
5 
Advanced operations 

P W M -  pulse width modulation 

In this section we will see how the output compare function can be used to 
create an analogue output-  a simplification of the method used in the voltage 
inverter project. Our aim is to create a square wave output whose mark-space 
ratio we can change. The mark-space ratio is the duration of the 'logic 1' part 
of the wave divided by the duration of the 'logic 0' part of the wave. By control- 
ling this ratio, we can control the output voltage, which is effectively an average 
of the square wave output, as shown in Figure 5.1. When using this output, you 
may need to add a resistor/capacitor arrangement similar to that used in the 
voltage inverter project, depending on the application. 
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Figure 5.1 

The output compare function is used to create automatic PWM, with 8-, 9-, 
or 10-bit resolution. By placing T/C1 in 8-bit PWM mode, for example, we 
force T/C1 into a mode whereby it counts up to 0xFF, and then counts back 
down to 0x00, and then repeats. We then set a threshold by moving a certain 
number into the output compare registers. When T/C 1 reaches this value when 
counting up, it will set the OC1 output pin (PB3 on the 2313). When T/C1 
reaches the value when counting back down it will clear the OC 1 output pin. 
This creates 8-bit PWM, as illustrated in Figure 5.2. 

If in 9-bit PWM mode, T/C 1 will count up to 0xlFF before counting back 
down, giving an extra bit of resolution. Similarly, in 10-bit PWM mode, T/C1 
will count up to 0x3FF and back. You are also able to invert the PWM output so 
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Figure 5.2 

that the OC 1 is cleared when T/C 1 passes the threshold whilst counting up, and 
OC1 is set when T/C1 passes the threshold whilst counting down. The I/O 
register TCCR1A controls the PWM settings, the bit assignments are shown in 
Figure 5.3. 

First, you will notice that you have the option, when not in PWM mode, to 
alter the state of the OC 1 pin whenever Output Compare interrupt occurs. We 
could use this in the melody maker project to toggle the speaker output auto- 
matically, if we connected the speaker to OC 1. You may also be wondering what 
happens to the T/C 1 Overflow interrupt when in PWM mode (as in this case the 
T/C 1 clearly never overflows). When in PWM mode, the T/C 1 Overflow inter- 
rupt occurs every time T/C1 starts counting from 0x0000. Furthermore, if 
PWM is enabled, the OC 1 is treated as an output, regardless of the state of the 
corresponding bit in the DDRx register. 

There is another feature of the PWM mode which comes into effect when- 
ever you try to change the output mark-space ratio. You would do this by 
changing the OCR1AH and O C R I A L  registers, but unless you change them 
at precisely the moment at which T/C 1 is at its maximum (e.g. 0xlFF for 9- 
bit PWM), you run the risk of a glitch appearing in your output. This glitch 
would take the form of a pulse whose width was in between the old and new 
widths. In cases where you are trying to send information encoded in the 
length of the pulses, this would clearly be damaging, as you would send some 
garbage every time you changed the pulse width. Thankfully, in PWM mode, 
when you try to change OCR1AH and OCR1AL, their new values are stored 
in a temporary location, and they are properly updated only when T/C 1 is at 
its maximum. 
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TCCR1A- Timer/Counter 1 Control Register ($2F) 

Bit no. 7 6 5 4 3 
Bit n a m e  C O M I A 1  C O M I A 0  - - - 

W h e n  in P W M  mode... 

1 0 
P W M  11 P W M  10 r___l 
00 PWM mode disabled 

01 8-bit PWM enabled 

10 9-bit PWM enabled 

11 10-bit PWM enabled 

00 Do nothing to OC1 pin 

01 Do nothing to OC1 pin 

10 Clear OC1 when counting up, set 0C1 when counting down 

11 Set OC1 when counting up, clear OC1 when counting down 

W h e n  not in P W M  mode... 

00 Do nothing to OC1 pin 

01 Toggle OC1 when Output Compare interrupt occurs 

10 Clear OC1 when Output Compare interrupt occurs 

11 Set OC1 when Output Compare interrupt occurs 

Figure 5.3 

UART 

'UART' is an Egyptian term that means 'the Artist's Quarter ' -  a place of bifur- 
cation or division. However, UART also stands for Universal Asynchronous 
Receiver and Transmitter, and is a standardized method of sharing data with 
other devices. The UART module found on some AVR models (such as the 
2313, 4433 and 8515) refers to the latter. UART involves sending 8- or 9-bit 
packets of data (normally a byte, or a byte plus a parity bit). This 8- or 9-bit 
packet is called a character. A parity bit is an extra bit sent along with the data 
byte that helps with the error checking. If there are an odd number of ones in 
the data byte (e.g. 0b00110100), the parity bit will be 1, if there are an even 
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number (e.g. 0b00110011), the parity bit will be 0. This way, if a bit error occurs 
somewhere between sending the byte and receiving it, the parity bit will not 
match the data byte, the receiver will know that something has gone wrong, and 
it can ask for the byte to be resent. If two bit errors occur in one byte, the parity 
bit will be correct, but the probability of two bit errors occurring is often so 
small in real applications that this can be overlooked. 

EXERCISE 5.1 Challenge/Write a short piece of code that takes the number in 
a register (e.g. temp), and works out the state of the parity bit for that register. 

