sets pulls ups for inputs of PortD
; and the initial states for the outputs

; Main body of program:
Start:

<write your program here>
r jmp Start ; loops back to Start

Figure 1.7

20 Introduction

.device at90sl200

Another important directive is .include, which enables the assembler to load
what is known as a look-up file. This is like a translator dictionary for the
assembler. The assembler will understand most of the terms you write, but it
may need to look up the translations of others. For example, all the names of the
input/output registers and their addresses are stored in the look-up file, so
instead of referring to $3F, you can refer to SREG. When you install the assem-
bler on your computer, it should come with these files and put them in a direc-
tory. I have included the path that appears on my own computer but yours may
well be different. Again, if the 1200 was being used, the complete line would
be:

.include "C:\Program Files\AtmelL~VR Studio\Appnotes\1200def.inc"

Finally I'll say a little about .nolist and .list. As the assembler reads your code,
it can produce what is known as a list file, which includes a copy of your
program complete with the assembler's comments on it. By and large, you do
not want this list file also to include the lengthy look-up file. You therefore write
.nolist before the .include directive, which tells the assembler to stop copying
things to the list file, and then you write .list after the .include line to tell the
assembler to resume copying things to the list file. In summary, therefore, the
.nolist and .list lines don't actually change the working of the program, but they
will make your list file tidier. We will see more about list files when we begin
our first program.

After the general headings, there is a space to specify some declarations.
These are your own additions to the assembler's translator d ic t ionary- your
opportunities to give more useful names to the registers you will be using. For
example, I always use a working register called temp for menial tasks, and I've
assigned this name to R16. You can define the names of the working registers
using the .def directive, as shown in the template. Another type of declaration
that can be used to generally give a numerical value to a word is .equ. This can
be used to give your own names to I/O registers. For example, I might have
connected a seven segment display to all of Port B, and decided that I wish to
be able to write DisplayPort when referring to PortB. PortB is I/O register
number 0xl 8, so I might write DisplayPort in the program and the assembler
will interpret it as PortB:

.equ

.equ
DisplayPort = PortB
DisplayPort = 0x18

o r

Another example of where this might be useful is where a particular number is
used at different points in the program, and you might be experimenting and
changing this number. You could use the .equ directive to give a name to this

Introduction 21

number, and simply refer to the name in the rest of the program. When you then
go to change the number, you need only change the value in the .equ line, and
not in all the instances of the use of the number all over the program. For the
moment, however, we will not be using the .equ directive.

After the declarations, we have the first line executed by the chip on power-
up or reset. In this line I suggest jumping to a section called Init which sets up
all the initial settings of the AVR. This uses the r jmp instruction:

rjmp Init

This stands for relative jump. In other words it makes the chip jump to a section
of the program which you have labelled Init. The reason why it is a relative
jump is in the way the assembler interprets the instruction, and so is not really
important to understand. Say, for example, that the Init section itself was 40
instructions further on from the r jmp Init line, the assembler would inter-
pret the line as saying 'jump forward 40 instructions'- i.e. a jump relative to
the original instruction. Basically it is far easier to think of it as simply jumping
to Init.

The first part of the Init section sets which pins are going to act as inputs,
and which as outputs. This is done using the Data Direction I/O registers:
DDRB and DDRD. Each bit in these registers corresponds to a pin on the chip.
For example, bit 4 of DDRB corresponds to pin PB4, and bit 2 of DDRD corre-
sponds to pin PD2. Now, setting the relative DDRx bit high makes the pin an
output, and making the bit low makes the pin an input.

If we configure a pin as an input, we then have the option of selecting
whether the input has a built-in pull-up resistor or not. This may save us the
trouble of having to include an external resistor. In order to enable the pull-ups
make the relevant bit in PORTx high; however, if you do not want them make
sure you disable them by making the relevant bit in PORTx low. For the outputs,
we want to begin with the outputs in some sort of start state (e.g. all off), and
so for the output pins, make the relevant bits in PORTx high or low depending
on how you wish them to start. An example should clear things up.

Example 1.19 Using a 1200 chip, pins PB0, PB4 and PB7 are connected to
push buttons. We would like pull-ups on PB4 and PB7 only. Pins PD0 to PD6
are connected to a seven segment display, and all other pins are not connected.
All outputs should initially be off. What numbers should be written to DDRB,
DDRD, PortB, and PortD to correctly specify the actions of the AVR's pins?

First, look at inputs and outputs. PB0, 4 and 7 are inputs, the rest are not
connected (hence set as outputs). The number for DDRB is therefore
0b01101110. For Port D, all pins are outputs or not connected, hence the
number for DDRD is 0 b l l l l l l l .

To enable pull-ups for PB4 and PB7, make PortB, 4 and PortB, 7 high, all

22 Introduction

other outputs are initially low, so the number for PortB is 0bl0010000. All the
outputs are low for Port D, so the number for PortD is 0b00000000.

We can't move these numbers directly into the I/O registers, but instead we
have first to move them into a working register (such as temp), and then output
the working register to the I/O register. There are a number of ways we can do
this:

ldi register, number ;

This loads the immediate number into a register, but it is very important to note
that this instruction cannot be used on all working registers - only on those
between R16 and R31 (we can therefore still use it on temp, as that is R16). We
can also use a couple of alternatives to this instruction if the number we wish to
move into the register happens to be 0 or 255/OxFF/Ob 11111111:

clr register

This clears the contents of a register (moves 0 into it) - note an advantage of
this over ldi is that it can operate on all working registers. Finally,

ser register

This sets the contents of a register (moves 255/0xFF/0b 1111111 into it), though
like ldi, it only works on registers between R16 and R31.

We then need to move temp into the I/O register, using the following instruc-
tion:

out ioreg, reg

This moves a number out from a register, into an I/O register. Make sure you
note the order of the operands in the ins t ruct ion- I/O register first, working
register second, it is easy to get them the wrong way round! We can therefore
see that the eight lines of the Init section move numbers into DDRB, DDRD,
PortB and PortD via temp.

EXERCISE 1.13 Using a 1200 chip, pin PB0 is connected to a pressure sensor,
and pins PB 1, PB2 and PB3 control red, yellow and green LEDs respectively.
PD0 to PD3 carry signals to an infrared transmitter, and PD4-PD6 carry signals
from an infrared receiver. All other pins are not connected. All outputs should
initially be off, and PB0 should have a pull-up enabled. Write the eight lines that
will make up the Init section for this program.

After finishing the Init section, the program moves on to the main body of the
program labelled Start. This is where the bulk of the program will lie. Note that

Introduction 23

the program ends with the line r jmp Start. It needn't necessarily loop back
to Start, but it does have to keep looping to something, so you may want to alter
this last line accordingly. At the end of the program, you can write .exit to tell
the assembler to stop assembling the file, but this isn't necessary as it will stop
assembling anyway once it reaches the end of the file.

