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Introduction 

An AVR is a type of microcontroller, and not just any microcontroller- AVRs 
are some of the fastest around. I like to think of a microcontroller as a useless 
lump of silicon with amazing potential. It will do nothing without but almost 
anything with the program that you write. Under your guidance, a potentially 
large conventional circuit can be squeezed into one program and thus into one 
chip. Microcontrollers bridge the gap between hardware and software - they run 
programs, just like your computer, yet they are small, discrete devices that can 
interact with components in a circuit. Over the years they have become an indis- 
pensable part of the toolbox of electrical engineers and enthusiasts as they are 
perfect for experimenting, small batch productions, and projects where a certain 
flexibility of operation is required. 

Figure 1.1 shows the steps in developing an AVR program. 

Figure 1.1 
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The AVR family covers a huge range of different devices, from Tiny 8-pin 
devices to the Mega 40-pin chips. One of the fantastic things about this is that 
you can write a program with one type of AVR in mind, and then change your 
mind and put the program in a different chip with only minimal changes. 
Furthermore, when you learn how to use one AVR, you are really learning how 
to use them all. Each has its own peculiarities- their own special features - but 
underneath they have a common heart. 

Fundamentally, AVR programming is all to do with pushing around numbers. 
The trick to programming, therefore, lies in making the chip perform the desig- 
nated task by the simple movement and processing of numbers. There is a 
specific set of tasks you are allowed to perform on the number s -  these are 
called instructions. The program uses simple, general instructions, and also 
more complicated ones which do more specific jobs. The chip will step through 
these instructions one by one, performing millions every second (this depends 
on the frequency of the oscillator it is connected to) and in this way perform its 
job. The numbers in the AVR can be: 

1. Received from inputs (e.g. using an input 'port') 
2. Stored in special compartments inside the chip 
3. Processed (e.g. added, subtracted, ANDed, multiplied etc.) 
4. Sent out through outputs (e.g. using an output 'port') 

This is essentially all there is to programming ('great' you may be thinking). 
Fortunately there are certain other useful functions that the AVR provides us 
with such as on-board timers, serial interfaces, analogue comparators, and a 
host of 'flags' which indicate whether or not something particular has happened, 
which make life a lot easier. 

We will begin by looking at some basic concepts behind microcontrollers, 
and quickly begin some example projects on the AT90S 1200 (which we will call 
1200 for short) and Tiny AVRs. Then intermediate operations will be intro- 
duced, with the assistance of more advanced chips (such as the AT90S2313). 
Finally, some of the more advanced features will be discussed, with a final 
project based around the 2313. Most of the projects can be easily adapted for 
any type of AVR, so there is no need for you to go out and buy all the models. 

Short bit for PIC users 

A large number of readers will be familiar with the popular PIC microcon- 
troller. For this reason I'll mention briefly how AVRs can offer an improvement 
to PICs. For those of you who don't know what PICs are, don't worry too much 
if you don't understand all this, it will all make sense later on! 

Basically, the AVRs are based on a more advanced underlying architecture, 
and can execute an instruction every clock cycle (as opposed to PICs which 
execute one every four clock cycles). So for the same oscillator frequency, the 
AVRs will run four times as fast. Furthermore they also offer 32 working regis- 
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ters (compared with the one that PICs have), and about three times as many 
instructions, so programs will almost always be shorter. It is worth noting, 
however, that although the datasheets boast 90-120 instructions, there is consid- 
erable repetition and redundancy, and so in my view there are more like 50 
distinct instructions. 

Furthermore, what are known as special function registers on PICs (and 
known as input/output registers on the AVR) can be directly accessed with PICs 
(e.g. you can write directly to the ports), and this cannot be done to the same 
extent with AVRs. However, these are minor quibbles, and AVR programs will 
be more efficient on the whole. All AVRs have flash program memory (so can 
be rewritten repeatedly), and finally, as the different PICs have been developed 
over a period of many years there are some annoying compatibility issues 
between some models which the AVRs have managed to avoid so far. 

Number systems 

It is worth introducing at this stage the different numbering systems which are 
involved in AVR programming: binary, decimal and hexadecimal. A binary 
number is a base 2 number (i.e. there are only two types of digit (0 and 1)) as 
opposed to decimal-  base 1 0 -  with 10 different digits (0 to 9). Likewise hexa- 
decimal represents base 16 so it has 16 different digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 
9, A, B, C, D, E and F). The table below shows how to count using the different 
systems: 