For transmission, the UART module takes the input character (8 or 9 bits), adds 
a start bit (a zero) at the front, and a stop bit (a one) to the end, to create a 10- 
or 11-bit sequence. This is then moved into a shift register which rotates the bits 
on to the TXD (transmission) pin, for example pin PD 1 on the 2313. An example 
is shown in Figure 5.4, and the speed at which the bits are moved on to the pin 
is dictated by the baud rate (number of bits per second) which can be 
controlled. 

byte to be sent 0b00101101 

shift register [,, 1001011010 ,,, I TXDpin 

) 
Voltage on 
TXD 

. .  

/ / 

" t t~me 
1 0 1 1 0 1 0 0 

Start Bit Stop Bit 

Figure 5.4 

The UART module at the receiving end will be constantly checking the data 
line (connected to the RXD pin), which will normally be high. The receiver can 
actually sample the data line at 16 times the baud rate, i.e. it can make 16 
samples per bit. If it detects that the RXD pin goes low (i.e. a potential start bit) 
it waits for six samples and then makes three more samples. These should be 
samples 8, 9 and 10 out of the 16 for any given b i t -  i.e. it is sampling at the 
middle of the bit, allowing for slow rise and fall times on the signal. If it detects 
that the RXD pin is still low, i.e. this is definitely a start bit, it carries on and 
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reads the whole byte. If the RXD is no longer low, it decides the first sample 
must have been noise and carries on waiting for a genuine character. If the 
receiver has decided that this is a genuine character, it will sample each bit three 
times at the middle of its pattern. If the values of the three samples taken on the 
same bit are not all identical, the receiver takes the majority value. Finally, when 
the receiver samples what it thinks should be the stop bit, it must read a one (on 
at least two of the three samples) to declare the character properly read. If it 
doesn't read a stop bit when it expects to, it declares the character badly framed 
and registers a framing error. You should check to see if a framing error has 
occurred before using the value you have just read into the chip. 

Fortunately, all this is done for us by the UART module on the AVR chip. The 
UART module also brings with it four I/O registers: 

UDR (UART Data Register, $0C) -  Bits 0 to 7 of the data to be sent, or data 
just received 
UCR (UART Control Register, $ 0 A ) -  Controls settings of the UART, and 
contains bit 8 
USR (UART Status Register, SOB) - Displays status of parts of UART (e.g. 
interrupt flags) 
UBRR (UART Baud Rate Register, $ 0 9 ) -  Sets the speed of the UART data 
transfer 

The bit assignments for registers UCR and USR are shown in Figures 5.5 and 
5.6 respectively. 

Finally, UBRR is used to control the rate of the data transfer. Clearly, this 
must be the same for both the transmitting device and the receiving device. This 
baud rate is given by the following formula: 

Baud rate = CK 
16 x ( U B R R + I )  

For example, if we are using a 4 MHz clock, and the number in UBRR is 25, 
the baud rate will be about 9615. There are a number of standard values for 
baud rates: 2400, 4800, 9600 etc., which it can be advisable to stick to, to allow 
compatibility of your device with others. For thisreason, oscillator frequencies 
such as 4 MHz are not very good for UART applications, as it is impossible to 
choose these standard values of baud rates (try UBRR = 26 in the above). Much 
better values include 1.8432 MHz, 2.4576 MHz, 3.6864 MHz, 4.608 MHz, 
7.3728 MHz, and 9.216 MHz. For the higher frequencies, make sure the AVR 
model you have chosen can take such a clock frequency. Taking 3.6864 MHz as 
an example, we can see that UBRR = 23 leads to a baud rate of exactly 9600. 

Example 5.1 
device" 

Send the value in the working register Identity to another UART 
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UCR - UART Control Register ($0A) 

Bit no. 
Bit name 

7 6 5 4 3 2 1 0 
RXClE TXClE UDRIE RXEN TXEN CHR9 RXB8 TXB8 

I 
8: 

In 9-bit mode,  this is the  
ninth bit sen t  (bit 8) 

8: 
In 9b i t  mode, this is the 
ninth bit received (bit 8) 

9 
0: 8-bit data characters (plus start/stop) 
l- 9-bit data characters (plus start/stop) 

0: Disables Transmitter (but waits for current 
transmission to end) 
1" Enables Transmitter 

0: Disables Receiver (and its corresponding flags) 
] Enables Receiver 

0: UART Data Empty interrupt disabled 
1" UART Data Empty interrupt enables (see bit 5 of USR) 

0: TX Complete interrupt disabled 
1" TX Complete interrupt enabled 

0: RX Complete interrupt disabled 
1" RX Complete interrupt enabled 

Figure 5.5 

ldi temp, 0b00001000 ; enables the transmitter 
out UCR, temp 
out UDR, Identity ; sends value 

If we wished to send another piece of data, we would have to wait for the UDRE 
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U S R  - UART Status Register (SOB) 

Bit no. 7 6 5 4 
Bit n a m e  R X C  T X C  U D R E  FE 

3 2 1 0 
O R  - - - 

0: has been successfully transferred to 
shift register 
1: has been overwritten before byte was 
moved into shift register 

0: No framing error (stop bit is ok) 
1" Framing error detected (bad stop bit) 

0: The byte in UDR hasn't yet been emptied into the shift 
register 
1- has been emptied into the shift register 

Set when a character has been transmitted, and there is no new 
data in UDR. If the interrupt is enabled, this bit is automatically 
cleared. If not, it must be cleared by setting the bit. 

