
Adafruit OV5640 Camera Breakouts
Created by Jeff Epler

https://learn.adafruit.com/adafruit-ov5640-camera-breakout

Last updated on 2024-06-03 03:46:21 PM EDT

©Adafruit Industries Page 1 of 59

5

7

14

15

15

17

28

31

32

38

Table of Contents

Overview

Pinouts
• A note on silkscreen labels
• Camera Lens
• Power Supply
• Power Down & Reset
• Power LED
• I2C Pins
• Clock and Synchronization Pins
• Data Pins
• Autofocus Motor Power
• Test Bar Mode

Assembly

CircuitPython Camera Libraries
• Camera Pin Naming

Espressif ESP32-family Overview
• Setting 'reserved PSRAM'
• Pin Choices

Install TinyUF2 on Espressif Kaluga
• Method 1: WebSerial ESPTool / esptool
• Step 1. Download the tinyuf2 combined.bin file here
• Step 2. Place your board in bootloader mode
• Step 3 Option A. Use the Web Serial ESPTool to upload
• Step 3. Option B. Use esptool.py to upload (for advanced users)
• Step 4. Reset the board
• Method 2: Flash an Arduino Sketch
• Arduino IDE Setup
• Load the Blink Sketch

Install CircuitPython on Espressif Kaluga with TinyUF2
• CircuitPython Quickstart
• Kaluga USB Connection

Espressif Kaluga Pinout
• Setting 'reserved PSRAM'
• Camera Module Connections
• LCD variants

LCD Mirror Demo
• Install & Use the Demo
• Code Walkthrough

ASCII Mirror Demo
• Install & Use the Demo

©Adafruit Industries Page 2 of 59

42

47

47

48

50

54

57

58

JPEG Capture Demo
• Install & Use the Demo
• Code walkthrough

espcamera documentation

Raspberry Pi RP2040 Overview
• Image storage
• Pin choices

Raspberry Pi Pico Usage
• Camera connections
• LCD connections

ASCII Mirror Demo
• Install & Use the Demo

LCD Mirror Demo
• Install & Use the Demo
• Code Walkthrough

adafruit_ov5640 documentation

Downloads
• Files
• Schematic and Fab Print

©Adafruit Industries Page 3 of 59

©Adafruit Industries Page 4 of 59

Overview

Hobby-level microcontrollers are finally getting powerful enough to start handling
camera modules that historically would have required a full computer or FPGA to
handle. The RP2040 and ESP32-Sx series of chips, for example, have enough pins to
communicate with the 8-bit data output, DMA to quickly grab a frame, and the
necessary RAM to buffer a raw snapshot. Now all that is needed is a nice camera
module to make interfacing easy!

This Adafruit OV5640 Camera Breakout with 120 Degree Lens has a nice quality
OV5640 camera with a 5 Megapixel sensor element, 120-degree wide angle lens, and

©Adafruit Industries Page 5 of 59

all the support circuitry you need. Adafruit looked at existing camera modules and
while this breakout board is backwards compatible, they made some improvements:

Standard 2x9 header if you want it, but also a duplicated header strip 0.3" apart
so you can plug it into a breadboard or perfboard
Selectable external or internal 24MHz "XCLK" clock generation - save one GPIO
pin, or just have a nice stable 24 MHz signal even if your microcontroller can't
generate it for you.
Heat-sinking camera area with exposed ground pad, with lots of vias for good
thermal transfer. Helpful for when doing continuous encoding and reducing
thermal image drift.
Optional VMotor 3.3V power jumper on DATA1, for auto-focusing camera
modules
3.3V power-good LED on back that can be disabled

The module comes with header pins so you can solder it for use on a breadboard or
on the standard 2x9 header—It's up to you.

•

•

•

•

•

©Adafruit Industries Page 6 of 59

Pinouts

A note on silkscreen labels

In each column, the top label (e.g., G, SDA,
etc) applies to both the top and center
rows of pins. The bottom label (e.g., 3V,
SCL, etc) is for the bottom row of pins. As
noted on the Assembly page, depending
how you will install the module you will
either be using the two outermost rows of
pins, or the two bottom rows of pins.

©Adafruit Industries Page 7 of 59

https://learn.adafruit.com//assets/118602
https://learn.adafruit.com//assets/118602

Camera Lens

This OV5640 camera has a 120° wide-angle lens. Its focusing distance can't be
adjusted. When shipped, it has an opaque lens cap on it. Remove the cap to capture
images, unless you really like the color black.

