
2
Basic operations with

AT90S1200 and TINY12

The best way to learn is through example and by doing things yourself. For the
rest of the book we will cover example projects, many of which will be largely
written by you. For this to work most effectively, it helps if you actually try these
programs, writing them out as you go along in Notepad, or whatever develop-
ment environment you're using. If you don't have any special AVR software at
the moment, you can still write the programs out in Notepad and test them later.

First of all, copy out the program template covered in the previous chapter,
adjusting it as you see fit, and save it as template.asm. If you are using
Notepad, make sure you select File Type as Any File. The .asm file extension
refers to assembly source, i.e. that which will be assembled.

Program A: LEDon

�9 Controlling outputs

Our first few programs will use the 1200 chip. Load up the template, Save As
to keep the original template unchanged, and call the file ledon.asm. Make the
appropriate adjustments to the headers etc. relevant to the 1200 chip (header,
.device, and .include). This first program is simply going to turn on an LED
(and keep it on). The first step is to assign inputs and outputs. For this project
we will need only one output, and will connect it to RB0. The second step in the
design is the flowchart. This is shown in Figure 2.1. From this we can now write
our program. The first box (Set-up) is performed in the Init routine. You should
be able to complete this section yourself (remember, if a pin is not connected,
make it an output).

I Set-up]

F
Turn on LED

Figure 2.1

Basic operations with AT90S1200 and TINY12 25

The second box involves turning on the LED, which means making RB0
high, which means setting bit 0 on PORTB to 1. To do this we could move a
number into telnp, and then move that number into PortB; however, there is a
shortcut. We can use the following instruction:

sbi ioreg, bit ;

This sets a bit in an I/O register. Although you cannot move a number directly
into an I/O register, you can set and clear the bits in some of them individually.
You cannot set and clear individual bits in I/O registers 32-63 ($20-$3F in
hex). Fortunately, PortB ($18) and indeed all the PORTx and PINx registers can
be controlled in this fashion. The equivalent instruction for clearing the bit is:

cbi ioreg, bit ;

This clears a bit in an I/O register, though remember this only works for I/O
registers 0-31. For our particular application, we will want to set PortB, 0 and
so will use the following instruction at the point labelled Start:

Start: sbi PortB, 0 ; turns on the LED

The next line is:

rjmp Start ; loops back to Start

This means the chip will be in an indefinite loop, turning on the LED. The
program is now ready to be assembled. You can check that you've done every-
thing right by looking at the complete program in Appendix J under Program A.
All subsequent programs will be printed in the back in the same way. We will
now assemble the program, but if you do not have the relevant software just read
through the next section. You can download AVR Studio from Atmel's website
(www.atmel.com) for free (last time I checked). This assembles, simulates and
(with the right hardware) allows you to program the AVR chip.

AVR Studio-assembling

First of all load AVR Studio. Select Project ~ New Project and give it a name
(e.g. LEDon), pick a suitable location, and choose AVR Assembler in the
bottom box. In your project you can have assembly files, and other files. The
program you have just written is an assembly file (.asm) and so you will have
to add it to the project. Right click on Assembly Files in the Project Window
and choose Add File. Find your original saved LEDon.asm and select it. You
should now see your file in the Project Window. Now press F7 or go to Project
--> Assemble and your file will be assembled. Hopefully your file should

26 Basic operations with AT90S1200 and TINY12

assemble with no errors. If errors are produced, you will find it helpful to
examine the List File (*.lst). Load this up in Notepad, or some other text editor
and scan the document for errors. In this simple program, it is probably nothing
more than a spelling mistake. Correct any problems and then move on to
testing.

Testing

There are three main ways to test your program"

1. Simulating
2. Emulating
3. Programming an actual AVR and putting it in a circuit

The first of these, simulating, is entirely software based. A piece of software
pretends it's an AVR and shows you how it thinks the program would run,
showing you how the registers are changing etc. You can also pretend to give it
inputs by manually changing the numbers in PINB etc. You can get a good idea
of whether or not the key concepts behind your program will work with this
kind of testing, but other real-word factors such as button-bounce cannot be
tested. Atmel's AVR Simulator comes with AVR Studio.

AVR Studio - s imulat ing

We will now have a go at simulating the LEDon program. After you assemble
your .asm file, double click on it in the Project Window to open it. Some of the
buttons at the top of the screen should now become active. There are three key
buttons involved in stepping through your program. The most useful one of
these, ~ i , is called Trace Into or Step Into. This runs the current line of your
program/Pressing this once will begin the simulation and should highlight the
first line of your program (rjlnp Init). You can use this button (or its
shortcut F l l) to step through your program. We will see the importance of the
other stepping buttons when we look at subroutines later on in the book. In
order for this simulation to tell us anything useful, we need to look at how the
I/O registers are changing (in particular bit 0 of PortB). This can be done by
going to View ~ New IO View. You can see that the I/O registers have been
grouped into categories. Expand the PortB category and this shows you the
PortB, DDRB and PinB registers. You can also view the working registers by
going to View ~ Registers. We will be watching R16 in particular, as this is
temp. Another useful shortcut is the reset button, ~ (Shift + Fh).

Continue stepping through your program. Notice how temp gets cleared to
00, PortB and PortD are also cleared to 00, then temp is loaded with 0xFF
(0bl 111111), which is then loaded in DDRB and DDRD. Then (crucially)
PortB, bit 0 is set, as shown by the tick in the appropriate box. You may notice

Basic operations with AT90S1200 and TINY12 27

how this will automatically set PinB, bit 0 as well. Remember the difference
between PortB and PinB - PortB is a register representing what you wish to
output through the port, and PinB represents the actual, physical state of those
pins. For example, you could try to make an input high when the pin is acci-
dentally shorted to ground- PortB would have that bit high whilst PinB would
show the bit low, as the pin was being pulled low.

Emulating

Emulating can be far more helpful in pinning down bugs, and gives you a much
more visual indication of the working of the program. This allows you to
connect a probe with an end that looks like an AVR chip to your computer. The
emulator software then makes the probe behave exactly like an AVR chip
running your program. Putting this probe into your circuit should give you the
same result as putting a real AVR in, the great difference being that you can step
through the program slowly, and see the inner workings (registers etc.)
changing. In this way you are testing the program and the circuit board, and the
way they work together. Unfortunately, emulators can be expensive - a sample
emulator is Atmel's ICE (In-Circuit Emulator).

If you don't have an emulator, or after you've finished emulating, you will
have to program a real AVR chip and put it in your circuit or testing board. One
of the great benefits of AVRs is the Flash memory which allows you to keep
reprogramming the same chip, so you can quite happily program your AVR, see
if it works, make some program adjustments, and then program it again with the
new, improved code.

For these latter two testing methods you obviously need some sort of circuit
or development board. If you are making your own circuit, you will need to
ensure certain pins on the chip are wired up correctly. We will now examine
how this is done.

Hardware

Figure 2.2 shows the 1200 chip. You will already be familiar with the PBx and
PDx pins; however, there are other pins with specific functions. VCC is the
positive supply pin, and in the case of the 1200 chip needs between 2.7 and
6.0 V. The allowed voltage range depends on the chip, but a value between 4 and
5 V is generally safe. GND is the ground (0 V) pin. There is also a Reset pin.
The bar over the top means that it is active low, in other words to make the AVR
reset you need to make this pin low (for at least 50 ns). Therefore, if we wanted
a reset button, we could use an arrangement similar to that shown in Figure 2.3.

The power supply to the circuit is likely to take a short time to stabilize once
first turned on, and crystal oscillators need a 'warm-up' time before they
assume regular oscillations, and so it is necessary to make the AVR wait a short
while after the power is turned on before running the program. Fortunately, this

28 Basic operations with AT90S1200 and TINY12

RESET E~

PD0 C

PD1 ['~

XTAL2 E

XTAL1 E

(INTO) PD2 r - -

PD3 F--

(TO) PD4 E

PD5 E

GND

k..._..J
1 20

2 19

3 18

4 17

5 16

6 15

7 14

8 13

9 12

10 11

- ' l VCC

' ~ PB7 (SCK)

" '] PB6 (MISO)

"-7 PB5 (MOSI)

PB4

PB3

"---'] PB2

" " l PB1 (AIN1)

�9 ~ PB0 (AIN0)

�9 " ~ PD6

Figure 2.2

, , , , , , , , , , ,

.... A 114- I"$-- PBIlAIN1 S XTAL2_
PB2 R ~ | ', ,
PB3 I - ,
PB4 PD0
PB5 PDI

I T PB6 PD2/INT0 I ' ~
PB7 PO3

Po4rro #---Z-
Q PD5

P[:)6 I , I I

9 ,,

R 2
lOOk

I

+5V

OV
, , , A

Figure 2.3

little delay is built into the AVR (lasting about 11 ms); however, if you have a
particularly bad power supply or oscillator, and want to extend the length of this
'groggy morning feeling' delay you can do so with a circuit such as that shown
in Figure 2.4. Increase the value of C 1 to increase the delay.

Basic operations with AT90S1200 and TINY12 29

12 "'PB0/AINO 8 XTAL1 ~

PB2 R ~] ,~. ,,
~ PI~3 2 lk
~ .~ PB4 PD0

PB5 PD1 ""6--
I 'E" PB6 PD2/ INT0 ""7" O I
- - - - PB7 PD3 T C1

PD4/T0 " E " O " - - l p F
o PD5 - - - - z 11

0
I - . 0~

+5V

2 D1
DIODE

Figure 2.4

Finally, pins XTAL1 and XTAL2, as their names suggest, are wired to a
crystal (or ceramic oscillator) which is going to provide the AVR with the
steady pulse it needs in order to know when to move on to the next instruction.
The faster the crystal, the faster the AVR will run through the program, though
there are maximum frequencies for different models. This maximum is gener-
ally between 4 and 8 MHz, though the 1200 we are using in this chapter can run
at speeds up to 12 MHz! Note that on some AVRs (in particular the Tiny AVRs
and the 1200), there is a built-in oscillator of 1 MHz, which means you don't
need a crystal. This internal oscillator is based on a resistor-capacitor arrange-
ment, and is therefore less accurate and more susceptible to temperature varia-
tions etc.; however, if timing accuracy isn't an issue, it is handy to free up space
on the circuit board and just use the internal oscillator. Figure 2.5 shows how
you would wire up a crystal (or ceramic oscillator) to the two XTAL pins.

+SV

12 PBo/AiNoo "
PB1/AIN1

_ ~ PB2
PB3

PB5
P ~

- - - - PB7

z

, ,, , L , ,

0

XTAL1 5 _ .-.a..,.--
XTAL2 4 , ,. r - - ! X1
RESET 1 T CRYSTAL

2 PDO ---$--
PD1

PD2/INTO
PO3

PD4[ro
PD5 .----- 11 PD6 -.---

: : C 1 : , C 2
22pF 22pF

0~
A

Figure 2.5

30 Basic operations with AT90S1200 and TINY12

If you would like to synchronize your AVR with another device, or already
have a clock line with high-speed oscillations on it, you may want to simply
feed the AVR with an external oscillator signal. To do this, connect the oscil-
lator signal to XTAL1, and leave XTAL2 unconnected. Figure 2.6 shows how
using an HC (high-speed CMOS) buffer you can synchronize two AVR chips.

1 2 U2
U 1

- - - - - . . - -
12 X T A L I ~ PB0/AINO

PB0/AIN0 ~ XTAL1 HC Buffer XTAL2 > PB1/AIN1
PBI/AIN1 > XTAL2 RESET PB2
PB2 RESET CRYSTAL PB3 - . ~
PB3 PDO PB4
PB4 PD0 -.-tr ~ PD1 PB5
PS5 PD1 - ~ P o ~ r r 0 pes
PB6 PD2/INT0 C 2 T " PD3 PeT - - - -
P.7 p~ - -T - 22pF-'V" 22pF T " po4,To

PD4/T0 / / - -.-.---, PD5 C) / /
~.T90S 1200 o o

A ~ 2 0 0

Figure 2.6

AVR Stud io - p r o g r a m m i n g

In order to test a programmed AVR, you will need a circuit board or develop-
ment board. The simplest solution is to make up the circuit boards as you need
them, but you may find it quicker to construct your own development board to
cover a number of the projects covered in this book. The required circuit
diagram for the LEDon program is shown in Figure 2.7.

D1
LED

R1
320R

12 PBO/AINO ~ XTAL1 5
PB1/AIN1 ~ XTAL2
PB2 RESET
PB3
PB4 PDO
PB5 PD1
PB6 PD2/INT0 ~

I PB7 pD~pDl~
r,i
z
(.0 PD6

A ~ 1 2 0 0 1 o
, , , , ,

22pF

. ~ . , .

C2
22pF

+5V

X1
CRYSTAL

OV
A

Figure 2.7

Basic operations with AT90S1200 and TINY12 31

If you have a development board, you may need to check how the LEDs are
wired up. We have been assuming the pins will source the LED's current (i.e.
turn the pin high to turn on the LED). If your circuit board is configured such
that the pin is sinking the LED's current, you will have to make changes to the
software. In this case, a 0 will turn on the LED and a 1 will turn off the LED.
Therefore, instead of starting with all of PortB set to 0 at the start of the Init
section, you will want to move 0bl 1111111 into PortB (to turn off all the
LEDs). You will also have to clear PortB, bit 0 rather than set it, in order to turn
on the LED. This can be done using the ebi instruction in place of sbi.