Figure 5.6 

Set when a character has been received and stored in UDR. If the 
interrupt is enabled, must be read to clear this bit. 

bit in USR to tell us that the byte has been moved into the shift register, and 
UDR is ready for a new byte. 

You can use UART to communicate with the RS232 port on your PC. The 
simplest way to send bytes through your PC's serial port is through a program 
that comes with Microsoft| Windows| called HyperTerminal (Start Menu 
Programs ~ Accessories ~ Communications). You can create a connection 
with your serial port (e.g. COM1), choose a baud rate, number of bits, parity 
setting etc. When HyperTerminal connects to the serial port, whatever character 
you type is sent (as ASCII) through the serial port. If you have a development 
board, such as the STK500, there is an RS232 socket that you can connect 
directly to the RXD and TXD pins. If you do not have such a development 
board, you will have to wire up the correct pins to RXD and TXD, and also 
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make sure the voltage (which could be anywhere between 3 and 12 V), is regu- 
lated to a safe voltage (like 5 V). Figure 5.7 shows how to wire up the pins on 
a 9-pin RS232 socket to allow direct communication with the AVR. Some of the 
other pins are handshala'ng pins, which can be bypassed by connecting them 
together as shown. 

Figure 5.7 

Program O: keyboard converter 

�9 UART 
�9 Sounds 
�9 Seven segment displays 
�9 Output compare 

We can use HyperTerminal to send characters to our melody maker project, via 
the UART module. We can effectively convert our computer keyboard into a 
musical keyboard by assigning note frequencies to the different characters. For 
example, when I press the letter 'a' when HyperTerminal is connected to the 
AVR, it will send 'a' to the UART module. This can then trigger an interrupt, 
convert the ASCII code for 'a' into the frequency for a 'C' note. I have arranged 
my keys on the keyboard so that they resemble how they are arranged on a 
piano, but you may find you can fit more notes if you arrange them differently. 
Figure 5.8 shows my arrangement. 

Figure 5.8 
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We will also use a seven segment display to show which note is being played; 
this can help overcome any user confusion over how the letters on the computer 
keyboard correspond to the musical notes. There will be a separate LED to 
show the sharp symbol (#). The circuit diagram is shown in Figure 5.9, and the 
flowchart in Figure 5.10. 

In the Init section, set up inputs and outputs and set OC 1 to toggle with every 
output compare (this handles the speaker output for us, so there is no need to 
write a routine for the Output Compare interrupt). Make all other timer settings 
the same as in the melody maker, choose a baud rate of 9600, and enable the 
UART receiver and the UART Receive Complete interrupt. 

Again, the main body of the program is just a constant loop to Start. The 
UART Receive Complete interrupt tells us that some new data has been 
received on the line, which we should convert to a frequency and then change 
OCR1AH and OCR1AL accordingly. The beginning of the interrupt routine 
should therefore read UDR into ZL. The ASCII conversion table is shown in 
Appendix G. I will only use letters a-z, all lower case, which correspond to 
0x61 to 0x7A in ASCII, so subtract 0x61 from ZL to get a number between 0 
and 25. If ZL is more than 25, an inappropriate key is being pressed, so move 
26 into it, this ensures no matter what character we read, the program will stay 
within the look-up table we are about to write. Now multiply ZL by two to 
make it a word address. We wish to read the program memory into R0, using 
the lpm instruction, and then copy R0 into OCR1Att ,  and OCRIAL.  We can 
do this directly (i.e. without having to play with octaves etc., so we don't need 
NoteI-I and NoteL). However, when doing this directly, we have to remember 
the golden rule - you must write the higher byte first. There are two ways of 
doing this. First, arrange the data in the look-up table so that the higher byte 
actually comes first. For example, if I wished the number 0xlE84 to be the 
code for a 'C' note, the top of my look-up table would be: 

.dw 0x841E 

This is a little confusing, and an easier way is to start by pointing ZL to the 
higher byte. In other words, if the table starts at byte address 26 in the program 
memory, add 27 to ZL instead of 26, to point ZL to the higher bytes. Then to 
read the lower byte, decrement ZL. 

EXERCISE 5.2 Challenger. Write the first 12 lines of the UART Receive 
Complete interrupt section which use the data received by the UART module to 
write new values for OCRIAH and OCR1AL. 

For the display we have another look-up table, below the first, starting at word 
address 43. We can simply add 60 (30 x 2) to ZL to point to the second look- 
up table. This holds the seven segment codes for the note letters. Bit 3 will be 
used to light up the # (sharp) LED. 
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Set-up I Store received data 

F" 
Convert data to values for 

1, 

NO 

I 
Convert data to 7-seg code 

for and # LED 

I 
Make OC1 toggle with the Output 

Compare and reset TCNTO 

I , , ,  

I  eturn 1 

/0 

Disconnect OC1 from 
the Output Compare 

I 

[ R e t u r n , , ]  

I 
Set data = 26 

I 

Figure 5.10 

EXERCISE 5.3 What s& lines point ZL to the second look-up table, read the 
value, and output it to PortB? They should then mask all of R0 (which contains 
the value read from the table) except bit 3, and move the result into PortD, to 
take care of the # LED. As you cannot use the andi instruction on R0-R15, you 
will have to copy R0 into temp. 