binary (8 digit) decimal(3 digit) hexadecimal(2 digit)_ 
00000000 000 O0 
00000001 001 01 
00000010 002 02 
00000011 003 03 
00000100 004 04 
00000101 005 05 
00000110 006 06 
00000111 007 07 
00001000 008 08 
00001001 009 09 
00001010 010 0A 
00001011 011 0B 
00001100 012 0C 
00001101 013 0D 
00001110 014 0E 
00001111 015 OF 
00010000 016 10 
00010001 017 11 
etc. 
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The binary digit (or bit) furthest to the right is known as the least significant 
bit or lsb and also as bit 0 (the reason the numbering starts from 0 and not from 
1 will soon become clear). Bit 0 shows the number of 'ones' in the number. 
One equals 2 ~ The bit to its left (bit 1) represents the number of ' twos',  the 
next one (bit 2) shows the number of 'fours' and so on. Notice how two = 21 
and four = 22, so the bit number corresponds to the power of two which that 
bit represents, but note that the numbering goes from right to left (this is very 
often forgotten!). A sequence of 8 bits is known as a byte. The highest number 
bit in a binary word (e.g. bit 7 in the case of a byte) is known as the most signif- 
icant bit (msb). 

So to work out a decimal number in binary you could look for the largest 
power of 2 that is smaller than that number and work your way down. 

Example 1.1 Work out the binary equivalent of the decimal number 83. 
Largest power of two less than 83 = 64 = 2 6. Bit 6 - 1 
This leaves 83 - 64 = 19 32 is greater than 19 so bit 5 - 0, 

16 is less than 19 so bit 4 = 1, 
This leaves 19 - 16 = 3 8 is greater than 3 so bit 3 = 0, 

4 is greater than 3 so bit 2 = 0, 
2 is less than 3 so bit 1 = 1, 

This leaves 3 -  2 = 1 1 equals 1 so bit 0 -  1. 

So 1010011 is the binary equivalent. 

There is, however, an alternative (and more subtle) method which you may find 
easier. Take the decimal number you want to convert and divide it by two. If 
there is a remainder of one (i.e. it was an odd number), write down a one. Then 
divide the result and do the same writing the remainder to the left of the 
previous value, until you end up dividing one by two, leaving a one. 

Example 1.2 Work out the binary equivalent of the decimal number 83. 
Divide 83 by two. 
Divide 41 by two. 
Divide 20 by two. 
Divide 10 by two. 
Divide 5 by two. 
Divide 2 by two. 
Divide 1 by two. 

Leaves 41, remainder 1 
Leaves 20, remainder 1 
Leaves 10, remainder 0 
Leaves 5, remainder 0 
Leaves 2, remainder 1 
Leaves 1, remainder 0 
Leaves 0, remainder I 

So 1010011 is the binary equivalent. 

EXERCISE 1.1 Find the binary equivalent of the decimal number 199. 

EXERCISE 1.2 Find the binary equivalent of the decimal number 170. 
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Likewise, bit 0 of a hexadecimal is the number of ones (16 o = 1) and bit 1 is the 
number of 16s (161 = 16) etc. To convert decimal to hexadecimal (it is often 
abbreviated to just 'hex')  look at how many 16s there are in the number, and 
how many ones. 

Example 1.3 Convert the decimal number 59 into hexadecimal. There are 3 
16s in 59, leaving 59 - 4 8  = 11. So bit 1 is 3. 11 is B in hexadecimal, so bit 0 
is B. The number is therefore 3B. 

EXERCISE 1.3 Find the hexadecimal equivalent of 199. 

EXERCISE 1.4 Find the hexadecimal equivalent of 170. 

One of the useful things about hexadecimal, which you may have picked up 
from Exercise 1.4, is that it translates easily with binary. If  you break up a 
binary number into 4-bit groups (called nibbles, i.e. small bytes), these little 
groups can individually be translated into 1 hex digit. 

Example 1.4 Convert 01101001 into hex. Split the number into nibbles: 0110 
and 1001. It is easy to see 0110 translates as 4 + 2 = 6 and 1001 is 8 + 1 = 9. 
So the 8-bit number is 69 in hexadecimal. As you can see, this is much more 
straightforward than with decimal, which is why hexadecimal is more 
commonly used. 

EXERCISE 1.5 Convert 11100111 into a hexadecimal number. 

Adding in binary 
Binary addition behaves in exactly the same way as decimal addition. Examine 
each pair of bits. 

0 + 0 = 0 no carry 
1 + 0 = 1  no carry 
1 + 1 = 0 carry 1 

1 + 0 + 0 = 1 no carry 
1 + 1 + 0 = 0 carry 1 
1 + 1 + 1 = 1 carry 1 

Example 1.5 4 + 7 = 1 1  
1 
0100 
0111 
1011 = 11 in decimal 



6 Introduction 

EXERCISE 1.6 Find the result of 01011010 + 00001111 using binary addition. 