Also note that although the program has been written with the 1200 in mind,
by choosing the simplest model AVR we have made the program compatible
with all other models (assuming they have sufficient I/O pins). Therefore if you
have an 8515 (which comes with some development kits), simply change the
.device and .include lines in your program and it should work.

We will now program the device using the STK500 Starter Kit. The steps
required with the other types of programmer should not vary too much from
these. To program your device, place the chip into the appropriate socket in the
programming board. You many need to change the jumper cables to select the
correct chip. In AVR Studio select Tools ~ STKS00, and choose the relevant
device (at90s 1200). You will be programming the Flash Program memory. If
you've just been simulating and your program is still in the simulator memory,
you can tick the box labelled Use Current Simulator/Emulator Flash
Memory, and then hit Program. If the program isn't in the Simulator/Emulator
Memory, just load the program, assemble it, start the simulator, and it will be.

Fuse bits

You may notice some other tabs in the programming window. The one labelled
fuses enables you to control some of the hardware characteristics of the AVR.
These fuses vary between different models. For the 1200 we have two fuses
available. RCEN should be set if you are using the internal RC oscillator as
your clock. If you are using an external clock such as a crystal (as indeed we
are in this project), this fuse bit should be clear. The other fuse is SPIEN, Serial
Program Downloading, which allows you to read the program back off the chip.
If you want to keep your program to yourself and don't want others to be able
to read it off the chip, make sure this fuse bit is clear.

All this just to see an LED turn on may seem a bit of an anticlimax, but there
are greater things to come!

Programs B and C: push button

�9 Testing inputs
�9 Controlling outputs

32 Basic operations with AT90S1200 and TINY12

We will now examine how to test inputs and use this to control an output. Again,
the project will be quite s imple- a push button and an LIED which turns on
when the button is pressed, and turns off when it is released. There are two main
ways in which we can test an input:

1. Test a particular bit in PINx using the sbic or sbis instructions
2. Read the entire number from PINx into a register using the in instruction

The push button will be connected between PD0 and 0V, and the LED to PB0.
The flowchart is shown in Figure 1.3, and the circuit diagram in Figure 2.8.

R1 +SV

320R

D1
LED

CRYSTAL

U1 -t'~

~ 4 PB0/AIN0 5
PBI/AIN1 ~ 1
PB2pB3 RESET F
PB4 PD0 i 2

PB6 PD2/INTO
PD3

PB7 PD4/T0 ~A-
Z 11 0 Pi~ 9

AT90S12001

C2
22pF

0V

Figure 2.8

You should be able to write the Init section yourself, noting that as there is
no external pull-up resistor shown in the circuit diagram, we need to enable the
internal pull-up for PD0. The beginning of the program will look at testing to
see if the push button has been pressed. We have two instructions at our
disposal:

sbic ioreg, bit ;

This tests a bit in a I/O register and skips the following line if the bit is clear.
Similarly

sbis ioreg, bit ;

tests a bit in a I/O register and skips the following line if the bit is set. Note that
like sbi and cbi, these two instructions operate only on I/O registers numbered
between 0 and 31 ($0-$1F). Fortunately, PIND, the register we will be testing,

Basic operations with AT90S1200 and TINY12 33

is one of these registers (number $10). So to test our push button (which makes
pin PD0 high when it is pressed), we write:

sbis PinD, 0 ; tests the push button

This instruction will make the AVR skip the next instruction if PD0 is high.
Therefore the line below this one is only executed if the button is not pressed.
This line should then turn off the LED, and so we will make the AVRjump to a
section labelled LEDoff:

rjmp LEDoff ; jumps to the section labelled LEDoff

After this line is an instruction which is executed only when the button is
pressed. This line should therefore turn the LED on, and we can use the same
instruction as last time.

EXERCISE 2.1 Write the two instructions which turn the LED on, and then loop
back to Start to test the button again.

This leaves us with the section labelled LEDoff.

EXERCISE 2.2

back to Start.
Write the two instructions which turn the LED off, and then loop

You have now finished writing the program, and can double check you have
everything correct by looking at Program B in Appendix J. You can then go
through the steps given for testing and programming Program A. While you are
doing your simulation, you can simulate the button being pressed by simply
checking the box for PIND, bit 0 in the I/O registers window.

Sometimes it helps to step back from the problem and look at it in a different
light. Instead of looking at the button and LED as separate bits in the two ports,
let's look at them with respect to how they affect the entire number in the ports.
When the push button is pressed, the number in PinD is 0b00000000, and in this
case we want the LED to turn on (i.e. make the number in PortB 0b00000000).
When the push button isn't pressed, PinD is 0b00000001 and thus we want
PortB to be 0b00000001. So instead of testing using the individual bits we are
going to use the entire number held in the file register. The entire program
merely involves moving the number that is in PinD into PortB. This cannot be
done directly, and so we will first have to read the number out of PinD using the
following instruction:

in register, ioreg ;

This copies the number from an I/0 register into a working register. To move

34 Basic operations with AT90S1200 and TINY12

the number from a working register back out to an I/O register, we use the out
instruction. The entire program can therefore consist of:

Start: in temp, PinD ; reads button
out PortB, temp ; controls LED
rjmp Start ; loops back

This shorter program is shown as Program C.

Seven segment displays and indirect addressing

Using an AVR to control seven segment displays rather than using a separate
decoder chip allows you to display whatever you want on them. Obviously all
the numbers can be displayed, but also most letters: A, b, c, C, d, E, F, G, h, H,
i, I, J, 1, L, n, o, O, P, r, S, t, u, U, y and Z.

The pins of the seven segment display should all be connected to the same
port, in any order (this may make PCB design easier). The spare bit may be used
for the dot on the display. Make a note of which segments (a, b, c etc.) are
connected to which bits. The segments on a seven segment display are labelled
as shown in Figure 2.9.

a

b

e C

Figure 2.9

Example 2.1 Port B Bit 7 = d, Bit 6 = a, Bit 5 = c, Bit 4 = g, Bit 3 = b, Bit 2
= f, and Bit 1 = e. I have assigned the letters to bits in a random order to illus-
trate it doesn't matter how you wire them up. Sometimes you will find that due
to physical PCB restrictions there are some configurations that are easier or

Basic operations with AT90S1200 and TINY12 35

more compact than others. The software is easy to change - the hardware
normally less so.

If the display is wired up as described in Example 2.1, the number to be moved
into Port B when something is to be displayed should be in the format daegbfe-
(it doesn't matter what bit 0 is as it isn't connected to the display), where the
value associated with each letter corresponds to the required state of the pin
going to that particular segment.

So if you are using a common cathode display (i.e. make the segments high
for them to turn o n - see Figure 2.10), and you want to display (for example)
the letter A, you would turn on segments: a, b, c, e, f and g.

A

A

COMMON CATHODE

,,,A~

I
I , E r I

C O M M O N
A
v

@

COMMON AN(

A,I~ "

i
]

IN

[N I
IN

IN

, IN Ioo I
IN

)DE

C O M M O N
A

Figure 2.10

Given the situation in Example 2.1, where the segments are arranged
dacgbfe- along Port B, the number to be moved into PortB to display an A
would be 0b01111110. Bit 0 has been made 0, as it is not connected to the
display.

Example 2.2 If the segments of a common cathode display are arranged
dacgbfe- along Port B, what number should be moved into PortB, to display the
letter C, and the letter E?

36 Basic operations with AT90S1200 and TINY12

The letter C requires segments a, d, e and f, so the number to be moved into Port
B would be 0bll000110. The letter E requires segments a, d, e, f and g so the
number to be moved into Port B would be 0bll010110.

EXERCISE 2.3 If the segments are arranged abcdefg- along Port B, what
number should be moved into PortB to display the numbers 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, A, b, c, d, E and E

The process of converting a number into a seven segment code can be carried
out in various ways, but by far the simplest involves using a look-up table. The
key idea behind a look-up table is indirect addressing. So far we have been
dealing with direct addressing, i.e. if we want to read a number from register
number 4, we simply read register number 4. Indirect addressing involves
reading a number from register number X, where X is given in a different
register, called Z (the 2-byte register spread over R30 and R31).

It's a bit like sending a letter, where the letter is the contents of a working
register (R0-R31), and the address is given by the number in Z.

Example 2.3 Move the number 00 into working registers numbers R0 to 1129.

Rather than writing:

clr R0 ; clears R0
clr R1 ; clears R1
clr R2 ; clears R2
etc.
clr R29 ; clears R29

we can use indirect addressing to complete the job in fewer lines. The first
address we want to write to is R0 (address 0), so we should move 00 into Z
(making 0 the address on the letter). Z, remember, is spread over both ZL and
ZH (the higher and lower bytes of Z), so we need to clear them both:

clr ZL ; clears Z L
clr Z H ; clears Z H

We then need to set up a register with the number 0 so we can send it 'by post'
to the other registers. We already have a register with a 0 (ZH), so we will use
that.

st register, Z ;

This indirectly stores (sends) the value in register to the address pointed to by
Z. Therefore the instruction:

Basic operations with AT90S1200 and TINY12 37

st ZH, Z

sends the number in ZH (0) to the address given by Z (also 0), and so effec-
tively clears R0. We now want to clear RI , and so we simply increment Z to
point to address 01 (i.e. R1). The program then loops back to cycle through all
the registers, clearing them all in far fewer lines that if we were using direct
addressing. All we need to do is test to see when ZL reaches 30, as this is past
the highest address we wish to clear.

How do we tell when ZL reaches 30? We subtract 30 from it and see whether
or not the result is zero. If ZL is 30, then when we subtract 30 from it the result
will be 0. We don't want to actually subtract 30 from ZL, or it will start going
backwards fast! Instead we use one of the compare instructions:

cp register, register ;

This 'compares' the number in one register with that in another (actually
subtracts one register from the other whilst leaving both unchanged). We then
need to see if the result is zero. We can do this by looking at the zeroflag. There
are a number of flags held in the SREG register ($3F), these are automatically
set and cleared depending on the result of certain operations. The zero flag is
set when the result of an operation is zero. There are two ways to test the zero
flag:

brbs label, bit

This branches to another part of the program if a bit in SREG is set (the zero
flag is bit 1, and so bit would have to be a 1). Note that the label has to be within
63 instructions of the original instruction. Similarly,

brbc label, bit

This branches to another part of the program if a bit in SREG is clear. Here is
where some of the instruction redundancy comes in, because as well as this
general instruction for testing a bit in SREG, each bit has its own particular
instruction. In this case, for the zero flag:

breq label

which stands for branch if equal (more specifically, branch if the zero flag is
set). The opposite of this is:

brne label

which stands for branch if not equal (more specifically, branch if the zero flag

38 Basic operations with AT90S1200 and TINY12

is clear). The complete set of redundant/non-critical instructions is shown in
Appendix C, along with their equivalent instructions. To compare a register
with a number (rather than another register), we use the instruction:

cpi register, number ;

Please note that this only works on registers R16-R31, but as ZL is R30 we are
all right. The complete set of instructions to clear registers R0 to R29 is there-
fore:

clr ZL
clr ZH

ClearLoop: st ZH, Z
inc ZL
cpi ZL, 30
brne ClearLoop

; clears ZL
; clears ZH
; clears indirect address
; moves on to next address
; compares ZL with 30
; branches to ClearLoop if ZL ~ 30

This six line instruction set is useful to put in the Init subroutine to systemat-
ically clear a large number of file registers. You can adjust the starting and
finishing addresses by changing the initial value of ZL and the final value you
are testing for; note, however, that you don't want to clear ZL in the loop (i.e.
don't go past 30) because otherwise you will be stuck in an endless loop (think
about it).

EXERCISE 2.4 Challenger What six lines will write a 0 to R0, a 1 to R1, a 2 to
R2 etc. all the way to a 15 to R15?

As well as writing indirectly, we can also read indirectly:

ld register, Z ;

This indirectly loads into register the value at the address pointed to by Z. We
therefore have a table of numbers kept in a set of consecutive memory
addresses, and by varying Z we can read off different values. Say, for example,
we keep the codes for the seven segment digits 0-9 in working registers
R20-R29. We then move 20 into Z (to 'zero' it to point at the bottom of the
table) and then add the number we wish to convert to Z. Reading indirectly into
temp we then get the seven segment code for that number:

ldi ZL, 20
add ZL, digit
ld temp, Z
out PortB, temp

; zeros ZL to R20
; adds digit to ZL
; reads Rx into temp
; outputs temp to Port B

The above code translates the number in digit into a seven segment code which

Basic operations with AT90S1200 and TINY12 39

is then outputted through Port B. Note that you will have to write the code to
the registers in the first place:

ldi R20, 0bl I 111100 ; code for 0
ldi R21, 0b01100000 ; code for 1
etc.
ldi R29, 0 b l l l l 0 1 1 0 ; code for 9

Note that using working registers for this purpose is unusual and indeed
wasteful, but as there is no other SRAM on the 1200 we have no choice. On
other chips that do have SRAM, we can use that for look-up tables.
Furthermore, on other chips there is also an instruction lpm, which allows you
to use the Program Memory for look-up tables as well. More on this in the
Logic Gate Simulator project on page 67.