EXERCISE 5.4 Whatfive lines will set the OC 1 pin to toggle with every Output 
Compare interrupt, reset T/C0 and return? 

EXERCISE 5.5 What three lines make up the T/C0 Overflow interrupt, which 
should disconnect the OC 1 pin from the Output Compare interrupt and return? 

This program is quite fun to play around with, but you may find the keyboard's 
repeat delay a nuisance. You can try to minimize this in the Control Panel, or 
perhaps lengthen the minimum note to try to overcome it. If you move the 
frequencies produced out of the audible range, this project can be developed into 
more sinister applications - perhaps you could use it for espionage purposes ... ? 
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Another UART project you may wish to make would be to build upon the 
palindrome detector designed in Chapter 3, and interface it with a computer via 
its serial port. The use of the Receive Complete interrupt would simplify the 
program considerably. 

Serial peripheral interface (SPI) 

The UART described in the previous section has a few drawbacks. For a start it 
is only half duplex (also called simplex) - this means you can send data in only 
one direction on one line. Connecting the TXD pin on one device connected to 
the RXD pin of another supports data transfer in one direction only, namely 
TXD to RXD. SPI offers full duplex- the ability to send data in both directions 
at the same time. It is also a synchronous mode of transfer-  this means all the 
relevant devices are also connected to a common clock, so that they can all be 
in synch, and operate at a higher speed. 

Sending information through the SPI module is just as straightforward as 
with UART. Any number of SPI devices can be connected together; however, 
one device is called the Master, and the other devices are Slaves. The Master 
can talk to the Slaves, and the Slaves can talk to the Master, but the Slaves 
cannot talk to each other. The Master provides the clock that synchronizes the 
connection, and it decides when it is going to talk to the Slave, and when the 
Slave can talk to it. Figure 5.11 shows an arrangement with one Master and two 
Slaves. 

When you move a number into the SPI data register of the Master device, it 
will immediately start a clock signal on the SCK pin (SPI Clock), and begin 
shifting the data out on the MOSI pin (Master Out, Slave In) to the Slaves on 

5V 
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Figure 5.11 
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their MOSI pins. The Slave will receive the data only if it has been chosen by 
the Master, i.e. if its SS pin is high. Therefore, using any two output pins (PB0 
and PB 1 in the example in Figure 5.11), the Master can choose which of the 
Slaves it wants to talk to. As the Master sends its data to the Slave on the MOSI 
pin, the Slave immediately begins sending the contents of its data register to the 
Master on their MISO (Master In, Slave Out) pins. The two 8-bit shift registers 
on Master and Slave behave like one big, circular 16-bit shift register- as bits 
shift off Master onto Slave, bits shift off the Slave and into the Master. You can 
configure the SS pin on the Master as an output, and use it as a general output. 
If you make it an input, however, you must tie it to Vcc, as shown. If the 
Master's SS pin is pulled low, it assumes some other Master wants to enslave it, 
and will turn into a Slave! This allows some hierarchy between Masters in a 
complex SPI system. The I/O registers involved with SPI are: 

SPDR (SPI Data Register, $0F) - Data to be sent, or data just received 
SPCR (SPI Control Register, SOD)- Controls settings of the SPI 
SPSR (SPI Status Register, $ 0 E ) -  Displays status of parts of SPI (e.g. inter- 
rupt flags) 

SPDR is the data register into which you should move the byte to be sent to the 
other device, and holds the received byte after the transmission is finished. You 
must wait for the current transmission to finish before writing the next byte to 
be sent to SPDR. When reading the received byte, you have slightly longer to 
read it. You can read the received byte while the next transmission is in progress, 
but once this next byte is completely received, the old received byte is over- 
written. You therefore have until the next transaction completes to read the 
received data. 

The SPSR contains two flags. Bit 6 is the write collision flag, which is set 
when SPDR is written to before the current transmission is finished. Bit 7 is the 
SPI interrupt flag, which is set when an SPI transmission completes. 

An example project you may wish to consider attempting could be an elec- 
tronic chess game involving two AVR units which communicate using an SPI 
link. The users at either end can input their move into their unit, which will then 
send the move to the other unit. The game can be stored on the EEPROM (thus 
allowing games to continue after power has been removed and the units sep- 
arated). Sixty-four bytes are required, as each square on the board can be 
assigned a space in the EEPROM. The number in the EEPROM indicates which 
piece is on that space. For example 00 could mean empty. 01 = black pawn, 02 
= black knight etc., 81 = white pawn, 82 = white knight etc. The allowed moves 
would involve adding or subtracting numbers to a particular piece's position. 
For example, allowed moves for bishops are at the basic level adding or 
subtracting multiples of 9 or 7. Figure 5.13 should help you picture this. 
However, tests will be needed to ensure the piece doesn't travel through another, 
or off the board. 
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S P C R  - SPI Control Register (SOD) 

Bit no. 7 6 
Bit name SPIE SPE 

5 4 3 2 1 0 
DORD MSTR CPOL CPHA SPR1 SPRO 

I 
. . 