Negative numbers 
We have seen how positive decimal numbers translate into binary, but how do 
we translate negative numbers? We have to sacrifice a bit towards giving the 
number a sign, so for a 4-bit signed number, the range of values might b e - 7  to 
+8. There are various representations for negative numbers, including two 
complement. With this method, to make a positive number onto its negative 
equivalent, you invert all the bits and then add one: 

Example 1.6 0 1 1 1 = 7  
Invert all bits: 1000 
Add one: 1001 
1 0 0 1  = - 7  

Example 1.7 1 0 0 0  = 8 

Invert: 0111 
Add one: 1000 
1 0 0 0  = - 8  = + 8  FA/Li 

As you can see in Example 1.7, we cannot use -8 because it is indistinguishable 
from +8. This asymmetry is recognized as an unfortunate consequence of the 
two's complement method, but it has been accepted as the best given the short- 
comings of other methods of signing binary numbers. Let's test these negative 
numbers by looking at -2 + 7: 

Example 1.8 2 = 0010 therefore -2 = 1110 

1110 - - 2  
+0111 = 7  

0101 = 5  Which is what we would expect! 

EXERCISE 1.7 Find the 8-bit two's complement representation of-40,  and show 
that -40 + 50 gives the expected result. 

A result of this notation is that we can simply test the most significant bit (msb) 
to see whether a number is positive or negative. A 1 in the msb indicates a nega- 
tive number, and a 0 indicates positive. However, when dealing with the result 
of addition and subtraction with large positive or negative numbers, this can be 
misleading. 



Introduction 7 

Example 1.9 69 + 120 = ... 
1 
01000101 = + 69 
01111000 = + 120 
10111101 = + 189 o r - 6 7  

In other words, in the two's complement notation, we could interpret the result 
as having the msb 1 and therefore negative. There is therefore a test for 'two's 
complement overflow' which we can use to determine the real sign of the result. 
The 'two's complement overflow' occurs when: 

�9 both the msb's of the numbers being added are 0 and the msb of the result 
is 1 

�9 both the msb's of the numbers being added are 1 and the msb of the result 
is 0 

The real sign is therefore given by a combination of the 'two's complement 
overflow' result, and the state of the msb of the result: 

Two's complement 
overflow? 
No 0 
No 1 
Yes 0 
Yes 1 

MSB of result Sign 

Positive 
Negative 
Negative 
Positive 

As you can see from Example 1.10, there is a two's complement overflow, and 
the msb of the result is 1, and so the sign of the answer is positive (+ 189) as we 
would expect. You will be relieved to hear that much of this is handled auto- 
matically by the AVR. 

The one's complement is simply the result of inverting all the bits in a 
number. 

An 8-bit RISC Flash microcontroller? 

We call the AVR an 8-bit microcontroller. This means it deals with numbers 8 
bits long. The binary number 11111111 is the largest 8-bit number and equals 
255 in decimal and FF in hex (work it out!). With AVR programming, different 
notations are used to specify different numbering systems (the decimal number 
11111111 is very different from the binary number 11111111)! A binary 
number is shown like this: 0b00101000 (i.e. 0b...). Decimal is the default 
system, and the hexadecimal numbers are written with a 0x, or with a dollar 
sign, like this: 0x3A or $3A. Therefore: 
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0b00101011 is equivalent to 43 which is equivalent to 0x2B 

When dealing with the inputs and outputs of an AVR, binary is always used, 
with each input or output pin corresponding to a particular bit. A 1 corresponds 
to what is known as logic 1, meaning the pin of the AVR is at the supply voltage 
(e.g. +5 V). A 0 shows that the pin is at logic O, or 0 V. When used as inputs, 
the boundary between reading a logic 0 and a logic 1 is half of the supply 
voltage (e.g. +2.5 V). 

You will also hear the AVR called a RISC microcontroller. This means it is a 
Reduced Instruction Set Computer, i.e. has relatively few instructions. This 
makes life slightly harder for the programmer (you or me), but the chip itself is 
more simple and efficient. 

The AVR is sometimes called a Flash microcontroller. This refers to the fact 
that the program you write for it is stored in Flash memory -  memory which 
can be written to again and again. Therefore you can keep reprogramming the 
same AVR c h i p -  for hobbyists this means one chip can go a long way. 

Initial steps 

The process of developing a program consists of five basic steps: 

1. Select a particular AVR chip, and construct a program flowchart 
2. Write  program (using Notepad, AVR Studio, or some other suitable devel- 

opment software) 
3. Assemble program (changes what you've written into something an AVR 

will understand) 
4. Simulate or Emulate the program to see whether or not it works 
5. Program the AVR. This feeds what you've written into the actual AVR 

Let's look at some of these in more detail. 

Choosing your model 

As there are so many different AVRs to choose from, it is important you think 
carefully about which one is right for your application. The name of the AVR 
can tell you some information about what it has, e.g.: 

AT90S 1200 

I' 
SRAM memory 'size 0' = no SRAM 
CPU model No. 0 
EEPROM data memory 'size 2' = 64 bytes 
1 Kb of flash program memory 



Introduction 9 

Memory sizes: 

0 1 2 3 4 5 6 7 8 9 A B 
0 32 64 128 256 512 1K 2K 4K 8K 16K 32K 

bytes bytes bytes bytes bytes 

The meaning of these terms may not be familiar, but they will be covered 
shortly. The Tiny and Mega family have slightly different systems. You can get 
a decent overview of some of the AVRs and their properties by checking out 
Appendix A. 

