
3
Introducing the rest

of the family

So far, we have been looking at the most basic types of AVR, the 1200 and the
Tiny AVRs. I will now introduce some of the differences between these and
other AVRs, so that in the subsequent chapters they might appear more familiar.
Other models may benefit from extra memory called RAM. The allocation of
memory differs in different models, but follows the arrangement shown in
Figure 3.1.

Figure 3.1

The first 32 addresses are the working registers and the next 64 are the I/O
registers. So the key difference between those with RAM and those without is
the presence of further memory spaces from $60 onwards. These can be
accessed using the ld and st commands already introduced, and with other
instructions now available on these more advanced models. A significant

92 Introducing the rest of the family

change to the working registers is the introduction of two more 2-byte register
pairs. In addition to Z (made up of R30 and R31), there is now Y (made up of
R28 and R29), and X (made up of R26 and R27). They can be used in any
instruction that takes a Z (e.g. ld, st, lpm etc.).

Whilst there was a dedicated three-level stack on the 1200 and Tiny AVRs,
the other models require that you tell them where in the RAM you want your
stack to be. This means it is potentially as deep as the RAM address space,
though obviously you may be wishing to give some of the RAM addresses a
more glamorous purpose. What we will do is make the last address of RAM the
top of the stack. In this way we have what looks like an upside-down stack, as
shown in Figure 3.2, which works in exactly the same way as any other stack.

Figure 3.2

The I/O registers SPL and SPH are the stack pointer registers (lower and
higher bytes), and so we move into these the last address of the RAM. This is
helpfully stored for us in the include file we read at the top of each program as
RAMEND. We therefore load the lower byte of RAMEND into SPL and the
upper byte into SPH, and thus point the stack to the end of the RAM. The
instructions are:

ldi
out
ldi
out

temp, LOW(RAMEND) ; stack pointer points to
SPL, temp ; last RAM address
temp, HIGH(RAMEND) ;
SPH, temp ;

This must take place in the Init section, before any subroutines are called. For

Introducing the rest of the family 93

devices with only 128 bytes of RAM, RAMEND is only 1 byte long, so the last
two lines given above should be omitted.

Another major difference seen in the other models is a greater set of instruc-
tions. First, you are given greater flexibility with the ld and st instructions. You
can make the 'long' registers X, Y or Z being used as an address pointer auto-
matically increment or decrement with each load/store operation:

ld reg, longreg+

This loads the memory location pointed to by a double register (i.e. X, Y or Z)
into reg, and then adds one to longreg.

ld reg, -longreg

This subtracts one from the double register (X, Y or Z), and then loads the
memory location pointed to by that double register into reg. There are analo-
gous instructions for st.

We can use this to shorten our multiple register clearing routine. In this case
I have chosen to use X and the indirect address pointer, so this routine clears
registers up to R25.

clr XL ; clears XL
clr XH ; clears XH

ClearLoop: st XH, X+ ; clears indirect address and increments X
cpi XL, 26 ; compares XL with 26
brne ClearLoop ; branches to ClearLoop i f Z L = 26

Other enhancements to load/store operations include:

ldd reg, longreg+number

This loads the memory location pointed to by the Y or Z registers into reg, and
then adds a number (0-63) to Y or Z. (Note: doesn't work with X.) There is an
equivalent instruction for storing, std, which works in the same way. There is
also a way to directly address memory in the RAM:

lds reg, number

This loads the contents of memory at the address given by number into reg.
The number can be between 0 and 65 535 (i.e. up to 64K). Similarly, sts stores
the number in a register into a directly specified address.

Indirect jumps and calls are particularly useful and are specified by the
number in the Z register:

icall
ijmp

; calls the address indirectly specified in Z
; jumps to the address indirectly specified in Z

94 Introducing the rest of the family

Example 3.1 We have a program that has to perform one of five different
functions, depending on the number in a register called Function. By adding
Function to the current value of the program counter, and jumping to that
address, we can make the program branch out to different sections:

clr ZH
ldi ZL, JumpTable
add ZL, Function
ijmp

JumpTable: rjmp Addition
rjmp Subtraction
rjmp Multiplication
rjmp Division
rjmp Power

; makes sure higher byte is clear
; points Z to top of table
; adds Function to Z
; indirectly jumps
; jumps to Addition section
; jumps to Subtraction section
; jumps to Multiplication section
; jumps to Division section
; jumps to Power section

Notice that JumpTable is loaded into Z, this is translated by the assembler as
the program memory address of the line it is labelling. We do this to initialize
Z to point to the top of the branching table (rjmp Addition). Note that
loading JumpTable is equivalent to loading PC+3. The number in Function is
then added to Z, so that the number in Function (between 0 and 4) will make
the program jump to one of the five sections.