O0 SCK speed is CK/4 

01 SCK speed is CK/16 

10 SCK speed is CK/64 

11 SCK speed is CK/128 

O: Trigger on rising edge of SCK 
1" Trigger on falling edge of SCK 

O: SCK pin low when idle 
1" SCK pin high when idle 

/ 

O: Slave mode 
1: Master mode 

O: MSB of data word transmitted first 
1- LSB of data word transmitted first 

O: SPI disabled 
1: SPI Enabled. MOSI, MISO, SCK and SS pins enabled 

O: SPI interrupt disabled 
1 �9 SPI interrupt enabled 

Figure 5.12 

The moves could be entered in standard chess notation (e.g. Be2 = Bishop to 
the E2 square), or with the help of a more visual display which resembles the 
board. This project is left as an exercise for the chess enthusiasts, but I would be 
interested in seeing your solutions (my email address is given in Appendix I). 
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Figure 5.13 

Both UART and SPI can be implemented on chips without these custom 
modules, entirely with software. For more information on these, you can check 
out Claus Kfihnel's book listed in Appendix I, but my advice would be simply 
to use a chip that has the hardware you require. 

Tiny15's eccentric timer 1 

As a brief aside, it is worth noting that the Tiny l 5 has an 8-bit T/C 1, and a few 
other eccentricities that make it different from the norm. Whereas on other 
chips, T/C0 and T/C1 can count up at no more than CK, the clock speed at 
which instructions are performed, the T/C 1 on the Tiny 15 can actually count up 
faster than CK. It can be set to count at 16CK, 8CK, 4CK or 2CK, as well as 
CK, and also at a larger range of fractions of CK, as shown in the Tiny 15's bit 
assignment of TCCR1,  the T/C1 Control Register (Figure 5.14). The reason it 
can count higher than CK is that it has access to a high-speed clock (called 
PCK) that runs 16 times faster than CK; values such as 8CK and 4CK are 
obtained by prescaling this high-speed clock. 

As T/C 1 is only 8 bit, the PWM is 8 bit. Rather than counting up and down 
in PWM mode, T/C1 is always counting up, and will change the state of the 
OC 1 pin when it reaches the top. The top value ofT/C 1 is given by the OCR1B 
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TCCRI -  T/Cl Control Register ($30) on the Tiny15 

Bit no. 
Bit name 

7 6 5 4 3 2 1 0 
CTC1 PWM1 COMIA1 COMIA0 ADIE ADPS2 ADPS1 ADPS0 

[ I 

DO00 

3001 

3010 

3011 

31 O0 

9101 

DllO 

Olll 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

STOP! T/C1 is stopped 

T/C1 counts at 16 x CK 

T/C1 counts at 8 x CK 

T/C1 counts at 4 x CK 

TC/1 counts at 12 x CK 

T/C1 counts at CK 

T/C1 counts at CK/2 

T/C1 counts at CK/4 

T/C1 counts at CK/8 

T/C1 counts at CK/16 

T/C1 counts at CK/32 

T/C1 counts at CK/64 

T/C1 counts at CK/128 

T/C1 counts at CK/256 

T/C1 counts at CK/512 

T/C1 counts at CK/1024 

O0 Do nothing to 0C1 pin 

01 Do nothing to 0C1 pin 

10 Clear 0C1 when compare match, set on T/C1 overflow 

11 Set 0C1 when compare match, clear on T/C1 overflow 

O0 Do nothing to 0C1 pin 

01 Toggle 0C1 when Output Compare interrupt occurs 

10 Clear 0C1 when Output Compare interrupt occurs 

11 Set 0C1 when Output Compare interrupt occurs 

O: PWM disabled 
1: PWM enabled (8-bit) 

/ 1 

O" Doesn't reset T/C1 on Compare Match 
1:T/C1 is reset to $00 on Compare Match 

Figure 5.14 
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I/O register. The PWM is glitch free, as before, so updates to OCRIA occur 
only when T/C 1 reaches the top value, as shown in Figure 5.15. 

1 1 

OC 1A pin 

Figure 5.15 

As if this wasn't enough, there's another I/O register thrown in, with the 
mysterious title of Special Function IO Register: SFIOR ($2C). This register 
allows you to reset the prescaler of either of timer/counters. What on earth does 
this mean? Let's look at how the prescaler works. Essentially, the prescaler is a 
10-bit register that counts up at CK. When T/C0, for example, is 'prescaled at 
CK/2' it counts with bit 0 of the prescaler. If it is 'prescaled at CK/64', it counts 
with bit 5 of the prescaler etc. This is illustrated in Figure 5.16. 

Bit 9 Bit 0 

 -01 0 0 0 1 0 0  

CK/1024 CK/128 CK/64 CK/8 CK/2 

Prescaler 

Figure 5.16 

When you reset the prescaler, you wipe its value to 0, ensuring a more accur- 
ate count. Say you wished to set your T/C0 to count at CK/1024. In steady state 
operation it will be perfectly accurate, but for that very first count, we don't 
know that the number in the prescaler doesn't happen to be 1023, and so the 
first count will come a lot sooner than expected. To reset the prescaler for T/C0, 
just set bit 0 of SFIOR (the bit will then clear itself). To reset the prescaler for 
T/C1, set bit 1 of SFIOR. Finally, with bit 2 of SFIOR, we are able to force a 
change on the OC 1A pin, according to the settings in bits 4 and 5 of TCCR1. 
In other words, we 'fool' the pin into thinking there has been an Output 
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Compare Match; however there is no interrupt generated, and T/C1 will not 
reset. 

Although at the time of publication, the Tiny l 5 was the only model with this 
type of T/C1, we can expect that other models of AVR will emerge with a 
similar T/C 1. 

