DIGITAL LOGIC AND DESIGN LAB

PROJECT:1

(Section: B5)

Submitted to:

Sir Umair

Submitted by:

Zain

L1S23BSCS0247

Qaraib

L1S23BSCS0248

Zarmeen Fatima L1S23BSCS0139

Date of submission:

JAN.23,2024

gates are the electronic circuits in a digital system. or multiple binary inputs and give one binary output. In simple terms, logic Logic gates: Logic gates are used to carry out logical operations on single

Types of Logic Gates:

systems. The common ones are There are several basic logic gates used in performing operations in digital

- OR Gate
- AND Gate
- NOT Gate
- XOR Gate

Additionally, these gates can also be found in a combination of one or two. **EXNOR Gate** Therefore, we get other gates, such as NAND Gate, NOR Gate, EXOR Gate and

OR Gate:

Working:

output is LOW (0) only when all inputs are LOW The OR gate produces a HIGH output (1) if any of its inputs are HIGH (1). The

Boolean Expression:

$$Y = A + B$$

Truth Table:

A	В	Y
0	0	0
0	1	1
	0	1
I	1	1

VERIFICATION

Nor Gate:

This gate is the combination of OR and NOT gates.

Boolean expression:

$$Y = \overline{A + B}$$

Truth Table:

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

VERIFICATION

Working:

The NOR gate is the inverse of the OR gate. It produces a HIGH output (1) only when all of its inputs are LOW (0). Otherwise, it produces a LOW output (0).

AND GATE:

Boolean Expression:

Y = A.B

Truth Table:

A	В	Y
0	0	0
0	1	0
ĺ	0	0
1	1	1

VERIFICATION

Working:

The AND gate produces a HIGH output (1) only when all of its inputs are HIGH (1). If any input is LOW (0), the output is LOW (0).

NAND GATE:

This basic logic gate is the combination of AND and NOT gates.

Boolean Expression:

$$Y = \overline{A.B}$$

Truth Table:

Α .	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

VERIFICATION

Working:

The NAND gate is the inverse of the AND gate. It produces a LOW output (0) only when all of its inputs are HIGH (1). Otherwise, it produces a HIGH output (1).

NOT GATE:

Boolean Expression:

$$Y = \bar{A}$$

Truth Table:

A	Y
0	1
1	0

VERIFICATION

Working:

The NOT gate has a single input and inverts its value. It produces a HIGH output (1) when the input is LOW (0) and vice versa.

Buffer GATE:

Truth Table:

Input	Output
0	0
1	1

VERIFICATION

Working:

A buffer gate has a single input and a single output.

- It simply duplicates the input signal to the output without any change.
- Its main purpose is to isolate or strengthen a signal.

Exclusive-OR gate (XOR Gate):

Boolean Expression:

$$A. \bar{B} + \bar{A}. B$$

or

$$Y = A \bigoplus B$$

Truth Table:

A	В	Y
0	0	0
	1	1
0		1
1	0	
1	1	0

VERIFICATION

Working:

The XOR gate produces a HIGH output (1) when its inputs are different. It produces a LOW output (0) when its inputs are the same.

Exclusive-NOR Gate (XNOR Gate):

Boolean Expression:

$$Y = (\overline{A \oplus B}) = (A.B + \overline{A}.\overline{B})$$

Truth Table:

A	В	Y
0	0	1
0		O
1	0	O
1	1	

VERIFICATION

Working:

The XNOR gate is the inverse of the XOR gate. It produces a HIGH output (1) when its inputs are the same. It produces a LOW output (0) when its inputs are different.

Application of Logic Gates:

Logic gates have a lot of applications, but they are mainly based on their mode of operations or their truth table. Basic logic gates are often found in circuits such as safety thermostats, push-button locks, automatic watering systems, light-activated burglar alarms and many other electronic devices.

IC DIAGRAMS

AND GATE

NOR GATE

XOR GATE

NOT GATE