Power Supply

©Adafruit Industries Page 8 of 59

The camera module requires a well-regulated 3.3v supply in order to operate.

G (GND): Connect to microcontroller GND
3V (3.3V): Connect to microcontroller +3.3V supply

Power Down & Reset

PD (powerdown): Optional connection to microcontroller GPIO. When pulled
HIGH the camera module is put into power-down mode. When released or
pulled LOW the camera is powered on. This pin can also be pulsed HIGH as a
way to reset the camera.
RT (reset): Optional connect to microcontroller GPIO. Pull the pin LOW to reset
the camera module and release it or pull it HIGH to enter operating mode.

Both pins have built-in pull resistors, so by default the camera is powered on and
allowed to exit reset mode.

•
•

•

•

©Adafruit Industries Page 9 of 59

Power LED

When powered on, this LED will light. To disable the LED, cut the small trace between
the two pads of the solder jumper. To re-enable it, bridge the two pads with a blob of
solder.

I2C Pins

©Adafruit Industries Page 10 of 59

The camera module must be configured using I2C.

SDA: Connect to microcontroller SDA
SCL: Connect to microcontroller SDL

Adafruit's OV5640 camera module has built-in pull ups, so you don't need to add
external ones. But note that many modules from other vendors do not have these
pull-ups.

Clock and Synchronization Pins

XC (external clock): When the XCLK jumper is set to "EXT" (the default), this pin
must be driven with a 24MHz square wave from the microcontroller or other
source. When the jumper is changed to "INT", then an on-board clock generator
is used instead. In this case, the XC pin should not be driven by the
microcontroller and may be left unconnected.
PC (pixel clock) tells the microcontroller when image data is available. This may
need to be connected to a specific microcontroller pin.
VS and HS are synchronization signals, which tell the microcontroller when a
new frame (VS) or row (HS) of data begins. These may need to be connected to
specific microcontroller pins.

•
•

•

•

•

©Adafruit Industries Page 11 of 59

The OV5640 Camera Breakout includes an on-board 24MHz crystal oscillator. To use
this as the OV5640 clock, cut the jumper from the center pad to EXT then solder
between the center pad and INT. In this mode, any input on the XC pin is ignored
and XC may be left unconnected.

Data Pins

The 8 data pins (numbered from D2 to D9 because reasons) carry data out of the
camera into the microcontroller.

©Adafruit Industries Page 12 of 59

Depending on mode, these 8 data bits can be half of a 16-bit pixel value, or one byte
of JPEG data.

Autofocus Motor Power

While the camera supplied with the OV5640 Camera Breakout does not have an auto-
focus motor, some compatible camera modules include a "voice coil" motor for auto-
focus.

If you install such a module, close the VM jumper with a blob of solder. Internally, this
connects the 3.3V supply to the camera module on its D1 connection.

Test Bar Mode

In test bar mode, the camera shows color
bars in the order white - yellow - cyan -
green - purple - red - blue - black. A small
vertical bar of inverted colors moves from
top to bottom. Here's a typical test bar,
captured in JPEG mode at VGA resolution.

©Adafruit Industries Page 13 of 59

https://learn.adafruit.com//assets/118553
https://learn.adafruit.com//assets/118553

Assembly
First, decide how you are going to use your camera module: on a board which has a
standard 2x9 header or on a standard breadboard.

If your microcontroller has a 2x9 header available, that method is strongly preferred!
The high speed signals of the camera module can be scrambled even with short
lengths of jumper wire on a solderless breadboard.

Using side cutters, snap off two 9-pin sections of headers.

If you are soldering for the 2x9 header then place the pins in the two rows at the
edge of the board

If you are soldering for breadboard use then place the pins in the outermost rows,
leaving the middle row empty.

Carefully align the headers. You can use tacky clay to hold them in place. Solder just
one pin in each row, then check again for alignment. If the pins are poorly aligned, re-
heat the solder joint while adjusting it until it is straight. Add flux if needed so that you
don't end up with a cold solder joint.

Then, solder the rest of the pins.

(For tips on soldering, be sure to check out our Guide to Excellent Soldering (https://
adafru.it/aTk)).