You will no doubt remember the number of additions and subtractions we had
to do to 2-byte numbers in the frequency counter project. Here are two new
instructions that may help:

adiw longreg, number
sbiw longreg, number

These add or subtract a number between 0 and 63 to/from one of the 16-bit
registers (X, Y or Z). The 'w' stands for word (16 bits). If there is an overflow
or carry this is automatically transferred onto the higher byte. Hence:

subi XL, 50
sbiw XL, 50

sbci XH, 0 �9

The two remaining instructions that are added to the repertoire of the more
advanced AVRs are:

push register
pop register

So far we have only been using the stack for the automatic storage of program
counter addresses when calling subroutines. Using these instructions, you can
push or pop the number in any working register on to or off of the stack.

Introducing the rest of the family 95

Example 3.2 We can use the push and pop instructions to create apalindrome
detector. A palindrome is essentially a symmetric sequence (like 'radar',
'dennis sinned' and 'evil olive'). We can massively simplify this problem by
also requiring that we are given the length of the input sequence. We can use the
length to find the middle of the input. We can also assume that the input is fed
(as an ASCII character) into a register called Input. ASCII is a way to translate
letters and symbols into a byte, so each letter corresponds to a particular byte-
long number. So effectively we are looking for the sequence of bytes fed into
Input to be palindromic (symmetric). We start by pushing the number in Input
on to the stack. We do this for every new input until we reach the half-way point.
We then start popping the stack and comparing it with the input. As long as each
new input continues to be the same as the popped number, the sequence is
potentially palindromic. If the new input fails to be the same as the popped
number, we reject the input sequence. PinD, bit 0 will pulse high for
1 microsecond to indicate a new input symbol (we need this because we cannot
just wait for the input symbol to change, as this would not respond to repeated
letters).

First, we assume the length of the word is stored in Length. This has to be
divided by two to get the half-way point. We will have to make a note if the
length is odd or not. This is done by testing the carry flag; if it is high Length
was odd and we shall set the T bit.

Start: m o v

lsr
in
bst

HalfLength, Length ; divides Length by 2 to get
HalfLength ; HalfLength
temp, SREG ; copies Carry flag into T bit
temp, 0 ; i.e. sets T-bit if Length is odd

Assuming the first input byte is in Input, we push it on to the stack and then
wait for the pulse on PinD, bit 0. The pulse lasts 1 microsecond, so assuming a
4 MHz clock it must be tested at least once every four cycles. In the segment
below, it is tested once every three cycles.

FirstHalf:
Pulse:

push Input ; pushes Input onto stack
sbis PinD, 0 ; tests for pulse
rjmp Pulse ; keeps looping

When a pulse is received (i.e. a new input symbol is ready), the program incre-
ments Counter which is keeping track of the input number. It compares this
number with HalfLength and loops back as long as Counter is less than
HalfLength.

inc Counter
cp Counter, HalfLength
brlo FirstHalf

; counts the input number
; compares with half-way value
; loops back to start and skips one

96 Introducing the rest of the family

When Counter equals HalfLength we check the T bit to see if the length of the
input is odd or even. If it is odd, we need to ignore the middle letter, so we reset
the T bit and loop back to Pulse which will wait until the next input is ready. If
the length is even we can skip on to test the second half of the input.

brtc SecondHalf ; test T bit
clt ; clears T bit
rjmp Pulse

We have now passed the half-way point in the sequence and now the new input
symbols must match the previous ones. The top of stack is popped and
compared with the current input. If they are not equal the sequence is rejected.

SecondHalf: pop Input2
cp Input, Input2
brne Reject

; pops stack into Input2
; compares Input and Input2
; if different reject sequence

As before, we then increment Counter and test to see if Counter equals
Length. If it does, the testing is over and we can accept the input. If we haven't
yet reached the end the program then waits for the input to change, and then
loops back to SecondHalf.

inc
cp
breq

Counter ; counts the input number
Counter, Length ; compares with total length
Accept ; end of sequence so accept

Pulse2: sbis PinD, 0 ; waits for pulse
rjmp Pulse2
rjmp SecondHalf ; loops back when new input is

; ready

You might want to play around with this on the simulator, but don't forget to set
up the top of the stack as described at the start of the chapter. You may also want
to think about how to remove the need to be given the length of the input
sequence. If you want to find out more about this, you may want to find a book
on Formal Languages and Parsing.