EXERCISE 1.8 Deduce the memory properties of the AT90S8515. 

One of the most important features of the AVR, which unfortunately is not 
encoded in the model name, is the number of input and output pins. The 1200 
has 15 input/output pins (i.e. they have 15 pins which can be used as inputs or 
outputs), and the 8515 has up to 32! 

Example 1.10 The brief is to design a device to count the number of times a 
push button is pressed and display the value on a single seven segment display 

- when the value reaches nine it resets. 

1. The seven segment display requires seven outputs 
2. The push button requires one input 

This project would therefore need a total of eight input/output pins. In this case 
a 1200 would be used as it is one of the simplest models and has enough pins. 

A useful trick when dealing with a large number of inputs and outputs is 
called strobing. It is especially handy when using more than one seven segment 
display, or when having to test many buttons. An example demonstrates it best. 

Example 1.11 The brief is to design a counter which will add a number 
between 1 and 9 to the current two-digit value. There are therefore nine push 
buttons and two seven segment displays. 

It would first appear that quite a few inputs and outputs are necessary: 

1. The two seven segment displays require seven outputs each, thus a total 
of 14 

2. The push buttons require one input each. Creating a total of nine 

The overall total is therefore 23 input/output pins, which would require a large 
AVR such as the 8515 (which has 32 I/O pins); however, it would be unneces- 
sary to use such a large one as this value can be cut significantly. 

By strobing the buttons, they can all be read using only six pins, and the two 
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seven segment displays can be controlled by only nine. This creates a total of 15 
input/output (or I/O) pins, which would just fit on the 1200. Figure 1.2 shows 
how it is done. 

By making the pin labelled PB0 logic 1 (+5 V) and PB 1, PB2 logic 0 (0 V), 
switches 1, 4 and 7 are enabled. They can then be tested individually by exam- 
ining pins PB3 to PB5. Thus by making PB0 to PB2 logic 1 one by one, all the 
buttons can be examined individually. In order to work out how many I/O pins 
you will need for an array of X buttons, find the pair of factors of X which have 
the smallest sum (e.g. for 24, 6 and 4 are the factors with the smallest sum, 
hence 6 + 4 = 10 I/O pins will be needed). It is better to make the smaller of the 
two numbers (if indeed they are not the same) the number of outputs, and the 
larger the number of inputs. This way the program takes less time to scroll 
through all of the rows of buttons. 

Strobing seven segment displays basically involves displaying a number on 
one display for a short while, and then turning that display off while you display 
another number on another display. PD0 to PD6 contain the seven segment code 
for both displays, and by making PB6 or PB7 logic 1, you can turn the indi- 
vidual displays on. So the displays are in fact flashing on and off at high speed, 
giving the impression that they are constantly on. The programming require- 
ments of such an arrangement will be examined at a later stage. 

EXERCISE 1.9 With the help of Appendix A, work out which model AVR you 
would use for a four-digit calculator with buttons for digits 0-9 and five oper- 
ations: + , - ,  x, + and = .  

Flowchart 

After you have worked out how many I/O pins you will need, and thus selected 
a particular AVR, the next step is to create a program flowchart. This basically 
forms the backbone of a program, and it is much easier to write a program from 
a flowchart than from scratch. 

A flowchart should show the fundamental steps that the AVR must perform 
and a clear program structure. Picture your program as a hedge maze. The flow- 
chart is a rough map showing key regions of the maze. When planning your 
flowchart you must note that the maze cannot lead off a cliff (i.e. the program 
cannot simply end), or the AVR will run over the edge and crash. Instead the 
AVR is doomed to navigate the maze indefinitely (although you can send it to 
sleep!). A simple example of a flowchart is shown in Figure 1.3. 

Example 1.12 
being pressed. 

The flowchart for a program to turn an LED on if a button is 

(The Set-up box represents some steps which must be taken as part of the start 
of every program, in order to set up various functions - this will be examined 
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Figure 1.3 

Set-up 1 
J 

NO 

Turn on LED 

I.,A 
Turn off LED 

later.) Rectangles with rounded corners should be used for start and finish 
boxes, and diamond-shaped ones for decisions. Conditional jumps (the 
diamond shaped boxes) indicate ' i f  something happens, then jump somewhere'. 

The amount of code any particular box will represent varies considerably, and 
is really not important. The idea is to get the key stages, and come up with a 
diagram that someone with no knowledge of programming would understand. 
You will find it much easier to write a program from a flowchart, as you can 
tackle each box separately, and not have to worry so much about the overall 
structure. 