Programs D and E: counter

�9 Testing inputs
�9 Seven segment displays

Our next project will be a counter. It will count the number of times a push
button is pressed, from 0 to 9. After 10 counts (when it passes 9), the counter
should reset. The seven segment display will be connected to pins PB0 to PB6,
and the push button will go to PD0. Figure 2.11 shows the circuit diagram, pay
particular attention to how the outputs to the seven segment display are
arranged. The flowchart is shown in Figure 2.12.

You can write the Init section yourself, remembering the pull-up on the push
button. Start PortB with the code for a 0 on the display. We will be using a
register called Counter to keep track of the counts, you should define this in
the declarations section as R17. The reason we have assigned it R17 is that, as
you may remember, registers R16-R31 are the 'executive assistants ' - more
powerful registers capable of a wider range of operations. We therefore tend to
fill up registers from R16 upwards, and then use R0-R15 if we run out. In the
Init section, set up registers R20 to R29 to hold the seven segment code for
numbers 0 to 9. (HINT: If you do this before setting up PortB, you can move
R20 straight into PortB to initialize it. Also remember to clear Counter in the
Init section.)

EXERCISE 2.5 What three lines will test the push button, loop back and test it
again if it isn't pressed? If it is pressed it should jump out of the loop and add
one to Counter?

Then we need to see whether Counter has exceeded 9. We use cpi to compare,
and brne to skip if they are not equal. If they are equal, Counter must be reset

÷

I
o
-
-

O
O
A

O
N
O

O
~

O
~

Z
Z
 IZlZl

I

Basic operations with AT90S1200 and TINY12 41

I Set-up 1

J.

~ J Isbutton ~ N O
pressed?

~ ,,,
Increment counter

/•Has it g ~ YES

5o

I " Change display

I

Reset counter

Figure 2.12

to 0. A useful trick with brne and similar instructions: it is often the case that
rather than jumping somewhere exotic when the results aren't equal, we simply
want to skip the next instruction (as we do with the sbis and sbic instructions).
To do this with branch instructions, write PC+2 instead of a label- this skips 1
instruction (i.e. jumps forward 2 instructions). PC stands for Program Counter
which is described in more detail on page 54.

EXERCISE 2.6 What three lines will test if Counter is equal to 10 and reset it
if it is? You may want to use the PC+2 trick.

Now we need to display the value in Counter. Do this by setting ZL to point to
R20 and adding Counter to it, as described already.

EXERCISE 2.7 What five lines will display the value in Counter through Port
B, and then loop back to Start?

42 Basic operations with AT90S1200 and TINY12

The program so far is shown as Program D. It is recommended that you actu-
ally build this project. Try it out and you will spot the major flaw in the project.

The basic problem is that we are not waiting for the button to be released.
This means that Counter is being incremented for the entire duration of the
button being pressed. If we imagine that the button is held down for 0.1 s, and
the crystal frequency is 4 MHz, one trip around the program takes about 14
clock cycles, and so Counter is incremented about 4 000 000/(14 x 10)=
28 600 times for every press of the button! Effectively what we have is a pretty
good random number generator (as an aside, random number generators are
quite hard to make without some form of human input- computers are not good
at being random). You could make this into an electronic dice project, but we
will return to our original aim of a reliable counter.

Figure 2.13 shows the new flowchart. The necessary adjustment can be made
at the end to wait for the button to be released before looping back to start.

EXERCISE 2.8 Write the two new lines needed to solve the problem, and show
where they are to be added. (HINT: you will need to give this loop a name.)

Try out this new program (Program E), and you may notice a lingering problem,
depending on the quality of your push button. You should see that the counter
counts up in jumps when the push button in pressed (e.g. jumping up from 1 to
4). This is due to a problem called button bounce. The contacts of a push button
actually bounce together when the push button is pressed or released, as shown
in Figure 2.14.

In order to avoid counting one press as many, we will have to introduce a
short delay after the button has been released before testing again. This affects
the minimum time between counts, but a compromise must be reached.

Example 2.4 To avoid button bounce we could wait 5 seconds after the button
has been released before we test it again. This would mean that if we pressed
the button 3 seconds after having pressed it before, the signal wouldn't register.
This would stop any bounce, but means the minimum time between signals is
excessively large.

Example 2.5 Alternatively, to attempt to stop button bounce we could wait a
hundred thousandth of a second after the button release before testing it again.
The button bounce might well last longer than a hundred thousandth of a second
so this delay would be ineffective.

A suitable compromise might be around a tenth of a second but this will vary
from one type of button to the next and you will have to experiment a little. In
order to implement this technique, we will have to learn about timing, which
brings us to the next section.

Basic operations with AT90S1200 and TINY12 43

I Set-up 1
J~

I YES

Increment counter

NO

~ o ~ YEs I

Change display

Reset counter

YES

Figure 2.13

44 Basic operations with AT90S1200 and TINY12

l
button pressed

T
button released

Figure 2.14

I SW1
PUSH

, ~ --

R1
100k

.o +5V

o 0V

Timing
If you cast your mind back to the list of I/O registers (it may help if you glance
back at page 14), you will notice a register called TCNT0 ($32), or Timer
Counter 0. This is an on-board timer, and will automatically count up at a spec-
ified rate, resetting to 0 when it passes 255. We can use this to perform timing
functions (e.g. one second delays etc.). In more advanced chips there are several
timers, some of which are 16 bits long. The reason it is also called a 'Counter'
is that it can also be made to count the number of signals on a specific input pin
(P D 4 - pin 8 in the case of the 1200). For the purposes of the immediate discus-
sion, we will be using TCNT0 as a timer, and so I will be referring to it as
Timer 0, or T/C0 for the sake of brevity.

Before we can use Timer 0, we will have to configure it properly (e.g. tell it
to time and not count). We do this with the T/C0 Configuration Register:
TCCR0 ($33). In this register, each bit controls a certain aspect of the func-
tioning ofT/C0. In the case of the 1200, only bits 0-2 are used:

T C C R 0 - T/C0 Control Register ($33)

bit no. 7 6 5 4 3 2 1 0
bit name CS02 CS01 CS00

4-h '
000 STOP! T/C0 is stopped

001 T/C0 counts at the clock speed (CK)

010 T/C0 counts at CK/8

011 T/C0 counts at CK/64

100 T/C0 counts at CK/256

101 T/C0 counts at CK/1024

110 T/C0 counts on falling edge of TO pin

111 T/C0 counts on rising edge of TO pin

Basic operations with AT90S1200 and TINY12 45

Bits 3-7 have no purpose, but by setting bits 0-2 in a certain way, we can make
T/C0 behave in the way we wish. If we don't wish to use T/C0 at all, all three
bits should be 0. If we wish to use it as a timer, we select one of the next five
options. Finally, if we want it to count external signals (on PD4), we can choose
one of the last two options. The options available to us when using T/C0 for
timing are to do with the speed at which it counts up. The clock speed (CK) is
going to be very fast indeed (a few MHz) - this is the speed of the crystal which
you connect to the AVR - and so in order to time lengths of the order of seconds
we are going to have to slow things down considerably. The maximum factor by
which we can slow down Timer 0 is 1024. Therefore if I connect a crystal with
frequency 2.4576 MHz to the chip (this is actually a popular value crystal),
Timer 0 will count up at a frequency of 2 457 600/1024 = 2400 Hz. So even if
we slow it down by the maximum amount, Timer 0 is still counting up 2400
times a second.

Example 2.6 What number should be moved into the TCCR0 register in order
to be able to use the T/CO efficiently to eventually count the number of seconds
which have passed?

Bits 3 to 7 are always 0.
Timer 0 is counting internally, at its slowest rate = CK/1024
Hence the number to be moved into the TCCR0 register is 0b00000101.

EXERCISE 2.9 What number should be moved into the TCCR0 register when a
button is connected between PD4 and +5 V, and TCNT0 is to count when the
button is pressed.

In order to move a number into TCCR0, we have to load it into temp, and then
use the out instruction, as with the other I/O registers. As you are unlikely to
want to keep changing the Timer 0 settings it is a good idea to do this in the Init
subroutine, to keep it out of the way.

In order to time seconds and minutes, you need to perform some further
frequency dividing yourself. We do this with what I call a marker and then any
number of counter registers. These are working registers we use to help us with
the timing. The basic idea is to count the number of times the value in Timer 0
reaches a certain number. For example, in order to wait one second, we need to
wait for Timer 0 to count up 2400 times. This is equivalent to waiting for Timer
0 to reach 80, for a total of 30 times, because 30 x 80 = 2400. We could do this
with any other factors of 2400 that are both less than 256.

To test if the number in Timer 0 is 80, we use the following lines:

out TCNT0, temp
cpi temp, 80
breq Equal

; copies TCNT0 to temp
; compares temp with 80
; branches to Equal if temp = 80

46 Basic operations with AT90S1200 and TINY12

This tests to see if Timer 0 is 80, and branches to Equal if it is. The problem is
we're not always testing to see if Timer 0 is 80. The first time we are, but then
next time round we're testing to see if Timer 0 is 160, and then 240 etc. We
therefore have a register (which I call a marker) which we start off at 80, and
then every time Timer 0 reaches the marker, we add another 80 to it. There isn't
an instruction to add a number to a register, but there is one to subtract a
number, and of course subtracting a negative number is the same as adding it.

subi register, number ;

This subtracts the immediate number from a register. Note the register must be
one of R16-R31. So far, we have managed to work out when the Timer 0
advances by 80. We need this to happen 30 times for one second to pass. We
take a register, move 30 into it to start with, and then subtract one from it every
time Timer 0 reaches 80.

dec register

This decrements (subtracts one from) a register. When the register reaches 0 we
know this has all happened 30 times. This all comes together below, showing
the set of instructions required for a one second delay.

ldi Count30, 30
ldi Mark80, 80

; starts up the counter with 30
; starts up the marker with 80

TimeLoop: out TCNT0, temp
cp temp, Mark80
brne TimeLoop

; reads Timer 0 into temp
; compares temp with Mark80
; if not equal keeps looping

subi Mark80, -80 ; adds 80 to Mark80

dec Count30
brne TimeLoop

; subtracts one from Count30
; if not zero keeps looping

The first two instructions load up the counter and marker registers with the
correct values. Then TCNT0 is copied into temp, this is then compared with the
marker. If they are not equal, the program keeps looping back to TimeLoop. If
they are equal it then adds 80 to the marker, subtracts one from the counter,
looping back to TimeLoop if it isn't zero. Note that you will have to define
Mark80 and Count30 in the declarations section, and that they will have to be
one of R16-R31.

Basic operations with AT90S1200 and TINY12 47

Program F: chaser

�9 Timing
�9 Reading inputs
Q Controlling outputs

The next example project will be a 'chaser' which consists of a row of LEDs.
The LEDs are turned on in turn to give a chasing pattern. The speed of this
chase will be controlled by two buttons - one to speed it up, the other to slow
it down. The default speed will be 0.5 second per LED, going down to 0.1
second and up to 1 second.

The LEDs will be connected to Port B, and the buttons to PD0 and PD 1. The
flowchart and circuit diagram are shown in Figures 2.15 and 2.16 respectively.

The set-up box of the flowchart should be fairly straightforward, though
remember that you may want to configure TCCR0 in the Init section, and that
as we are timing the order of a second, we will want to use TCNT0 as a timer,
slowed down by its maximum. Note also that PD0 and PD 1 will require pull-
ups, and that PortB should be initialized with one LED on (say, for example,
PB0).

It is now worth giving a little thought to how we are going to have a time
delay which can vary between 0.1 second and 1 second. The shortest time delay,
0.1 second, can be timed using a marker of 240 (2400/240 = 10 Hz), assuming
the Timer 0 is counting at CK/1024 and a 2.4576 MHz crystal is being used.
Then the counter can be varied between 1 and l0 to vary the overall time
between 0.1 and 1 second. You may want to think about this a little. We will
therefore have a marker register Mark240, and a variable counter register called
Counter. Counter will be normally reset to 5 (for 0.5 second), but can be reset
to other values given by Speed. Don't forget to define these registers at the
declarations section at the top of the program).

Looking back at our flowchart, the first box after the set-up looks at the
'slow-down button'. We shall make the button at PD0 the 'slow-down button',
and test this using the sbic instruction. If the button is not pressed (i.e. the pin
is high), the next instruction will be executed, and this skips to a section where
we test the 'speed-up button' button (call this UpTest).