Shrtcts 

There are a number of ways to trim down your program into a slender and 
seductive beauty. One of the easiest ways is to use the .macro assembler direc- 
tive. This allows you to, in effect, create your own instructions. 

Example 5.1 
.macro 

.endmacro 

At the top of your program ... 
nopnop ; the name of this macro is nopnop 
rjmp PC+I 

Then, in the rest of your program, you can write the instruction nopnop, and 
the assembler will interpret this as r jmp PC+I.  Why have I called this 
nopnop? Jumping to the next line with the r jmp instruction wastes two clock 
cycles, as the r jmp instruction takes twice as long as most instructions. Writing 
rjmp PC+I is therefore equivalent to writing two hops, but only takes up 
one instruction. Macros can also be given operands, which are referred to as 
@0, @1 etc. 

Example 5.2 

.macro multiply 

.endmacro 

; the name of this macro is multiply 
mov temp, @0 ; 
clr @0 , wipes answer register 
tst @1 ; tests multplier 
breq PC+4 
add @0, temp ; adds multiplicand to itself 
dec @1 
rjmp PC-4 ; repeats 

In the program, if we wanted to multiply the number in Seconds by the number 
in Counter,  we could simply write: 

multiply Seconds, Counter 

Note that we can use labels in the macro, these will immediately be translated 
as relative jumps, and so there will be no risk of label duplication should the 
macro be used more than once in the program. 
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EXERCISE 5.6 Create a macro called skeq which skips the next instruction if 
the zero flag is set. 

EXERCISE 5.7 Create a macro called HiWait which will wait until a bit in an 
I/O register goes high. 

It is important to clarify in your mind the distinction between subroutines and 
macros. Macros are simply ways of abbreviating longer or less pretty pieces of 
code into neat one-word actions. The assembler will expand these out, so your 
program will end up just as long (but you will never see the expanded version). 
Using subroutines will actually make your program shorter (i.e. take up less 
space in the program memory), BUT may well take longer to run. The rcall 
instruction takes three clock cycles, and the ret instruction four clock cycles, so 
subroutines are literally a waste of time for really short shortcuts. 

A Mega summary 

Covering the cornucopia of new functions found on the MegaAVR range is not 
one of the aims of this book. It is worth, however, giving a brief introduction so 
that you can at least decide whether it's worth learning more about them. First, 
they offer more of what you've seen so far: more timers, more PWM, more 
ADCs, more I/O pins, more memory and more instructions. 

The new instructions fall into three categories. There are a few new instruc- 
tions introduced along with an on-chip multiplier- specially built hardware 
which performs multiplication in two clock cycles. The rnul instruction is used 
to multiply two registers together. Other multiply instructions (signed/ 
unsigned/fractional etc.) are also available. The call and imp instructions are 
direct calls and jumps respectively. The only difference to the user is the ability 
to jump to, or call, any part of the program, though you probably won't experi- 
ence this limitation on non-Mega AVRs unless you write really large programs. 
The new instructions also include additions to the memory access instructions, 
most notable is the stm instruction. This stores the word spread over R0 and R1 
into the program memory. This allows the program to write to itself! 

Another particularly useful feature available on most new AVRs is the JTAG 
interface. This is a standard that has been developed to facilitate debugging. It 
is a way for the AVR to send the entire contents of its registers (I/O, working 
registers, SRAM) to a PC, so that you can see what's going on inside it as it runs 
in your circuit board. 

Final program P: computer controlled robot 

�9 Serial communication 
�9 PWM to drive a motor 
�9 Seven segment display to display messages 
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A computer controlled robot has been chosen as a fun project which ties together 
some of the topics discussed in the book. The project that will be developed will 
be a skeleton, around which a semi-intelligent robot can be based. We can send 
commands to the robot through the serial port on the computer to the UART 
module on the AVR. Motor speed can be controlled through the use of PWM, and 
a seven segment display will be used to show messages, and allow the robot to 
'talk'. The use of EEPROM to store moves and the application of the music 
modules are some basic enhancements that could be added on. Sensors could be 
placed on the robot, and it could send information back to the computer regarding 
the states of these sensors. More sophisticated software on the computer end, 
which would make the robot behave like a state machine and respond to various 
inputs, would be a more interesting development, but this goes beyond the scope 
of this book. The circuit diagram of the basic robot is shown in Figure 5.17. 

Both motors are driven from the OC 1 pin, which is the output of the PWM. 
To allow the robot to turn, the left motor can be turned off by setting the PD2 
pin. This means it can turn in one direction only, but still gives it plenty of 
freedom. A larger AVR, such as the 8515, has two PWM outputs, on OC1A and 
OC 1B pins. This means the motors can be driven independently. 

The commands we can send the robot are shown in Table 5.1. 

Table 5.1 

Letter ASCII Function Message to PC 

g 0x67 Go/Stop 'Go' or 'Stop' 
t 0x74 Begin turning or end turning 

(stop/start left motor) 
Speed up 
Slow down 
Change speed 

(followed by two-digit number, e.g. s25) 
0x5B Begin message 

(to be displayed on seven segment displays) <message> 
0x5D End message 

+ 0x2B 
- 0x2D 
s 0x73 

'Turning' 
'Speeding up' 
'Slowing down' 

'Speed set to .. . '  

All other inputs will be ignored. The robot will send the computer back 
confirmations of each action. For example, if it is sent a ' t ' ,  it will reply with 
'Turning'. Not all letters can be displayed on the seven segment displays- to be 
able to display any letter we need a more complex display (e.g. a 14 segment 
display). As it is, we are unable to display letters k, m, q, v, w and x. 