EXERCISE 1.10 Challenge/Draw the flowchart for an alarm with three push 
buttons. Once the device is triggered by a pressure sensor, the three buttons 
must be pressed in the correct order, and within 10 seconds, or else the alarm 
will go off. If the buttons are pressed in time, the device returns to the state it 
was in before being triggered. If the wrong code is pressed the alarm is trig- 
gered. (The complexity of the answers will vary, but to give you an idea, my 
answer has 13 boxes.) 

Writing 
Once you have finished the flowchart, the next step is to load up a program 
template (such as the one suggested on page 19), and begin writing your 
program into it. This can be done on a basic text package such as Notepad 
(the one that comes with Microsoft Windows@), or a dedicated development 
environment such as AVR Studio. 
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Assembling 
When you have finished writing your program, it needs to be assembled before 
it can be transferred onto a chip. This converts the program you've written into 
a series of numbers which can be fed into the Flash Program Memory of the 
AVR. This series of numbers is called the hex code or hexf i le-  a hex file will 
have .hex after its name. The assembler will examine your program line by line 
and try to convert each line into the corresponding hex code. If, however, it fails 
to recognize something in one of the lines of your code, it will register an error  
for that line. An error is something which the assembler thinks is definitely 
w r o n g -  i.e. it can't understand it. It may also register a w a r n i n g -  something 
which is probably wrong, i.e. definitely unusual but not necessarily wrong. All 
this should be made much more clear when we actually assemble our first 
program. 

Registers 
One of the most important aspects to programming with AVRs and microcon- 
trollers in general are the registers. I like to think of the AVR as having a large 
filing cabinet with many drawers, each containing an 8-bit number (a byte). 
These drawers are registers - more specifically we call these the I/0 registers. 
In addition to these I/O registers, we have 32 'working' registers - these are 
different because they are not part of the filing cabinet. Think of the working 
registers as the filing assistants, and yourself as the boss. If you want something 
put in the filing cabinet, you give it to the filing assistant, and then tell them to 
put it in the cabinet. In the same way, the program writer cannot move a number 
directly into an I/O register. Instead you must move the number into a working 
register, and then copy the working register to the I/O register. You can also ask 
your filing assistants to do arithmetic etc. on the numbers they h o l d -  i.e. you 
can add numbers between working registers. Figure 1.4 shows the registers on 
the 1200. 

As you can see, each register is assigned a number. The working registers are 
assigned numbers R0, R 1 , . . . ,  R31. Notice, however, that R30 and R31 are 
slightly different. They represent a double register called Z -  an extra long 
register that can hold a 16-bit number (called a word). These are two filing 
assistants that can be tied together. They can be referred to independently- ZL 
and ZH - but can be fundamentally linked in that ZL (Z Lower) holds bits 0-7 
of the 16-bit number, and ZH (Z Higher) holds bits 8-15. 

Example 1.13 

ZH ZL --+ add one to ZL --+ ZH ZL 
00000000 11111111 00000001 00000000 
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Figure 1.4 

Example 1.14 

ZH ZL ~ add one t o Z L  ~ ZH ZL 
11111111 11111111 00000000 00000000 

Note that this linking only occurs with certain instructions. Assume that an 
instruction doesn't have the linking property unless explicitly stated. 
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You will find it easier to give your working registers names (for the same 
reason you don't call your filing assistants by their staff numbers), and you will 
be able to do this. It is sensible to give them a name according to the meaning 
of the number they are holding. For example, if you were to use register R5 to 
store the number of minutes that have passed, you might want to call it some- 
thing like Minutes. You will be shown how to give names to your registers 
shortly, when we look at the program template. We will also see later that the 
working registers numbers R16-R31 are slightly more powerful than the 
others. 

The I/O registers are also assigned numbers (0-63 in decimal, or $0-$3F in 
hexadecimal). Each of these performs some specific function (e.g. count the 
passage of time, or control serial communications etc.) and we will go through 
the function of each one in due course. I will, however, highlight the functions 
of PORTB, PORTD, PINB and PIND. These I/O registers represent the por t s -  
the AVR's main link with the outside world. If you're wondering what happened 
to Ports A and C, it's not really very important. All four (A, B, C and D) appear 
on larger types of AVR (e.g. 8515); smaller AVRs (e.g. 1200) have only two. 
These two correspond to the two on larger AVRs that are called B and D, hence 
their names. 

Figure 1.5 shows the pin layout of the 1200. Notice the pins labelled PB0, 
PB 1 , . . . ,  PB7. These are the Port B pins. Pins PD0-PD6 are the Port D pins. 
They can be read as inputs, or controlled as outputs. If behaving as an input, 
reading the binary number in PINB or PIND tells us the states of the pin, with 
PB0 corresponding to bit 0 in PINB etc. If the pin is high, the corresponding bit 
is 1, and vice versa. Note that Port D doesn't have the full 8 bits. 