If the button is pressed, we want to add one to Speed (slow down the chase).
This can be done using the following instruction:

inc register

This increments (adds one to) a register. We don't want the delay to grow longer
than 1 second, and so we must check that Speed has not exceeded 10 (i.e. if it
is 11 it has gone too far). We do this with the compare immediate instruction
already introduced, cpi. If Speed is not equal to 11, we can then branch to
ReleaseDown and wait for the button to be released. If it is equal to 11 we have

~
o

0r

Q

~
0

-.
~

,
I

i Z
Z

G
N

D

V
C

C

10

L'
~.

J
"U

~ I~I
~1

4o
 ~

 I
 ~

O

,O

C

i

.n
l~

O
~

"I
-

N

Basic operations with AT90S1200 and TINY12 49

I Set-up 1

.J

YES

YES

NO

Change LED

Increase set time

Shorten set time

Figure 2.16

to subtract one from it (using the dec instruction). The first few lines of the
program are therefore:

Start" sbic PinD, 0
r jmp UpTest

; checks slow-down button
; not pressed, jumps

inc Speed
cpi Speed, 11
brne ReleaseDown
dec Speed

ReleaseDown:

; slows down time
; has Speed reached 11?
; jumps to ReleaseDown if not equal
; subtracts one from Speed

50 Basic operations with AT90S1200 and TINY12

sbis PinD, 0 ; waits for button to be released
rjmp ReleaseDown- ;

In UpTest, we do the same with the 'speed-up button', PD1, and instead of
jumping to UpTest, we jump to the next section which we will call Timer. If
the speed-up button is pressed we need to decrement Speed, and instead of
testing to see if it has reached 11, we test to see if it has reached 0 (and incre-
ment it if it has). We could use cpi Speed, 0, but this line is unnecessary as
the zero flag will be triggered by the result of the dec instruction, and so if we
decrement Speed and the result is zero, we can use the brne in the same way as
before.

EXERCISE 2.10 Write the seven lines which follow those given above.

The next section, called Timer, has to check to see if the set time has passed,
and return to the beginning i f the time hasn't passed. This means the timing
routine must loop back to Start rather than stay in its own loop.

We will also put in the lines which set up the marker and counter registers in
the Init section. Mark240 should initially be loaded with 240; Speed and
Counter should be loaded with 5. This means we can go straight into the
counting loop.

Timer: in
cp
brne

temp, TCNT0 ; reads Timer 0 into temp
temp, Mark240 ; compares temp with Mark240
Start ; if not equal loops back to Start

subi Mark240,-240 ; adds 240 to Mark240

dec Counter
brne Start

; subtracts one from Counter
; if not zero loops back to Start

This should be familiar from the last section on timing. Note that instead of
looping back to Timer, it loops back to Start. You may find, however, that you
can reduce button bounce by looping back to Timer rather than Start in the
0.1 second loop. This means the buttons will only be tested once every 0.1
second, which means that a button will have to be pressed for at least 0.1
second. After the total time has passed, we need to chase the LEDs (i.e. rotate
the pattern), and also reset the Counter register with the value in Speed. To do
this we use:

mov regl, reg2 ;

This moves (copies) the number from reg2 into regl.

EXERCISE 2.11 What one line resets Counter with the value in Speed?

Basic operations with AT90S1200 and TINY12 51

To rotate the pattern of LEDs we have a number of rotating instructions at our
disposal:

asr register ; arithmetic shift right
lsr register ; logical shift right
lsl register ; logical shift left
ror register ; rotate right
rol register ; rotate left

The arithmetic shift right involves shifting all the bits to the right, whilst
keeping bit 7 the same and pushing bit 0 into the carry flag. The carry flag is a
flag in SREG like the zero flag. The logical shift right shifts all the bits to the
right, and moves 0 into bit 7. The rotate right rotates through the carry flag (i.e.
bit 7 is loaded with the carry flag, and bit 0 is loaded into the carry flag). This
is summarized in Figure 2.17.

Figure 2.17

As we rotate the pattern along, we don't want any l s appearing at the ends,
because this would turn on edge LEDs out of turn, which would then propagate
down the row and ruin the pattern. It would therefore seem that lsl or lsr is
appropriate. For the sake of argument, we will pick lsl, to rotate the pattern to
the left. We cannot apply these rotating instructions directly to PortB, so we
have to read in the pattern to temp, rotate temp, and then output back to PortB.
Before we output it to PortB, we have to see whether or not we've gone too far

52 Basic operations with AT90S1200 and TINY12

(rotated eight times), in which case we need to reset PortB back to its initial
value (all off except PB0). We can do this by monitoring the carry flag, which
will be high if we rotate a high bit off the end (a quick glance at Figure 2.17
should confirm this). The instruction for this is:

brcc label

This branches to label if the carry flag is clear. Therefore the lines we need are:

in temp, PortB
lsl temp
brcc PC+2
ldi temp, 0b00000001

; reads in current state
; rotates to the left
; checks Carry, skip if clear
; resets to PB0 on, others off

out PortB, temp ; outputs to PortB
rjmp Start ; loops back to Start

You will notice that if the carry flag is clear, we skip the next instruction using
the PC+2 trick. The program is shown in its entirety as Program F in Appendix
J.

You can go through and assemble this, and simulate it. For the simulation,
you will notice that stepping through the entire program waiting for Timer 0 to
count up will take a long time. For this reason, ways to run through parts of the
program at high speed are on offer. For example, if you right click on a line in
theprogram (when in simulation mode), you are given the option to 'Run to
Cursor' (Ctrl + F10). This will run to where you have clicked at high speed (not
quite real time, but close).

So far we have covered quite a few instructions; it is important to keep track
of all of them, so you have them at your fingertips. Even if you can't remember
the exact instruction name (you can look these up in Appendix C), you should
be familiar with what instructions are available.

REVISION EXERCISE What do the following do: sbi, cbi, sbic, sbis, rjmp, ldi, st,
ld, clr, ser, in, out, cp, cpi, brbs, brbc, breq, brne, brcc, subi, dec, inc, mov,
asr, lsr, lsl, ror and rol? (Answers in Appendix D.)

Timing without a timer?

Sometimes we will want to use the TCNT0 for other purposes (such as counting
signals on T0/PD4), and so we will now look at timing without the use of this
timer. Each instruction takes a specific amount of time, so through the use of care-
fully constructed loops we can insert delays which are just as accurate as with
Timer 0. The only drawback of this is that the loop cannot be interrupted (say, if
a button is pressed), unlike the Timer 0, which will keep counting regardless.

Basic operations with AT90S1200 and TINY12 53

The overall idea is to find the number of clock cycles we need to waste and
count down from this value to 0. The problem lies when the number is greater
than 255 (which is the case almost all the time). In this case we need to
somehow split the number over a number of registers, and then cascade them.
We decrement the lowest byte until it goes from 00 to FF (setting the carry flag
as it does so), and then decrement the next highest byte etc.

Example 2. 7 Higher byte Lower byte Carry flag?
0xlA 0x04 no
0 x l A 0x03 no
0 x l A 0x02 no
0xlA 0x01 no
0 x l A 0x00 no

(- " 0xlA W"" 0xFF YES (so decrements upper byte)
0x19 % 0xFF no
0x19 0xFE etc.

The first step is to work out how many instruction cycles the time delay
requires. For example, to wait one second with a 4 MHz crystal, we need to
'kill' 4 million clock cycles. The loop we will write will take 'x' instruction
cycles, where x is given in Table 2.1.

Table 2.1

Length of time with 4 MHz clock With 2.4576 MHz clock

3 0-63 lus 0-102 laS
4 64 las-16 ms 102 las-26 ms
5 16 ms-4.1 seconds 26 ms-6.7 seconds
6 4.2 seconds- 17 minutes 6.7 seconds-27 minutes
7 17 minutes-74 hours 27 minutes-120 hours

We are timing one second, which means x = 5. We therefore divide 4 000 000
by 5, getting in this case 800 000. We convert this number to hexadecimal,
getting 0xC3500. Write this number with an even number of digits (i.e. add a
leading 0 if there are an odd number of digits), and then split it up into groups
of two digits. For example, our values are 0x00, 0x35 and 0x0C.

At the start of the delay in the program we put these numbers into file regis-
ters, note the order.

ldi Delayl , 0x00 ;
ldi Delay2, 0x35 ;
ldi Delay3, 0x0C ;

54 Basic operations with AT90S1200 and TINY12

The delay itself consists of just one line per delay register plus one at the end
(i.e. in our case four lines). To help us achieve such a short loop we need to use
a new instruction:

sbci reg, number ;

Subtract the immediate number from a register, and also subtract 1 if the carry
flag is set. For example:

sbci Delay2, 0

This effectively subtracts 1 from Delay 2 if the carry flag is set, and subtracts 0
otherwise. Our delay loop is as follows:

Loop: subi Delayl, 1
sbci Delay2, 0
sbci Delay3, 0
brcc Loop

; subtracts 1 from Delayl
; subtracts 1 from Delay2 if Carry is set
; subtracts 1 from Delay3 if Carry is set
; loops back if Carry is clear

When it finally skips out of the loop, one second will have passed. The first
thing to note is that the length of the loop is five clock cycles (the branching
instruction takes two clock cycles). You can now see where the numbers in Table
2.1 come f r o m - for every extra delay register you add there is an extra cycle in
the loop. The reason we have used subi to subtract 1 instead of dec is that unlike
subi, dec doesn't affect the carry flag. We clearly rely on the carry flag in order
to know when to subtract from the higher bytes, and when to skip out of the
loop.

The program counter and subroutines

There is an inbuilt counter, called the program counter, which tells the AVR
what instruction to execute next. For normal instructions, the program counter
(or PC for short) is simply incremented to point to the next instruction in the
program. For an r jmp or brne type instruction, the number in the PC is changed
so that the AVR will skip to somewhere else in the program.

Example 2.8

Start:
039 sbi PortB, 0 ; turns on LED
03A sbic PinD, 0 ; tests push button
03B cbi PortB, 0 ; turns off LED

Basic operations with AT90S1200 and TINY12 55

Loop:
03C dec Counter ;
03D breq PC+2 ; skips next line if 0
03E rjmp Start ;
03F rjmp Loop ;

The above example segment has the program memory addresses for each
instruction on the left-hand side in hexadecimal. Note that blank lines aren't
given addresses, nor are labels, for they are actually labelling the address that
follows. Looking at the behaviour of the PC in the above, it starts at 039 and
upon completion of the sbi instruction gets incremented to 03A. Then PinD, 0
is tested. If it is high, the PC is simply incremented to 03B, but if it is low, the
program skips, i.e. the PC is incremented twice to 03C. The r jmp Start
instruction moves 039 into the PC, making the program skip back to Start. This
also sheds some light on the PC+2 trick we've used a few times already, if the
result is 'not equal' (i.e. zero flag clear), the program adds 2 to the PC rather
than 1, thus skipping one instruction.

EXERCISE 2.12 In the example above, what is the effect of the instruction
r jmp Loop on the PC?

This now brings us to the topic of subroutines. A subroutine is a set of
instructions within the program which you can access from anywhere in the
program. When the subroutine is finished, the program returns and carries on
where it left off. The key feature here is the fact that the chip has to
remember where it was when it called the subroutine so that it can know
where to carry on from when it returns from the subroutine. This memory is
kept in what is known as a stack. You can think of the stack as a stack of
papers, so when the subroutine is called, the number in the program counter
is placed on top of the stack. When a returning instruction is reached, the top
number on the stack is placed back in the program counter, thus the AVR
returns to execute the instruction after the one that called the subroutine. The
1200 has a three level stack. When a subroutine is called within a subroutine,
the number in the PC is placed on top of the stack, pushing the previous
number to the level below. The subsequent returning instruction will, as
always, select the number on the top of the stack and put it into the PC. A
three level stack means you can call a subroutine within a subroutine within
a subroutine, but not a subroutine within a subroutine within a subroutine
within a subroutine. This is because once you've pushed three values on to
the stack, and you call another subroutine, hence pushing another value on to
the stack, the bottom of the stack is lost permanently. The example in Figure
2.18 illustrates this problem.

56 Basic operations with AT90S1200 and TINY12

035 Sub 1" rcall Sub2 IPC �9

Stack:

036 ret

037 Sub2" rcall Sub3

038 ret

039 Sub3" rcall Sub4

03A ret

03B Sub4: ret

03C Start: rcall Sub I

BEFORE AFTER

035

03C
277
�9 . ,

277
�9 . ,

037

" " ~ " ' j ~ 035
03C
727
�9 �9 �9

PC" 036 -!- 1 ~ " ???

Stack: ??? ~ " ???
??? ???
??? ???

PC"

Stack:

037 039

035 " " ~ " ~ 0 3 7
03C 035
??? 03C

PC:

Stack:

038 . ~ ? . . ~ p , 036

035 ???
777 777
.

777 777
.

PC:

Stack:

039 O3B

037 " ~ ~ ' ~ i ~ 0 3 9
O35 037
03C 035

PC:

Stack:
03A . ~ . . 1 ~ , 038
037 035
035 ???
7 7 2 2 7 7

i Ball
PC: 03B ~ 03A

Stack" 039 037
037 035
035 ???

i i
leC �9 0 3 c o35

Stack" ? ? ? ~ 03C
?)7 777
77))??

i

f???