The structure of the program is very straightforward, and entirely interrupt 
driven. If a receive interrupt occurs, the program identifies the character received 
and responds accordingly. To simplify the Display subroutine, we can make this 
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driven by T/C0, such that every time T/C0 overflows, the Display subroutine is 
called. This not only removes the burden on us of remembering to call it regu- 
larly, but also means we can remove the counter register that allows the entire 
subroutine to be executed only once every 50 visits. We must therefore configure 
T/C0 so that it overflows sufficiently often. The refresh rate should be more than 
25 times a second and, bearing in mind there are four displays, this means the 
Display subroutine should be called at least 100 times a second. As T/C0 over- 
flows after 256 counts, this means a minimum T/C0 rate of 25.6 kHz. If we are 
using a 2.4576 MHz crystal, this represents prescaling of CK/64. 

In the Init section, configure the inputs and outputs, and T/C0. Set up T/C1 
to count at CK, set OC 1 to clear when T/C 1 passes the threshold counting up, 
and set when T/C 1 passes it coming down (this means the higher the number in 
OCIAH/L, the faster the speed of the motor). Disable PWM for the time being 
(8-bit PWM will be enabled when a 'g' is received from the computer). Don't 
forget to set up the stack pointer I/O registers. On the 2313 this is just SPL, and 
which you should load with 'RAMEND'. Enable the Receive Complete UART 
Interrupt, and enable the Receive Mode. Set the UART baud rate to 9600, and 
enable the global interrupt bit. 

Adjust the Display subroutine from previous projects to include four 
displays. The seven segment code to be displayed will be stored in registers 
R21-24. Note that as these will hold the seven segment code, their values can 
be moved directly into PortB. 

EXERCISE 5.8 
this program. 

Make the necessary changes to create a Display subroutine for 

The Receive Complete Interrupt should first test to see if what is being sent is 
to be taken as a command, or as part of a text message. The T bit will be used 
to indicate which interpretation is appropriate (i.e. the start message command 
'[' will set the T bit, and the end message command ']' will clear it. It should 
also be cleared in the Init section. The Receive Complete Interrupt section 
should start by testing for an end message symbol, and jump to EndMessage if 
it is received. The next test should be the T bit, if it is set we should branch to 
Message. The other symbols (g, t, s, + , - )  can be tested in any order, though it 
is simplest to put the test for '[' at the end. If it is '[', the T bit should be set. 
Any other symbol should be ignored. 

The Turning section should toggle the state of the PD2 pin (which controls 
the left motor). The receive mode should then be disabled, and the transmit 
mode enabled. Move the ASCII code for a 'T' into temp, and then call a subrou- 
tine called Send. This subroutine will take the number in temp and send it 
through the UART module; we will write the subroutine later. Repeat the above 
for the rest of the letters. We also need to send a new line (also called line feed) 
and carriage return symbol, so that each message sent to the PC appears on a 
new line. These symbols are 0x0A and 0x0D respectively, but these will be 
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common to all messages, so at this point (after sending the 'g'), just branch to 
EndMessage, which will do the rest. 

EndMessage will clear the T bit, send 0x0A and 0x0D to the PC, and then 
disable the transmit mode and enable the receive mode. 

The Send subroutine should put the contents of temp into the UDR, and then 
enter a loop in which it constantly checks the transmit complete flag (the TXC 
bit in USR). You must not write to UDR in this loop (i.e. loop to Send+l, and 
not to Send), because this resets the TXC flag, which means you will stay in the 
loop forever. After the TXC flag goes high, you must reset it by setting it, and 
then return. 

The SpeedUp section will read in the number currently in OCR1AL, and add 
10 to it. If the carry flag is set, the number should be capped at 0xFF, and then 
moved back to OCR1AL. Note that you cannot use the following: 

subi temp, -10 

This really adds 246 to temp, which will almost invariably set the carry flag. 
You should therefore move 10 into another working register, and add it to temp 
using the add instruction. Alternatively, you could use ZL, and the adiw 
instruction. You should then repeat the same steps as in Turning to send the 
appropriate message back to the PC. Similarly, the SlowDown section subtracts 
10 from OCR1AL, forcing the value to 0 if it goes negative. The usual method 
is used to send the reply to the PC. 

The GoStop section is slightly harder. You must first test the state of the 
PWM (i.e. is it enabled?) by testing bit 0 of TCCRIA. If it is enabled, disable 
it, and send 'STOP!' to the PC. If it is enabled, jump to a different section called 
Go. This section should enable 8-bit PWM (set bit 0 of TCCR1A), and send 
'GO!' to the PC. 