RESET r-- 

PDO F-  

PD1 F- 

XTAL2 F-  

XTAL1 ["- 

(INTO) PD2 [--" 

PD3 F'- 

(TO) PD4 F- 

PD5 

GND r -  

\_J 
1 20 

2 19 

3 18 

4 17 

5 16 

6 15 

7 14 

8 13 

9 12 

10 11 

'7  vcc  

-7 PB7 (SCK) 

--~ PB6 (MISO) 

'"]  PB5 (MOSI) 

- ' ] PB4 

--] PB3 

-�86 PB2 

-"] PB1 (AIN1) 

-7 PB0 (AINO) 

--'] PD6 

Figure 1.5 
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Example 1.15 All of PB0-PB7 are inputs. They are connected to push buttons 
which are in turn connected to the +5 V supply rail. When all the buttons are 
pressed, the number in PINB is 0bl 1111111 or 255 in decimal. When all 
buttons except PB7 are pressed, the number in PINB is 0b01111111 or 127 in 
decimal. 

In a similar way, if the pin is an output its state is controlled by the corre- 
sponding bit in the PORTx register. The pins can sink or source 20 mA, and so 
are capable of driving LEDs directly. 

Example 1.16 All of PB0-PB7 are outputs connected to LEDs. The other legs 
of the LEDs are connected to ground (via resistors). To turn on all of the LEDs, 
the number 0bl 1111111 is moved into PORTB. To turn off the middle two 
LEDs, the number 0b 11100111 is moved into PORTB. 

EXERCISE 1.11 Consider the example given above where all of PB0-PB7 are 
connected to LEDs. We wish to create a chase of the eight LEDs (as shown in 
Figure 1.6), and plan to move a series of numbers into PORTB one after the 
other to create this effect. What will these numbers be (in binary, decimal and 
hexadecimal)? 

Figure 1.6 

EXERCISE 1.12 PD0, PD 1 and PD2 are connected to push buttons which are in 
turn connected to the +5 V supply rail. These push buttons are used in a 
controller for a quiz show. What numbers in PIND indicate that more than one 
button is being pressed at one time (in binary, decimal and hexadecimal)? 
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Instructions 

We will now begin looking at some instructions. These are summarized in 
Appendix C at the back of the book. AVRs generally have about a hundred 
different instructions supported on them. This may sound quite daunting at first, 
but you will be relieved to hear that there is a fair amount of repetition. In fact 
there are only really about 40 that you really need to remember, and many are 
quite easy to remember with familiar sounding names like add or jmp. 
Fortunately, there a few general rules to help you decipher an unknown instruc- 
tion. First, whenever you come across the letter i in an instruction, it will often 
stand for immediate, i.e. the number which immediately follows the instruction 
or I/O register. A b will often stand for bit or branch (i.e. jump to a part of the 
program). Let's take a look at the format of an instruction line. 

Example 1.17 

(Label:) sbi portb, 0 ; turns on LED 

The optional first part of the line is the label. This allows another part of the 
program to jump to this line. Note that a label cannot start with a number, and 
should not be given the same name as an instruction, or a file register (as this 
will confuse the AVR greatly!). The label is always immediately followed by a 
colon (this is easy to leave off and can be a common source of errors if you 
aren't careful). Note that the label doesn't actually have to be on the same line 
as the instruction it's labelling. For example, the following is just as valid: 

Label: 
sbi portb, 0 ; turns on LED 

After the label comes the actual instruction: sbi, i.e. what you are doing, and 
then comes what you are doing it to: portb ,  0 (these are called the operands). 
Lastly, and just as important, is a semicolon followed by a comment on what 
the line is actually doing in your own words. It is worth noting that you can 
write whatever you want in an AVR program as long as it comes after a semi- 
colon. Otherwise the assembler will try to translate what you've written (e.g. 
'turns on LED')  and obviously fail and register an ERROR. As the assembler 
scans the program line by line, it skips to the next line when it encounters a 
semicolon. 

I must stress how important it is to explain every line you write, as shown 
above. There are a number of reasons for this. First, what you've written may 
make sense to you as you write it, but after a few coffee breaks, or a week later, 
or a month later, you'll be looking at the line and wondering what on earth you 
were intending to do. Second, you may well be showing your program to other 
people for advice. I am sent programs that, with alarming regularity, contain 
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very few or in some cases no comments at all. There is not much one can do in 
this situation, as it is almost impossible to deduce the intended operation of the 
program by looking at the bare code. Writing good comments is not necessarily 
e a s y -  they should be very clear, but not too long. It is particularly worth 
avoiding falling into the habit of just copying out the meaning of the line. 

Example 1.18 

sbi PortB, 0 ; sets bit 0 of register PortB 

A comment like the one above means very little at all, as it doesn't tell you why 
you're setting bit 0 of register PortB, which after all is what the comment is 
really about. If you want to get an overview of all the instructions offered, have 
a good look at Appendix C and you can get a feel of how the different instruc- 
tions are arranged. They will be introduced one by one through the example 
projects which follow. 