Figure 2.18

The instruction to call a subroutine is"

rcall label

Which is a relative call, and so the subroutine needs to be within 2048 instruc-
tions of the rcall instruction. To return from a subroutine use:

Basic operations with AT90S1200 and TINY12 57

ret

Of course, you can call as many subroutines as you like within the same subrou-
tine like so:

Subl: rcall Sub2
rcall Sub3
rcall Sub4
ret

Start: rcall Subl ;

Note that the programs so far have been upwardly compatible (this means they
would work on more advanced types of AVR). This ceases to be strictly true
with subroutines, and if you are developing these programs on a chip other than
the 1200 or Tiny AVRs you will have to add the following four lines to the Init
sec t ion- Chapter 3 explains why:

ldi
out
ldi
out

temp, LOW(RAMEND) ; stack pointer points to
SPL, temp ; last RAM address
temp, HIGH(RAMEND) ;
SPH, temp

The simulator button ~ is used to step over a subroutine - i.e. it runs through
the subroutine at high speed and then moves on to the next line. The step out

. i ~ , is used when the simulator pointer is in a subroutine and will make button,
the simulator run until the return instruction is reached.

Program G: counter v. 3.0

�9 Debouncing inputs
�9 Seven segment display

Now that we know how to implement a timer, we can look back to improving
the counter project to include debouncing features to counteract the effect of
button bounce. The new flowchart is shown in Figure 2.19.

We can see from the flowchart that we need to insert two identical delays
before and after the ReleaseWait section in the program. Rather than dupli-
cating two delays, we can have a delay subroutine that we call twice. For
example, if we call our delay subroutine Debounee, the following would be the
last few lines of the new program:

58 Basic operations with AT90S1200 and TINY12

Set-up)

J.

NO

I YES

Increment counter

,/••Has it g o ~ E S

I N~
Change display

Wait 0.1 s

YES

Wait 0.1 s

Reset counter

Figure 2.19

Basic operations with AT90S1200 and TINY12 59

rcall Debounce
ReleaseWait" sbis PinD, 0

rjmp ReleaseWait
rcall Debounce
rjmp Start

; inserts required delay
; button released?
; no, so keeps looping
; inserts required delay
; yes, so loops back to start

Finally we can write the Debounee subroutine. I like to keep my subroutines in
the top half of the page to keep things tidy, after the rjmp Init line, but
before the Init section itself. In this case we will use the delay without Timer 0.

EXERCISE 2.13 How many clock cycles will it take to create a 0.1 second delay,
given a 4 MHz crystal? Convert this number into hexadecimal, and split it up
over a number of bytes. What should the initial values of the delay registers be?

EXERCISE 2.14
subroutine.

Challenge/Write the eight lines that make up the Debounee

You must also remember to define the three new registers you have added. With
R20-R29 taken up by the seven segment code registers, and R30,31 belonging
to ZL and ZH, you may think you've run out of useful room, and may have to
use the less versatile R0-R15. However, notice that while in the Debounee
subroutine, you are not using the temp register. You could therefore use temp
instead of Delayl. Either define Delayl as R16 (there is nothing strictly wrong
with giving a register two different names), or as this is potentially confusing
you may prefer to scrap the flame Delayl and use temp instead in the
Debounee subroutine. Try this program out and see if you've eliminated the
effect of the button bounce. Can you make the time delay smaller? What is the
minimum time delay needed for reliable performance?

Program H: traffic lights
�9 Timing without Timer 0
�9 Toggling outputs

Our next project will be a traffic lights controller. There will be a set of traffic
lights for motorists (green, amber and red), and a set of lights for pedestrians (red
and green) with a yellow WAIT light as well. There will also be a button for pedes-
trians to press when they wish to cross the road. There will be two timing opera-
tions needed for the traffic lights. We will be monitoring the time between button
presses as there will be a minimum time allowed between each time the traffic can
be stopped (as is the case with real pedestrian crossings). As well as this, we will
need to measure the length of time the lights stay on, and blinking. We will use the
Timer 0 to control the minimum time between button presses (which we'll set to
25 seconds), and use the 'Timerless' method just introduced for all other timing.
The circuit diagram is shown in Figure 2.20, and the flowchart in Figure 2.21.

X
O

IJ_

"---II

0

~1 ~[I~FI~i~I=I
~

"~10~
D

,. ~L Z
O

.

~1~
~ rl

0
._

_
_

._
...~

cr'~

A

O
N

e
)

o
~

~
~

~

_

C

01,

i I

Basic operations with AT90S1200 and TINY12 61

Figure 2.21

Set-up]

"1
Motorists: Green
Pedestrians: Red

k.,

Is button ~ NO
pressed?

< ~ 2 5 seconds since ~ NO
last press? j J

YES

Motorists: Amber
Pedestrians: Red

.

I
Wait 4 seconds

. i

Motorists: Red
Pedestrians: Green

, ,

Wait 8 seconds

I
Motorists: Amber flashing

Pedestrians: Green flashing

. . . . l,

Wait 4 seconds

62 Basic operations with AT90S1200 and TINY12

You can write the Init section yourself, noting that PD0 requires an internal
pull-up. Set up TCNT0 to count at CK/1024.

The first two lines get the LEDs in the correct state with the red pedestrian
light on, as well as the motorists' green.

EX~RCISE 2.15 What two lines will do this?

We need to perform some sort of timing during this initial loop so that while
it is waiting for the button, it can also be timing out the necessary 25 seconds.
This will be taken care of by a subroutine called Timer which we will write
later. So after these two first lines insert:

rcall Timer ; keeps timing

In this subroutine we will use the T bit in SREG, a temporary bit you can use
for your own purposes. We will use it to signal to the rest of the program
whether or not the required 25 seconds have passed. It will initially be off, bu t
after the traffic is stopped, and the people cross etc., it is set. When it is set and
Timer is called, it will count down, but rather that staying in a loop until the
time has passed it returns (using ret) if the required time hasn't passed. When
the required time does pass, the T bit is cleared again, and the rest of the
program knows it's OK to stop the traffic again. After this instruction we test
the button.

EXERCISE 2.16 What two lines will then test the push button and loop back to
Start if it isn't pressed?

EXERCISE 2.17 If the button is pressed the pedestrian's WAIT light should be
turned on, what one line does this?

To test the T bit, you can use one of the following instructions:
brts label ; branches if the T bit is set
brtc label ; branches if the T bit is clear

EXERCISE 2.18 What two lines form a new loop which calls Timer, and tests
the T bit in SREG, staying in the loop until the T bit is clear.

After the required time has passed, we can start slowing the traffic down. Turn
the green motorists' light off, and the amber one on. Keep all other lights
unchanged.

EXERCISE 2.19 What two lines achieve this?

As the flowchart shows, there are quite a few time delays required, and rather

Basic operations with AT90S1200 and TINY12 63

than copy the same thing over and over, it makes sense to use a time delay
subroutine. If we look at the minimum delay we will be timing (which is 0.5
second for the flashing), we can write a delay for this length and then just call
it several times to create longer delays. The delay will be called HalfSecond,
and so to wait 4 seconds we call this subroutine 8 times. We could simply write
rcall HalfSecond eight times, but a shorter way would be the following:

ldi temp, 8 ;
FourSeconds:

rcall HalfSecond ;
dec temp
brne FourSeconds ;

temp is loaded with 8, and then each time it is decremented, ltalfSecond is
called. After doing this eight times it skips out of the loop.

After this 4 second delay the red motorists' light must be turned on, and the
amber one off. The red pedestrian light must be turned off, and the green one
on. The pedestrian's WAIT light must also be turned off.

EXERCISE 2.20 Which two lines will make the required output changes?

EXERCISE 2.21 Which four lines make up an 8 second delay?

After the 8 seconds, the red motorists' light turns off, and the motorists' amber
and pedestrians' green lights must flash. Start by turning the flashing lights on,
and then we will look at how to make them flash.

EXERCISE 2.22 Which two lines make the required output changes?

To toggle the required two lights, we need to invert the states of the bits. There
are two ways to invert bits. We could take the one's complement of a register,
using:

corn register

This inverts the states of all of the bits in a register (0 becomes l, 1 becomes 0).

EXERCISE 2.23 If the number in temp is 0bl0110011, what is its resulting
value after corn temp?

However, we want to selectively invert the bits. This is done using the exclusive
OR logic command. A logic command looks at one or more bits (as its inputs)
and depending on their states produces an output bit (the result of the logic
operation). The table showing the effect of the more common inclusive OR
command on 2 bits (known as a truth table) is shown below:

64 Basic operations with AT90S1200 and TINY12

inputs result
0 0 0
o i 1
1 0 1
1 1 1

The output bit (result) is high if either the first or the second input bit is high
(or if both are high). The exclusive OR is different in that if both inputs are high,
the output is low:

inputs result
0 0 0
0 1 1
1 0 1
1 1 0

One of the useful effects is that if the second bit is 1, the first bit is toggled, and
if the second bit is 0, the first bit isn't toggled (see for yourself in the table). In
this way certain bits can be selectively toggled. If we just wanted to toggle bit 0
of a file register, we would exclusive OR the file register with the number
00000001.

The exclusive OR instruction is:

eor regl, reg2 ;

This exclusive ORs the number in reg2 with the number in regl, leaving the
result in regl.

EXERCISE 2.24 What four lines will read state of the lights into temp, selec-
tively toggle bits 1 and 3, and then output temp back to PortB. (Hint" You will
need a new register, call it tog.)

EXERCISE 2.25 Challenge/Incorporate the previous answer into a loop that
waits half a second, selectively toggles the correct lights, and repeats eight
times. You will need a new register to count the number of times round the loop;
call this Counter, and call the loop FlashLoop. This should take eight lines.

The traffic lights can now return to their original states, but before looping back
to Start, remember to set the T bit. You can do this directly using the following
instruction"

set ; sets the T bit

Basic operations with AT90S1200 and TINY12 65

EXERCISE 2.26 Write the final two lines of the program.

What remains for us now are the two subroutines, HalfSecond and Timer. We
will tackle HalfSecond first as it should be the more straightforward.

EXERCISE 2.27 Without using the Timer 0, create a half second delay, and use
this to write the eight lines of the HalfSecond subroutine. A 2.4576 MHz
crystal is being used.

For Timer, we first test the T bit. If it is clear we can simply return.

EXERCISE 2.28 Write the first two lines of the Timer subroutine.

We can then use the same method we used before in timing loops; however,
instead of looping to the top of the section, return from the subroutine. The
required time is 25 seconds, which on a 2.4576 MHz crystal with Timer 0
running at CK/1024 corresponds to a marker of 240 and a counter of 250 (work
it out!).

EXERCISE 2.29 Challenge! Write the remaining ten lines of the Timer subrou-
tine. Assume your counter and marker registers have been set up in the Init
section (do this!), and reset the counter register with its initial value at the end
of the subroutine. Don't forget to clear the T bit at the end of the subroutine (use
the elt instruction).

Congratulations! You have essentially written this whole program yourself. To
check the entire program, look at Program H (Appendix J).

Logic gates
We had a short look at the inclusive OR and exclusive OR logic gates, and now
we'll look at other types: AND, NAND, NOR, ENOR, BUFFER, NOT. The
truth tables are as follows:

AND

inputs result
0 0 0
0 1 0
1 0 0
1 1 1

This is useful for masking (ignoring certain bits). If the second bit is 0, the first
bit is masked (made 0). If the second bit is 1, the first bit remains intact.

66 Basic operations with AT90S1200 and TINY12

Therefore ANDing a register with 0b00001111 masks bits 4-7 of the register,
and leaves bits 0-3 the same.

NAND

inputs result
0 0 1
0 1 1
1 0 1
1 1 0

This is the opposite of an AND

NOR

inputs result
0 0 1
0 1 0
1 0 0
1 1 0

This is the opposite of an OR

ENOR

inputs result
0 0 1
0 1 0
1 0 0
1 1 1

This is the opposite of an EOR

NOT

input result
0 1
1 0

Only one input, output is opposite of input

Buffer

input result
0 0
1 1

Only one input, output copies input

Basic operations with AT90S1200 and TINY12 67

There aren't specific instructions for all these gates, but they can be imple-
mented using a combination of available instructions.

Program I" logic gate simulator
�9 Logic functions
�9 TinyAVR

Our next project will be a logic gate simulator which can be programmed to
act as any of the eight gates given above. It will therefore require two inputs
and one output, and three inputs will together select which gate it is to emulate.
This makes a total of six I/O pins, which just fits on the Tiny AVR chips. We
will be writing this program for the Tiny l2 AVR in particular, but it can be
adapted to most of the other types, including the 1200 that we have so far been
writing for. Figure 2.22 shows the pin layouts of some of the members of the
Tiny family.