The ChangeSpeed section has to wait for two more characters (the two digits 
of the speed). It should start with a loop to wait for the first character (waiting 
for the RXC bit in USR to set). The first digit received should be moved from 
the UDR into a working register called speedl0. This number should be copied 
into a temporary register, and have 0x30 subtracted from it. This converts the 
ASCII for 0-9, into the numbers 0 to 9. The result of this should then be multi- 
plied by 10, as this is the tens digit. The next digit should then be received, and 
the result stored in a register called speedl. Again, convert this into the actual 
number (subtract 0x30), and add it to the tens digit. It is important you keep 
speedl0 and speedl unchanged, as these will be used when replying to the PC. 
The value representing the total two-digit number will be between 0 and 99. We 
would like to convert this to something between 0 and 255 - an easy way to do 
this is to multiply it by 3, but cap anything that goes above 255. The result 
should be moved into OCRIAL. The reply should be sent to the PC 'Speed Set 
To xx', with xx being the new two-digit speed. For letters, we move the ASCII 
values into temp as before. For the actual speed, just copy speedl0 or speedl 
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into temp, and call Send, as before. After sending speedl, this section should 
jump to EndMessage. 

Finally, the hardest section is Message. This converts input characters from 
ASCII into seven segment code, and scrolls the result through the displays as 
they come in. The display registers will be called Thousands, Hundreds, 
Tens and Ones. As new numbers come in, Hundreds will be copied to 
Thousands, Tens to Hundreds, Ones to Tens, and finally the new number 
will be written to Ones. First, however, we must convert ASCII to seven 
segment numbers. We will try to display the digits '0' to '9' only, the lower 
case letters 'a' to 'z',  and the upper case letters 'A' to 'Z',  with the exclusions 
we noted earlier. With the letters, where a lower case letter is not possible 
whilst an upper case is (e.g. 'e' and 'E'), the upper case alternative is returned. 
This ensures that the program will try to produce the intended case, but gives 
getting the letter right at all a higher priority. As you may have guessed, this 
conversion process is carried out with one large look-up table. The first task 
is simply to reply to the PC with the character just received. This is straight- 
forward-  read UDR into ZL, disable received mode, enable transmit mode, 
copy ZL into temp, and then call the Send subroutine. Change back into 
receive mode and disable transmit mode, and then subtract 0xl0 from ZL. 
The digits 0-9 start at 0x30 in ASCII, so subtracting 0xl0 will make a '0'  
correspond to 0x20 etc. This is a byte address, so the word address will be half 
of this, i.e. a '0' corresponds to word address 0xl 0. We can make this the start 
of our look-up table (use .org 0xl0 at the start of the table). The first five 
words in the look-up table can represent the digits 0-9. Make sure you work 
out your own values for the look-up table, instead of copying those in my 
program, as your circuit board may not be the same as mine. Capital letters 
'A' to 'Z' start at ASCII value 0x41. Rather than writing empty lines into the 
look-up table, simply write .org 0xlS, to point the next part of the look-up 
table at program address 0x18, which is byte address 0x30, which corre- 
sponds to ASCII 0x40. The first byte in the table is therefore not important, 
but the second should correspond to 'A', and so on. Finally, letters 'a' to 'z' 
begin at ASCII value 0x61, and so use .org 0x28 at the top of the look-up 
table for the lower case letters. 

I realized when testing that a space (i.e. pressing the space bar) was an im- 
portant symbol to transmit. This is 0x20 in ASCII, which gets reduced to byte 
address 0xl 0, and word address 0x08. A clever way to deal with spaces, there- 
fore, is to make address 0x08 a nop instruction (hop is translated as 0x0000 by 
the assembler), hop would be read as any of the other bytes, and return 
0b00000000 which corresponds to all bits off (i.e. a space). 0x08 happens to be 
the UART Empty interrupt, which we are not using, so it is fine to simply write 
hop. In the unforeseeable event that the UART Empty interrupt does occur, all 
that will happen is that it will execute the nop, and then the reti instruction 
which follows at address 0x09. The program is therefore still immune to an 
unexpected occurrence of the UART Empty interrupt. Once the program 
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memory has been read, and the values in the registers shifted along, the 
Message section is finished. 

This concludes the final program, my version is shown in Program P. I hope 
you do try to build this one, and work on some enhancements to make it more 
robot-like. It really is a good platform for a variety of interesting projects. 

Conclusions 

When you are debugging your own programs, I suggest the following. First, try 
to break down your program into discrete units which can be tested indepen- 
dent ly-  this way you can pinpoint bugs quickly. Another frustrating problem 
can be not being able to look inside the register of the AVR while it is running. 
This can be overcome by using an emulator, though there is a cheaper way. At 
certain points in the program you could try sending the contents of certain regis- 
ters through the UART to your PC, and see how they are changing. The inser- 
tion of a UART transmission module in your program may not be worth the 
extra work, but it does give you a good indication of what's going on inside your 
A V R -  like a poor man's JTAG or emulator. 

Throughout this book we have encountered examples of attempting to 
perform a task with limited means, and then learning about new tools which 
allow us to perform these tasks with greater ease. It is often the case that the 
more complicated the microcontroller becomes, the simpler a given program 
will become. This gives us some insight into the compromise that chip 
designers face between giving a chip functionality and keeping it relatively 
simple. This simplicity is necessary not only to keep costs low, but also to make 
the chip easy to get to grips with. I have no doubt that new features will emerge 
on new models of AVR that appear after the publication of this book. These will 
almost inevitably centre around some I/O register, perhaps with a certain bit 
assignment that controls different aspects. This information can be gleaned 
from the chip's datasheets, which should not be as daunting now as they might 
have been when you started. By reading through these you should be able to 
keep abreast of any new functions- make sure you keep up to date with these, 
they're there to make your life as a programmer easier! 