Program template 
Most programs will have a certain overall structure, and there are certain 
common elements needed for all programs to work. To make life easier, there- 
fore, we can put together a program template, save it, and then load it every time 
we want to start writing a program. A template that I like to use is shown in 
Figure 1.7. 

The box made up of asterisks at the top of the template is the program header 
(the asterisks are there purely for decorative purposes). Filling these in makes it 
easier to find out what the program is without having to scroll down and read 
the code and it helps you ensure that you are working on the most up-to-date 
version of your program. Note that the contents of the box have no bearing on 
the actual functioning of your program, as all the lines are preceded by semi- 
colons. The 'clock frequency:' line refers to the frequency of the oscillator (e.g. 
crystal) that you have connected to the chip. The AVR needs a steady signal to 
tell it when to move on to the next instruction, and so executes an instruction 
for every oscillation (or clock cycle). Therefore, if you have connected a 4 MHz 
crystal to the chip, it should execute about 4 million instructions per second. 
Note that I say about 4 million, because some instructions (typically the ones 
which involve jumping around in the program) take two clock cycles. 'for 
AVR:' refers to which particular AVR the program is written for. You will also 
need to specify this further down. 

Now we get to the lines which actually do something..device is a directive 
(an instruction to the assembler) which tells the assembler which device you are 
using. For example, if you were writing this for the 1200 chip, the complete line 
would be: 



Introduction 19 

. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

�9 writ ten by: * 
; date: * 
; version" * 
; file saved as: * 
; for AVR: * 
; clock frequency: * 
. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

; P rogram Function: 

.device 

.nolist 

.include 

.list 

XXXXXXXX 

"C AProgram FilesL~tmelkAVR StudiokAppnotesL~xxxxx.inc" 

; Declarations: 

.def temp =r16 

; Start  of P rogram 

r jmp Init ; first line executed 

Init: ldi temp, 0bxxxxxxxx ; Sets up inputs and outputs on PortB 
out DDRB, temp ; 
ldi temp, 0bxxxxxxxx ; Sets up inputs and outputs on PortD 
out DDRD, temp ; 

ldi temp, 0bxxxxxxxx 
out PortB, temp 
ldi temp, 0bxxxxxxxx 
out PortD, temp 

; Sets pulls ups for inputs of PortB 
; and the initial states for the outputs 
; Sets pulls ups for inputs of PortD 
; and the initial states for the outputs 

; Main body of program:  
Start: 

<write your program here> 
r jmp Start  ; loops back to Start  

Figure 1.7 
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.device at90sl200 

Another important directive is .include, which enables the assembler to load 
what is known as a look-up file. This is like a translator dictionary for the 
assembler. The assembler will understand most of the terms you write, but it 
may need to look up the translations of others. For example, all the names of the 
input/output registers and their addresses are stored in the look-up file, so 
instead of referring to $3F, you can refer to SREG. When you install the assem- 
bler on your computer, it should come with these files and put them in a direc- 
tory. I have included the path that appears on my own computer but yours may 
well be different. Again, if the 1200 was being used, the complete line would 
be: 

.include "C:\Program Files\AtmelL~VR Studio\Appnotes\1200def.inc" 

Finally I'll say a little about .nolist and .list. As the assembler reads your code, 
it can produce what is known as a list file, which includes a copy of your 
program complete with the assembler's comments on it. By and large, you do 
not want this list file also to include the lengthy look-up file. You therefore write 
.nolist before the .include directive, which tells the assembler to stop copying 
things to the list file, and then you write .list after the .include line to tell the 
assembler to resume copying things to the list file. In summary, therefore, the 
.nolist and .list lines don't actually change the working of the program, but they 
will make your list file tidier. We will see more about list files when we begin 
our first program. 

After the general headings, there is a space to specify some declarations. 
These are your own additions to the assembler's translator d ic t ionary-  your 
opportunities to give more useful names to the registers you will be using. For 
example, I always use a working register called temp for menial tasks, and I've 
assigned this name to R16. You can define the names of the working registers 
using the .def directive, as shown in the template. Another type of declaration 
that can be used to generally give a numerical value to a word is .equ. This can 
be used to give your own names to I/O registers. For example, I might have 
connected a seven segment display to all of Port B, and decided that I wish to 
be able to write DisplayPort when referring to PortB. PortB is I/O register 
number 0xl 8, so I might write DisplayPort in the program and the assembler 
will interpret it as PortB: 

.equ 

.equ 
DisplayPort = PortB 
DisplayPort = 0x18 

o r  

Another example of where this might be useful is where a particular number is 
used at different points in the program, and you might be experimenting and 
changing this number. You could use the .equ directive to give a name to this 
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number, and simply refer to the name in the rest of the program. When you then 
go to change the number, you need only change the value in the .equ line, and 
not in all the instances of the use of the number all over the program. For the 
moment, however, we will not be using the .equ directive. 