(RESET) PB5 [--

(ITAL1) PB3 ['-

(XTAL2) PB4 [-"

GND ['--

AT tiny 10/1 1

1 8

2 7

3 6

4 5

-7 VCC (RESET) PB5 ['-

-] PB2 (TO) (ITAL1) PB3 [--

-] PB1 (INT0/AIN1) (XTAL2) PB4 r--

-7 PBO (AIN0) GND F-

AT tiny 12

- - L / - -

1 8

2 7

3 6

4 5

--lvcc

-7 PB2 (SCK/TO)

-] PB1
(MISO/INTO/AIN1)

PB0 (MOSI/AIN0)

F i g u r e 2 . 2 2

Basic features about this family include having a 6-bit Port B (PB0-PB5), but
these six I/O pins are available only under certain circumstances. For example,
you can see that PB3 and PB4 are also the oscillator inputs, and so to use these
as I/O pins requires selection of the internal oscillator. Using a separate oscil-
lator (and therefore only needing XTAL 1 as a clock input) means PB4 is avail-
able, but PB3 isn't. Using the RESET pin as a reset pin means losing PB5. So
you can see that having six I/O is very much a maximum. Also, take note that
on the Tinyl0 and Tinyl 1 PB5 is an input only. On the Tinyl2, PB5 is an input
or an output drain (this means you can make it an output, but only a low output
- i.e. it can sink but not source current). This means that although PinB and
DDRB are 6 bits long, PortB is only 5 bits long. PB5 therefore has no internal
pull-up, and so needs an external resistor. An advantage of the Tiny AVRs over
the 1200 model we have been using so far is the availability of the following
instruction:

68 Basic operations with AT90S1200 and TINY12

lpm

This loads the contents of the program memory pointed to by Z into register
R0. This means we can use the program memory itself as a look-up table, as
opposed to using up working registers. It is also more efficient on code, as each
instruction in the program memory is 16 bits long, so we can store 2 bytes in
place of an instruction. We will be needing this instruction in the example
project.

�9 ,,, , , ,, J , , J , , ,

. ~ [PB4/XTAL2 PBO/AIN0

?

" ' v ! ,, i ii i i -

,.,+5V
v

~ D1
LED= 0V

v

Figure 2.23

The circuit diagram for the logic gate project is shown in Figure 2.23. Note
that the NOT and Buffer gates take only one input, and so we will be using PB 1
as the input for these gates. Therefore, the effective two-inputtruth tables for
the NOT and Buffer gates are:

NOT

inputs result
0 ~ 1
0 1 1
1 0 0
1 1 0

Basic operations with AT90S1200 and TINY12 69

Buffer

inputs result
0 0 0
0 1 0
1 0 1
1 I. 1

EXERCISE 2.30 Have a go yourself at constructing the flowchart, before
looking at my version in the answer section. You need not make it more than
three boxes in size, as we aren't yet concerned with sorting out how to manage
the imitating of the individual gate types.

When writing the Init section the output, PB2, should initially be off. To choose
which logic gate the AVR is to imitate, we have a binary switch which sets its
outputs between (000) and (111) depending on the state of the switch. We there-
fore have to use this in the program to determine which section to jump to.
Although the output from the switch is between 000 and 111, the resulting
number in PinB is between xx000x and xxl 1 l x, where the states of bits 0, 4
and 5 must be ignored. We therefore take the number in PinB and mask bits 0,
4 and 5 using:

andi reg, number

This ANDs the number in a register with the immediate number (only for regis-
ters R16-R31). To mask bits 0, 4 and 5, but keep bits 1-3 intact, we AND the
register with 0b001110. We then rotate it once to the right, making sure that
only zeros appear in bit 5 during the rotation.

EXERCISE 2.31 What is the appropriate rotation instruction to use?

The result is a number between 0 and 7 which we shall use to access a location
in the program memory, and so we should load PinB into the ZL register as this
will be used to point to a specific address.

EXERCISE 2.32 Write the three lines which read PinB into ZL, mask bits 0, 4
and 5, and then rotate it to the right as required.

Our look-up table will begin after the r jmp Init instruction. This instruc-
tion is at address 000 of the program memory (which is why it is the first one
executed). Instructions are 16 bits long, and so take up 2 bytes (or one word).
Program memory addresses are therefore word addresses, and the byte address
is 2 times the word address. Figure 2.24 illustrates this.

70 Basic operations with AT90S1200 and TINY12

word 00
I

I I
0 0 1 0 0011 0001 0000

I I I
I l

byte 00 byte 01

= and r 16 , r 17

Figure 2.24

Our look-up table will therefore start at word address 001 which is equivalent
to byte address 002. ZL points to the byte address, so we will have to add 2 to
ZL to start it pointing to the bottom of the look-up table.

EXERCISE 2.33 Which two lines will add 2 to ZL and then use ZL to read a
value from the program memory into R0?

Now the real question is what to have in the look-up table that is going to tell
the program how to act like a particular logic gate. After some thought, I have
found that using a split form of the truth table for each gate gives us the most
straightforward solution. What we are about to do now may appear far from
obvious, but hopefully after some thought you will see that ultimately it works
rather neatly.

We are going to have a byte for each logic gate. For each gate, we take the
truth table and look at the set of output states (e.g. 0001 for an AND gate, and
0111 for an inclusive OR). We then split these nibbles into two sets of 2 bits,
and make these bits 4 and 5 and 0 and 1 of a byte. For example, AND: 0001
splits into 00 and 01, and then becomes 00000001. Inclusive OR: 0111 splits
into 01 and 11, and the becomes 00010011.

EXERCISE 2.34 What are the relevant bytes for the NAND, NOR, ENOR, EOR,
NOT and Buffer gates?

We then list these in the look-up table in any order we choose (noting that their
position in the table defines how the code in PB 1, 2 and 3 refers to a particular
gate). The assembler has directives (instructions for the assembler) which tell it
to place the following word or byte into the program memory. These directives
are .dw (define word) and .db (define byte). If using .dw, you will have to
group the bytes derived above into pairs (arbitrarily if you wish), e.g.:

.dw 0b0000000100010011 ; code for AND and IOR

OR

Basic operations with A T90S1200 and TINY12 71

.db 0b00000001, 0b00010011 ; code for AND, code for IOR

There is one important difference between the two lines above. When using .dw,
the lower byte of the word has the lower byte address. For example, if the two
lines above were both written at word address 00, the code for the IOR would
be at byte address 00 in the .dw example, and at byte address 01 in the .db
example. As long as you take note of the correct byte addresses, it doesn't
matter which way you do it.

EXERCISE 2.35
or .db.

Complete the other three lines of the look-up table using .dw

Therefore, using the lpm instruction we have obtained a form of the truth table
for each gate at R0. We will then test Input A of the gate (PB4). If it is low we
swap the nibbles of R0 (e.g. 00000001 becomes 00010000). What this does is
select which half of the truth table we wish to access (remember we split it up
into two halves). The swap instruction is:

swap reg

and swaps upper and lower nibbles of a register. We then test Input B of the gate
(PB5). If it is low we rotate the number in R0 to the right. What this does is
select which of the two outputs remaining in the truth table is the right one. The
four lines we need are therefore:

sbis PinB, 4 ; tests Input A
swap R0 ; swaps nibbles if low
sbis PinB, 5 ; tests Input B
ror R0 ; rotates right if low

The state of R0, bit 0 now holds the output we wish to produce in PB0.
However, we don't want to change the states of the pull-ups on the inputs, so we
want to move a number into PortB that is all 1 s for PB 1-4, and PB0 equal to bit
0 of R0. Just like ANDing is a way to force certain bits low (masking), inclu-
sive ORing is a way to force certain bits high. For example, in this case if we
IOR R0 with 0b 11110 we will get a number that is all l s except PB0 whose
state is intact. We can then move the result of this into PortB safe in the knowl-
edge that the pull-ups will remain. The inclusive OR instruction is:

ori reg, number ;

This inclusive ORs a register with the immediate number, but only works on
registers R16-R31. We therefore have to move R0 into temp using the mov
instruction.

72 Basic operations with AT90S1200 and TINY12

EXERCISE 2.36 What four lines take the number in R0, move it to temp, force
bits 1-4 high and then output it to PortB before looping back to Start.

This finishes off the program, it is shown in its complete form in Appendix J.

SREG- the status register

We have seen some of the bits of SREG (zero flag, carry flag and T bit), and we
will now look at the remaining five. They can all be individually tested, set or
cleared using general SREG instructions: brbc and brbs which we have already
met, and:

bset bit
bclr bit

; sets a bit in SREG
; clears a bit in SREG

Each bit also has its own personalized instructions (such as breq and brcc)
which are listed in Appendix C. The bits in SREG are:

Basic operations with AT90S1200 and TINY12 73

S R E G - STATUS Register ($3F)

bit no. 7 6 5 4 3 2 1 0
bit name I T H S V N Z C

Carry flag:
Reacts to carrying
with arithmetic
operations, and to
the ror and rol
instructions.

Zero flag:
0: The result wasn't 0
1: The result was 0

Negative flag:
0: MSB of result is 0
I :MSB of result is 1

Two's complement overflow flag:
0: No two's complement overflow
1: Two's complement overflow

occurred

Sign flag: (XOR of V and N bits)
0: Result is positive
1: Result is negative

Half carry flag:
Like the carry flag, except for the lower nibble

(i.e. 4 lsbs)

T bit:
A temporary bit

Global interrupt enable:
Master switch for the interrupts

(cleared when an interrupt occurs)

If you want to check whether a particular instruction affects a certain flag,
check out the Instruction Overview (Appendix D). The purposes of the nega-
tive, two's complement overflow, and sign flags should be clear if you cast your

74 Basic operations with AT90S1200 and TINY12

mind back to the section on negative binary numbers. The half carry flag
behaves in exactly the same way as the carry flag, except for the lower nibble.
For example:

1111
01011010 = 90
00001111 = 1 5

01101001 = 105

This operation would set the half carry flag, as there was a carry on the bit 3
pair. The global interrupt enable will be introduced in the section on interrupts
in Chapter 4.

Watchdog timer

A potentially useful feature of AVR chips is the watchdog timer: a 1 MHz
internal timer, independent of outside components, which resets the AVR at
regular intervals. In order to stop the AVR resetting, the watchdog timer must
be cleared at regular intervals (i.e. before it has time to reset the chip). It is
chiefly used as a safety feature, for if the program crashes the watchdog timer
will shortly kick in and reset the chip, hopefully restoring normal operation. The
watchdog timer is cleared using:

wdr

This resets the watchdog timer (often called 'patting the dog'). The watchdog
timer (WDT for short) is controlled by the WDTCR register:

Basic operations with AT90S1200 and TINY12 75

W D T C R - Watchdog Timer Control Register ($21)

bit no. 7 6 5 4 3 2

bit name W D E W D P 2
I

I

O00
001
010
011
100
101
110
111

W D P I

L
15 ms
30 ms
60 ms
0.12 second
0.24 second
0.49 second
0.97 second
1.9 seconds

Watchdog enable:
O: Watchdog Timer disabled
1: Watchdog Timer enabled

WDPO

WDE controls whether or not the WDT is enabled, and WDP0-2 controls the
length of time before the chip is reset. Note that the times given in the table are
susceptible to temperature effects and are also a function of the supply voltage.
The values in the table are for a supply of 5.0 V. For a 3.0 V supply the times
are approximately three times longer.

S/eeO
There are often applications where you wish the chip to be idle for a while until
something happens. In such cases it is handy to be able to send the AVR to a
low power mode called sleep. The AVR can be woken up from sleep by an
external reset, a WDT reset, or by an interrupt (these are discussed in Chapter
4). The instruction to send the AVR to sleep is simply:

sleep

There are two types of sleep: a light snooze and a deep sleep. The light snooze
(called idle mode) halts the program but keeps the timers (such as Timer 0)
running. The deep sleep (called power-down mode) shuts down everything such
that only the WDT, Reset pin, and INT0 interrupt can wake it up.

For example, to design a device that turns on when moved, we could do the
following. Test the vibration switch and go to (deep) sleep if it is off. The WDT
will then wake up the AVR and reset it. Testing the vibration switch will take a
few microseconds, and the WDT could be set to time out every 60 ms, meaning

76 Basic operations with AT90S1200 and TINY12

the AVR is only on for about a thousandth of the time. When the vibration
switch does eventually trigger the AVR will skip the sleep instruction and
continue with normal operation. The WDT could then be disabled or reset at
regular intervals using wdr.

To control the sleep properties of the AVR, we use an I/O register called
M C U C R ($35). Bit 5 of the MCUCR is the sleep enable, and this bit must be
set if you wish to use the sleep instruction. Bit 4 selects which type of sleep you
require (0 for idle mode and 1 for power-down mode).

More instructions - loose ends

Through the example projects we have encountered the majority of the instruc-
tions for the 1200 and Tiny AVRs. Here is the remainder:

neg reg

This instruction makes the number in a register negative (i.e. takes the two
complement).

nop

This stands for no operation, in other words do nothing. This essentially wastes
one clock cycle, and can be quite useful. There are further instructions which
perform logic and arithmetic operations on pairs of registers:

and regl, reg2
or regl, reg2
add regl, reg2
adc regl, reg2
sub regl, reg2
sbc regl, reg2

; ANDs reg 1 and reg2, leaving result in reg 1
; ORs regl and reg2, leaving result in regl
; adds regl and reg2, leaving result in reg 1
; as add, but adds an extra 1 if the Carry flag is set
; subtracts reg2 from reg 1, leaving result in regl
; as sub, but subtracts a further 1 if the Carry flag
; is set

There are also instructions to load a specific bit in a register into the T bit of
SREG:

bst reg, bit
bid reg, bit

; stores a bit in a register into the T bit
; loads a bit in a register into the T bit

There are two more comparing instructions:

cpse regl, reg2 ;

This compares two registers and skips the next instruction if they are equal. In

Basic operations with AT90S1200 and TINY12 77

the same way that the cp instruction effectively performs a sub between two
registers without actually changing them, the instruction cpc effectively
performs an sbc between two registers without actually changing them. The
SREG flags (e.g. carry and zero flag etc.) are affected in exactly the same was
as with the sub and sbc instructions:

cpc regl, reg2 ; compares two registers taking the Carry flag into
; account

Finally there are two instructions for testing the state of a bit in a working
register:

srbc reg, bit

srbs reg, bit

; tests a bit in a register and skips next instruction if
; clear
; tests a bit in a register and skips next instruction if
; set

Major program J" frequency counter

�9 Multiple seven segment display
�9 Timing + counting
�9 Watchdog timer

We will end the chapter with a large project covering the key issues raised. We
will design a frequency counter with a range 1 Hz-999 kHz. The frequency will
be displayed on three seven segment displays, giving the frequency in Hz if it is
less than 1 kHz, and in kHz otherwise. An LED will indicate the units. As an
added feature, the device will stay on only when a signal greater than 1 Hz is
fed into the input, and it will go to sleep when such a signal disappears. The
circuit diagram is shown in Figure 2.25.

Notice that as we will be strobing the seven segment displays, each display will
be on for only one-third of the time. In order to give each LED the same average
current as it would be getting if it were being driven continuously, we need to
divide the LEDs' series resistors by 3. Assuming a 5 V supply and a 2 V drop
across the LED, there will be 3 V across the resistor. To supply a current of 10 mA
to the LED if it were driven continuously, we would therefore choose a resistor
value of 300 ohms. For this case I have therefore gone for a value of 100 ohms.

There are two ways to measure frequency. For high frequency signals it is
best to take a fixed amount of time and count the number of oscillations on the
input during that time. This can then be scaled up to represent a frequency. For
lower frequency signals this method becomes too inaccurate, and so instead we
measure the length of time between rising edges on the input. The program will
have to work out whether the input frequency is high or low, and therefore
which method it should use.

+~,

m

,,r

-----I' I
"'~

~

n
r"

~1~
~ ~o.~

~
^

z~
 __

Ii

"l'Fl<'l~l'l<'t-I'Pl°l:l'l'l"-I"t"l<'Pl"l

i-i-i I i'i-i 1i-l-7
0

0
~

Basic operations with AT90S1200 and TINY12 79

We have only one timer/counter at our disposal, which is an inconvenience,
but something we can live with. For high frequency signals it is necessary to use
T/C0 to count the input signal, as it will be difficult to test the input reliably. For
lower frequency signals it will be easier to test the input directly, and more
importantly to measure time accurately. This will be a long program, so it is all
the more important to have a clear flowchart, shown in Figure 2.26.

High Speed [

I
I Set-up for High Speed]

YE

NO

NO

I Increment higher byte I

I Oiso.a reos I
I

I
Divide number of counts by
64 to get frequency in kHz

~ YES

[Convert number into 3 digits I

~ Y E S

I UoOoteO,so,a I
I

Set-up

I

r

Low Speed

I
I Set-up for Low Speed I

I
i

Wait for PD4 to change I
I

YES

NO

NO

I Increment higher byte(s) I

NO

Turns off display and
goes to sleep

YE

"[NO
I Convert number into 3 digits

I

Figure 2.26

80 Basic operations with AT90S1200 and TINY12

The test for high frequency signals takes the shortest time (64 ms), so the
program will run this first. If the frequency measured is less than 1 kHz, the
program will jump to the low-speed testing. The idea behind the high-speed
testing is to time 64 ms by counting clock cycles (i.e. without T/C0), and count
signals on T/C0. The only problem is that for timing up to 1 MHz, we would
expect 64 000 cycles, i.e. well above 256. We therefore need to be monitoring
T/C0 to see when it overflows, and increment a counter which would act as a
higher byte for T/C0. You can now see why I chose 64 ms. The maximum
number which can be stored over two registers is 0xFFFF = 65 536, so 64 000
is close to the maximum. Furthermore to convert the number of counts into a
frequency in kHz, we need only to divide the number of counts by 64. Dividing
a number by 2 n is easy - we simply rotate the number to the right n times (you
may want to try this out on paper). This makes 64 ms an ideal choice.

For the low-speed test, we change T/C0 to count internally. We wait for the
input to change and then start timing, waiting until the input changes a further
two times before stopping again (this times the length of one cycle). Again, if
we look at 1 Hz, with T/C0 counting at 4 MHz, this represents 4 million cycles,
and we will need three registers to hold the entire number. If the time is greater
than these three registers can hold, we know the time is less than 1 Hz, and so
send the AVR to sleep. The WDT will be set to wake up the AVR every 1024
ms (i.e. about once a second), though note that in normal operation the WDT
will have to be cleared regularly.

For the Init section, set up the ports with no pull-up on the input signal pin.
Also, set up the WDTCR to enable the WDT to reset every 1024 ms, and
configure MCUCR to enable deep (power-down) sleep.

We now need to carefully construct the main loop in which the timing will be
carried o u t - this is the most important part of the program. We can guess that
the loop is going to take somewhere between 4 and 10 cycles, so for 64 ms =
256 000 clock cycles, we are going to have to count down between 64 000 and
25 600 times, we can therefore make a guess that two counting registers
(Delay l and Delay2) can be used to count the time, but we will have to actually
write the loop before we can be sure. Before we enter the loop we will have to
set up the delay registers (we don't know what we will have to move into them
as this depends on the loop length), set up how T/C0 is going to count, and reset
T/C0 to 0. We will also use the move 0b 10000000 into Port B to turn on the kHz
LED and reset the display. You will notice there is also a line clearing a register
called upperbyte, we will see the significance of this register shortly.

9 9 ldi D e l a y l , . .
ldi Delay2, ??

ldi
out
ldi

temp, 0b00000111 ; sets T/C0 to count rising edge
TCCR0, temp ; on TO (PD4)
temp, 0bl0000000 ; turns off all displays and turns on

Basic operations with AT90S1200 and TINY12 81

out PortB, temp ; kHz LED

clr upperbyte ; clears a counting register
clr temp ; resets Timer 0
out TCNT0, temp ;

The loop itself starts with the standard decrementing of the 2-byte number
spread over the delay registers, skipping out of the loop if the time has passed:

HighSpeed:
subi Delayl, 1
sbci Delay2, 0
brcs DoneHi

; decrements Delayl
; decrements Delay2 if carry high
; jumps out of loop if time passed

We then need some way of testing to see if T/C0 has overflowed. There are two
ways of doing this. The simplest is to test the timer overflow flag, which, unlike
the other flags we've met so far, is stored in the TIFR I/O register.
Unfortunately, we cannot test this flag directly with the sbic or sbis instructions,
as it is number 0x38 which is greater than 0xlE We would therefore have to
read TIFR into a working register, then test the bit. More irritating is the fact
that we need to reset it by writing a one to it. Again, we cannot use the sbi
instruction, and instead have to do it through a working register. This overall
process takes five instructions, but there is an alternative method which only
uses four. The concept behind this method is to store the current value ofT/C0
and compare it with the value that was in T/C0 the previous time in the loop.
We would expect the current value to always be greater than the previous value,
except when it overflows. By comparing the old and new values, and branching
if the new is less than the old, we therefore detect an overflow, and no resetting
of flags is needed. In the code below, we use register temp to store the new
value, and temp2 to store the old value:

mov temp2, temp
in temp, TCNT0
cp temp, temp2
brsh HighSpeed

; copies temp into temp2 (old value)
; reads new value into temp
; compares old and new
; loops back if new is 'same or higher'

If you count through the total HighSpeed loop of seven instructions, you will
see it takes eight clock cycles if T/CO doesn't overflow (remember a
branching instruction takes two clock cycles). What we need to do now is
construct a similar loop that will increment the higher byte, see if it's too high,
decrement our counting registers, skip out if they've reached zero, and loop
back to HighSpeed, all in the same number of clock cycles. This final part is
crucial to ensure the timing is perfect. Fortunately we can do it all, with a
clock cycle to spare! We therefore use nop to waste one cycle. The maximum

82 Basic operations with AT90S1200 and TINY12

number of counts we are allowing on the input is 63 999 in the 64 ms (i.e. 1
MHz is just too high, and so 64 000 is just too high - 64 000 translates as
0xFA00, which is handy as we can simply test if the upper byte has reached
0xFA). If it has we know how to skip out of the loop:

inc upperbyte
cpi upperbyte, 0xFA
breq TooHigh
subi Delayl, 1
sbci Delay2, 0
brcs DoneHi
nop
rjmp HighSpeed

; increments higher byte
; too high?
; skips out of loop if too high
; decrements counting registers

; skips out of loop if done counting
; wastes one cycle
; loops back

Now you may be thinking 'hang on, there are nine cycles in the above segment,
not eight!'. You are right, of course, but think about the number of cycles in the
previous section if the program does not loop back to ltighSpeed. If the
program does not loop back, it does not branch, and so takes one less clock
cycle. We make up for this one less clock cycle in the loop above with one more
in this loop. Thus in the running of this whole section, the counting registers
will either decrement once every eight clock cycles or twice every 16 clock
cycles. You may want to write the whole loop down and work through it to
convince yourself of this. Now that we know the delay registers decrement
every eight clock cycles, we can work out what to initialize them to in order to
create a 64 ms delay.

EXERCISE 2.37 What should Delayl and Delay2 be initialized to?

That's the hardest part done! We now need to immediately store the current
value ofT/C0. The only problem is, what if T/C0 has overflowed in between the
last test for overflowing and now? We need to use the same test as before.

EXERCISE 2.38 Write the six lines which make up the section called DoneHi,
which stores T/C0 into lowerbyte, and compare this value with temp (which
represents the old value ofT/C0). If lowerbyte is 'same or higher' it skips to a
section called Divide64, if it isn't, it increments upperbyte, tests to see if it has
reached 0xFA, and jumps to TooHigh if it has.

The next section needs to divide the 2-byte number split up over lowerbyte and
upperbyte by 64 = 2 6. We do this by rotating the whole number six times; to
rotate the upper byte into the lower byte, we rotate the upper byte fight with zeros
filling bit 7, and then rotate the lower byte fight with the carry flag filling bit 7.

EXERCISE 2.39 What two lines divide the 2-byte number by 2?

Basic operations with AT90S1200 and TINY12 83

The Divide64 loop does this six times. First we set up temp with the number 6,
then divide by 2 as we've done above. Then decrement temp, looping back if it
does not equal zero. We don't want to reset temp with 6, so we really want to
jump to Divide64 and then skip one instruction. This can be done using the
following trick:

rjmp Divide64+l ; jumps to Divide64 and then skips one

This works with any jumping/branching instruction, and for any number of
skips. Note that large skips (e.g. +8) lead to unwieldy programs which are hard
to follow and easy to get wrong.

EXERCISE 2.40 What five lines make up the Divide64 section?

We test to see if the number is too low. The 2-byte word holds the frequency in
kHz, so if this number is less than 1 (i.e. 0) we know how to change to the low-
speed testing method.

EXERCISE 2.41 What four lines test to see if both bytes are 0, and skips to
LowSpeed if they are.

We then need to convert this number split over 2 bytes into a number of
hundreds, tens and ones so that they can be displayed easily. This will be done
in a subroutine, as we will have to do it in the LowSpeed section as well. To do
the conversion we will call DigitConvert. As the displays are being strobed, we
need to be calling a display subroutine at regular intervals. Unfortunately, our
carefully constructed timing loop above cannot accommodate the calling of a
display subroutine, as this would insert large numbers of clock cycles and
disrupt the timing. The timing routine only takes 64 ms, so the idea here is to
leave the displays idle for 64 ms, and then let them run for half a second.

We stick in a simple half second delay using counting registers, making sure
we call the Display subroutine during the loop.

EXERCISE 2.42 Write the nine instructions which set up the three delay regis-
ters, and then create a half second delay loop which also calls Display. When
the required time has passed, the program should jump back to Start. You will
have to take the length of the Display subroutine into account when doing your
calculations. The rcall instruction actually takes three cycles, and the ret
instruction takes four. On average, the subroutine itself will take two instruc-
tions, so assume the whole subroutine action adds nine clock cycles to the loop.
Call the delay loop HalfSecond.