After the declarations, we have the first line executed by the chip on power- 
up or reset. In this line I suggest jumping to a section called Init which sets up 
all the initial settings of the AVR. This uses the r jmp instruction: 

rjmp Init 

This stands for relative jump. In other words it makes the chip jump to a section 
of the program which you have labelled Init. The reason why it is a relative 
jump is in the way the assembler interprets the instruction, and so is not really 
important to understand. Say, for example, that the Init section itself was 40 
instructions further on from the r jmp Init line, the assembler would inter- 
pret the line as saying 'jump forward 40 instructions'-  i.e. a jump relative to 
the original instruction. Basically it is far easier to think of it as simply jumping 
to Init. 

The first part of the Init section sets which pins are going to act as inputs, 
and which as outputs. This is done using the Data Direction I/O registers: 
DDRB and DDRD. Each bit in these registers corresponds to a pin on the chip. 
For example, bit 4 of DDRB corresponds to pin PB4, and bit 2 of DDRD corre- 
sponds to pin PD2. Now, setting the relative DDRx bit high makes the pin an 
output, and making the bit low makes the pin an input. 

If we configure a pin as an input, we then have the option of selecting 
whether the input has a built-in pull-up resistor or not. This may save us the 
trouble of having to include an external resistor. In order to enable the pull-ups 
make the relevant bit in PORTx high; however, if you do not want them make 
sure you disable them by making the relevant bit in PORTx low. For the outputs, 
we want to begin with the outputs in some sort of start state (e.g. all off), and 
so for the output pins, make the relevant bits in PORTx high or low depending 
on how you wish them to start. An example should clear things up. 

Example 1.19 Using a 1200 chip, pins PB0, PB4 and PB7 are connected to 
push buttons. We would like pull-ups on PB4 and PB7 only. Pins PD0 to PD6 
are connected to a seven segment display, and all other pins are not connected. 
All outputs should initially be off. What numbers should be written to DDRB, 
DDRD, PortB, and PortD to correctly specify the actions of the AVR's pins? 

First, look at inputs and outputs. PB0, 4 and 7 are inputs, the rest are not 
connected (hence set as outputs). The number for DDRB is therefore 
0b01101110. For Port D, all pins are outputs or not connected, hence the 
number for DDRD is 0 b l l l l l l l .  

To enable pull-ups for PB4 and PB7, make PortB, 4 and PortB, 7 high, all 
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other outputs are initially low, so the number for PortB is 0bl0010000. All the 
outputs are low for Port D, so the number for PortD is 0b00000000. 

We can't move these numbers directly into the I/O registers, but instead we 
have first to move them into a working register (such as temp), and then output 
the working register to the I/O register. There are a number of ways we can do 
this: 

ldi register, number ; 

This loads the immediate number into a register, but it is very important to note 
that this instruction cannot be used on all working registers - only on those 
between R16 and R31 (we can therefore still use it on temp, as that is R16). We 
can also use a couple of alternatives to this instruction if the number we wish to 
move into the register happens to be 0 or 255/OxFF/Ob 11111111: 

clr register 

This clears the contents of a register (moves 0 into it) - note an advantage of 
this over ldi is that it can operate on all working registers. Finally, 

ser register 

This sets the contents of a register (moves 255/0xFF/0b 1111111 into it), though 
like ldi, it only works on registers between R16 and R31. 

We then need to move temp into the I/O register, using the following instruc- 
tion: 

out ioreg, reg 

This moves a number out from a register, into an I/O register. Make sure you 
note the order of the operands in the ins t ruct ion-  I/O register first, working 
register second, it is easy to get them the wrong way round! We can therefore 
see that the eight lines of the Init section move numbers into DDRB, DDRD, 
PortB and PortD via temp. 

EXERCISE 1.13 Using a 1200 chip, pin PB0 is connected to a pressure sensor, 
and pins PB 1, PB2 and PB3 control red, yellow and green LEDs respectively. 
PD0 to PD3 carry signals to an infrared transmitter, and PD4-PD6 carry signals 
from an infrared receiver. All other pins are not connected. All outputs should 
initially be off, and PB0 should have a pull-up enabled. Write the eight lines that 
will make up the Init section for this program. 

After finishing the Init section, the program moves on to the main body of the 
program labelled Start. This is where the bulk of the program will lie. Note that 
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the program ends with the line r jmp Start. It needn't necessarily loop back 
to Start,  but it does have to keep looping to something, so you may want to alter 
this last line accordingly. At the end of the program, you can write .exit to tell 
the assembler to stop assembling the file, but this isn't necessary as it will stop 
assembling anyway once it reaches the end of the file. 