All that remains in the high-speed timing method is to deal with the Tooltigh
section, which simply has to make the display registers show-HI. The numbers

84 Basic operations with AT90S1200 and TINY12

to be displayed will be stored in registers called Hundreds, Tens and Ones.
There will be a look-up table as before, except in this table 10 will be translated
as the symbol for an 'H' , and 11 as the symbol for a hyphen '- ' . A 12 will be
translated as a blank space (i.e. no segments on), and so you should set all digits
to 12 in the Init section. We therefore need to move 11 into Hundreds , 10 into
Tens and a 1 into Ones (as a 1 will look like an I), and the Display subroutine
will do the rest. After this we jump to three lines before the start HalfSecond
section (these three lines previously set up the HalfSecond counting registers).

EXERCISE 2.43 What four lines make up the TooHigh section?

This marks the end of the high-speed timing method, and therefore the halfway
point in the program.

Let's have a look at the DigitConvert subroutine. This takes a number split
over upperbyte and lowerbyte, and converts it into a number of hundreds, tens
and ones. This is done by repeatedly subtracting 100 from the 2-byte number
until there is a carry. 100 is then added back, and the process is repeated with
10. The number left in the lower byte after this is simply the number of ones, so
we can just move the number across. Once we have extracted the number of
hundreds, we no longer need to involve the upper byte, as we know the number
is now entirely contained in the lower byte (if the number is less than 100 it fits
in one byte).

DigitConvert:
clr Hundreds ; resets registers
clr Ones
clr Tens

FindHundreds:
subi lowerbyte, 100
sbci upperbyte, 0
brcs FindTens
inc Hundreds
rjmp FindHundreds

; subtracts 100 from lower byte
; subtracts 1 if carry
; does 10's if carry
; increment number of hundreds
; repeats

FindTens"
subi
subi
brcs
inc
rjmp

lowerbyte,-100 ; adds back the last 100
lowerbyte, 10 ; subtracts 10 from lower byte
FindOnes ; does l's if carry
Tens ; increments number of tens
FindTens+l ; repeats, but doesn't add 100 again

FindOnes:
subi lowerbyte,-10 ; adds back the last 10

Basic operations with AT90S1200 and TINY12 85

m o v

ret
ones, lowerbyte ; number left in lowerbyte = ones

; finished

You may want to work your way through this program with a sample number
(e.g. convince yourself that 329 gets reduced to 3 hundreds, 2 tens and 9 ones).

The other subroutine is Display. This has to choose which of the three
displays to activate, find the appropriate number in Hundreds, Tens or Ones,
and then display it. In the half second loop we've written, the subroutine is
called about once every 4 ms. We can't make the displays change this often as
the LEDs won't have time to turn fully on and the display will be faint with
shadows (numbers on other displays appearing on the wrong display). We there-
fore build in an automatic scaling of 50 - i.e. the subroutine returns immedi-
ately having done nothing 49 times, and then on the 50th time it's called, it
performs the display routine, and then repeats. This means the displays are
changing every 0.2 ms which is far better; however, should you experience any
of the effects described above, you may wish to increase 50 to a higher value.

We will use a register called DisplayCounter. This will be set up in the Init
section with the value 50. The beginning of Display therefore decrements
DisplayCounter, and returns if the result is not 0. If it is 0, DisplayCounter
should be reloaded with 50. Furthermore, we can take this opportunity to clear
watchdog timer. This must be done regularly, and the Display subroutine is
called regularly in whichever part of the program it happens to be (by regularly
I mean at least once a second). A simple solution is therefore to reset the WDT
when the Display subroutine continues.

EXERCISE 2.44 Write the five lines at the start of the Display subroutine.

We need some way to know which display we will be displaying, and will store
this as a number between 0 and 2 in a register called DisplayNumber.
Therefore, the first thing we do is increment DisplayNumber and reset it to 0
if it has reached 3 (you will also have to clear DisplayNumber in the Init
section).

EXERCISE 2.45
perform this.

Write the subsequent four lines of the subroutine which

Now we need to do some serious indirect addressing! First, we extract the right
number to be displayed from Hundreds, Tens or Ones. You will have to define
these at the top of the program, I defined mine as R26, R27 and R28 respec-
tively. We therefore set up ZL to point to R26 (move 26 into ZL), and then add
the number in DisplayNumber. This will point to one of the three numbers we
want to display. Using the ld instruction we load this value into temp. The seven
segment display codes are stored in registers R0-R12, and so we now zero ZL
to R0 (move 0 into it). Adding to R0 the number read into temp should point to

86 Basic operations with AT90S1200 and TINY12

the seven segment code of the number to be displayed. Again, load this value
into temp. We mustn't clear bit 7 of PortB if it is on (indicating kHz). Therefore,
test bit 7 of Port B, if it is on, OR the number in telnp with 0b 10000000, and
then in either case move ternp into Port B.

EXERCISE 2.46
code to Port B.

Write the nine lines which output the correct seven segment

The remainder of the subroutine must turn on the correct seven segment display.
Remember the essence of strobing: the number you have just outputted to Port
B is going to all of the displays, but by turning only one of them on, the number
only appears in one of the displays. We basically want to turn on PortD bit 0,
then bit 1, then bit 2 and then back to bit 0. The easiest way to do this is to read
PinD into temp, rotate it left without letting any 1 s creep in (i.e. use lsl), test to
see if bit 3 is high (i.e. gone too far), and reset the value to 0b00000001 if it is.

EXERCISE 2.47
the subroutine?

What six lines turn on the correct display and then return from

Now all that is left is the low-speed testing section. We need to set up T/C0 to
count up every clock cycle (this gives us maximum resolution). We also need to
(reset) clear the delay registers Delay2 and Delay3, and clear PB7 to turn on the
Hz LED.

EXERCISE 2.48 What five lines will start off the LowSpeed section?

We need a way to see when PD4 changes (remember now T/C0 is counting
internally we need to test the input pin manually). There are a few methods at
our disposal, the one I suggest is as follows. Store the initial value in PinD, and
then enter a loop which reads in the current value of PinD, and exclusive OR it
with the initial value. The effect of the EOR is to highlight which bits are
different.

Example 2.9 0b00011001
EOR 0b 10001001

0bl0010000 +- shows that bits 7 and 4 were different

We are interested only in bit 4 (PD4) which is connected to the input, and so
after performing the EOR we can test bit 4 of the answer and keep looping until
it is high. When in any loop that lasts a long time (as this one might), we must
also keep calling the Display routine.

in store, PinD
FirstChange: rcall Display

; stores initial value
; keeps displays going

Basic operations with AT90S1200 and TINY12 87

in store2, PinD
eor store2, store
sbrs store2, 4
rjmp FirstChange

; reads in current value
; EORs current and initial values
; skips out of loop if PD4 changed
; keeps looping until PD4 changes

The main loop of the low-speed testing section consists of repeating the above
test for two changes (i.e. wait for one complete period of the input's oscillation),
and incrementing the higher bytes when T/C0 overflows. We deal with the T/C0
overflow in the same way as before, with one important difference. We cannot
use temp to store the old value because temp is used repeatedly in the Display
subroutine we have just written. It is very important you look out for these kinds
of traps as they can be a source of many problems - try to keep your use of
working registers local (i.e. don't expect them to hold a number for too long),
in this way you can use a register like temp all over the program. We can use
Delayl instead of temp, as at the end of the looping, we want Delayl to hold
the current value in T/C0.

Before we enter the low-speed loop we need to clear Delayl and T/C0. We
will also need some sort of counter to count the number of times the input
changes. We need it to change only twice, so set up a register called Counter
and load 2 into it.

EXERCISE 2.49 Write the three pre-loop instructions.

Now the loop looks for a change in the input in the same way as before, and
jumps to a section called Change if there is a change.

EXERCISE 2.50 Write the five lines which perform this test. (HINT: One of
them is before the start of the loop, call the loop LowLoop.)

We then call the Display subroutine, as we have to do this regularly, then test to
see if the T/C0 has overflowed. If it hasn't overflowed, loop back to LowLoop.
If it has overflowed, increment Delay2, and if this overflows increment Delay3.
The minimum frequency is 1 Hz, and hence the maximum amount of time is
about 4 000 000 counts, which in hexadecimal is 0x3D0900. Therefore if
Delay3 reaches 0x3E we know the input frequency is too slow and will jump to
a section called TooSlow.

EXERCISE 2.51
section.

Challenger What 11 lines form the rest of the low-speed

The Change section should decrement Counter, and loop back to LowLoop if
it isn't zero. On the second change, it doesn't loop back but instead checks to
see if the stored number is low enough to deserve high-speed testing. The
maximum frequency measured with this method is 999 Hz, which corresponds

88 Basic operations with AT90S1200 and TINY12

to 4004 clock cycles, hence if the result is 4000 (0xFA0) or less we should
branch to Start and perform the high-speed testing. It may not be entirely clear
how we test to see if the number spread over three registers is less than
0x000FA0. For a start, we cannot subtract the number, as this would change the
number in the delay registers. Instead, we use the compare instructions as we
would if we were just testing one byte, but also make use of the epe instruction,
which compares two registers and also takes the carry flag into account. It is
simply analogous to subtracting with the carry (e.g. sbei but without actually
changing the registers). The only problem with epe is that it only works between
two file registers, not a file register and a number, so we have to load the
numbers into temporary working registers. The necessary lines for Change are
therefore:

Change: in store, PortB
dec Counter
brne LowLoop

; updates new value of PortB
; waits for second change
; not second change so loops

ldi temp, 0x0F
ldi temp2, 0x00
cpi Delayl, 0xA0
cpc Delay2, temp
cpc Delay3, temp2
brcc PC+2
rjmp Start

; sets ups temporary registers

; compares three-byte number with
; 0x000FA0

; less that FA0 so goes to high-speed

You will notice that instead of the expected line (bres Start) - i.e. branch
to Start if the carry flag is set, we choose to skip the (rjmp Start) line if
the carry flag is clear. These two methods are clearly identical in their end
result, but why introduce an extra line? The reason lies in the fact that the bres
can only branch to lines which are 64 instructions away. The Start line is, in
fact, further away than this, and so must be branched to using the r jmp instruc-
tion. Points like this will be picked up when you try to assemble the program
and are generally missed at the writing s t a g e - so you don't have to start
counting 60 odd lines whenever you introduce a bres or similar instruction.

We then convert the time period of the oscillation into a frequency. To do this
we need to take 4 000 000 and divide it by the length of time (in clock cycles)
we have just measured. If we measured 40 000 clock cycles over one period,
this will correspond to 100 Hz. There is a way to perform binary long division,
but by far the simplest method of dividing x by y is to see how many times you
can subtract y from x. This does take fewer instructions, but will take longer to
run. We set up 4 000 000 = 0x3D0900, spread over three temporary registers
(temp, temp2 and temp3). Every time we successfully subtract the number
spread over Delayl, Delay2 and Delay3, we increment a lower byte of the
answer. When this overflows, we increment the higher byte. The answer will be

Basic operations with AT90S1200 and TINY12 89

between 1 and 1000 so we need only two bytes for the answer. The following
lines set up the division:

ldi temp, 0x00
ldi temp2, 0x09
ldi temp3, 0x3D
clr lowerbyte
clr upperbyte

; moves 4 000 000 spread over 3
; temporary registers

; resets the answer registers

EXERCISE 2.52 Write the eight lines of the loop called Divide which divides
4 000 000 by the number in the delay registers. (Hint: Call the next section
DoneDividing and jump to this section when a subtraction was unsuccessful
(carry flag was set).)

As with the high-speed section, we then convert the number in lowerbyte and
upperbyte into hundreds, tens and ones. We can use the DigitConvert subrou-
tine we have already written. The program then loops back to LowSpeed.

EXERCISE 2.53 What two lines wrap up the low-speed testing loop?

All that remains is the section called TooSlow which is branched to when the
period of oscillations is more than one second. In this case we want to turn the
displays off and send the AVR to sleep.

EXERCISE 2.54 Write the three lines which make up the TooSlow section.

You will have to remember to set up registers R0 to R11 with the correct seven
segment code in the Init section. As you can use only the ldi instruction on
registers R 16-R31 you will have to move the numbers first into temp, and then
move them into R0 to R 11 using the mov instruction. Also, remember to set up
PortD with one of the displays selected (e.g. 0b00000001), and define all your
registers at the top of the program. It should now be ready for testing with the
simulator. This may be worth building as it performs a useful function;
however, you will notice that its resolution isn't great as you get only three-
figure resolution between 100 Hz-999 Hz and 100 kHz-999 kHz. You may
want to think about ways to improve the program to give three-figure resolu-
tion for all frequencies in the given range. In the coming chapters we will learn
methods that will allow us to simplify this program hugely, and it will be worth
coming back to this at the end and gleefully hack bits off to trim down the
program.

Working on this larger program also introduces the importance of taking
breaks. Even when you are 'in the zone' it is always a good idea to step back for
a few minutes and relax. You will find you return looking at the bigger picture
and may find you are overlooking something. Good planning and flowcharts

90 Basic operations with AT90S1200 and TINY12

help reduce such oversights. Another good piece of advice is to talk to people
about decisions you have to make, or problems when you get stuck. Even if they
don't know the first thing about microcontrollers, simply asking the question
will surprisingly often reveal the answer.