©Adafruit Industries Page 14 of 59

http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

CircuitPython Camera Libraries
There are multiple libraries for camera support on CircuitPython.

For Espressif boards, the built in espcamera (https://adafru.it/18tC) module (added in
CircuitPython 8) interfaces with multiple types of cameras including the OV5640.

For other boards, such as the Raspberry Pi Pico with RP2040 microcontrollers, an
installable library called adafruit_ov5640 (https://adafru.it/18tD) is used instead.
Internally, this uses a module called imagecapture (https://adafru.it/18tE) for low-level
camera interfacing.

Remember to use the right library for your board!

Camera Pin Naming

By convention, if a board has an integrated camera or a dedicated camera connector,
the following will exist in the board module:

CAMERA_SIOC - the SCL pin of the camera
CAMERA_SIOD - the SDA pin of the camera
CAMERA_PCLK - the pixel clock of the camera
CAMERA_VSYNC - the vertical sync of the camera
CAMERA_HREF - the horizontal sync of the camera
CAMERA_XCLK - the input clock pin of the camera
CAMERA_DATA - the 8 data pins of the camera

Espressif ESP32-family Overview
CircuitPython's espcamera module is available on most supported ESP32-S2 and
ESP32-S3 boards with PSRAM. It incorporates both the camera configuration code
and the image capturing code in a single library that works across multiple types of
camera modules, instead of being available for regular CircuitPython objects.

Setting 'reserved PSRAM'

Because of how CircuitPython and ESP-IDF (Espressif IoT Development Framework)
manage memory together, a portion of memory has to be set aside for the camera
framebuffers.

•
•
•
•
•
•
•

©Adafruit Industries Page 15 of 59

https://docs.circuitpython.org/en/latest/shared-bindings/espcamera/index.html
https://docs.circuitpython.org/en/latest/shared-bindings/espcamera/index.html
https://docs.circuitpython.org/projects/ov5640/en/latest/
https://docs.circuitpython.org/projects/ov5640/en/latest/
https://docs.circuitpython.org/en/latest/shared-bindings/imagecapture/index.html
https://docs.circuitpython.org/en/latest/shared-bindings/imagecapture/index.html

Usually, 1MB (1048576 bytes) is a reasonable amount of memory to reserve. This is
plenty of space for two 320×240 bitmap images or a 5-megapixel JPEG image, along
with other memory that the esp-idf allocates internally.

Boards with built-in cameras include a default reserved PSRAM setting. Boards with
only a dedicated camera header do not.

To set the reserved memory amount, edit the settings.toml file within the CIRCUITPY
drive. Add a line that says CIRCUITPY_RESERVED_PSRAM=1048576

The setting will become effective when the board is reset with the reset button. You
can check it by opening the repl and running the following lines:

Adafruit CircuitPython 8.0.0-rc.1 on 2023-01-30; Kaluga 1 with ESP32S2
>>> import espidf
>>> espidf.get_reserved_psram()
1048576

Pin Choices

By selecting appropriate pins, you can use the espcamera CircuitPython module on
other boards with supported ESP32, ESP32-S2 and ESP32-S3 microcontrollers:

xclk, pclk, vsync, href: Free choice of any pin
reset, shutdown: Free choice of any pin. Can omit one or both, but the
initialization sequence is less reliable.
data_pins: Free choice of any 8 pins

By convention, if a board has an integrated camera or a dedicated camera connector,
the following will exist in the board module:

CAMERA_SIOC - the SCL pin of the camera
CAMERA_SIOD - the SDA pin of the camera
CAMERA_PCLK - the pixel clock of the camera
CAMERA_VSYNC - the vertical sync of the camera
CAMERA_HREF - the horizontal sync of the camera
CAMERA_XCLK - the input clock pin of the camera
CAMERA_DATA - the 8 data pins of the camera

Continue to the next page to see how to use the camera module with the Espressif
Kaluga, which has a compatible 18-pin camera connector built in.

•
•

•

•
•
•
•
•
•
•

©Adafruit Industries Page 16 of 59

Install TinyUF2 on Espressif Kaluga

Now, use the breakout USB connection in lieu of either of the built-in USB Micro B
ports to install and use CircuitPython.

Start by connecting the USB Breakout
Cable to the Kaluga board.

Black: Use a Male/Female Extension
Jumper Wire to connect to GND
White: Connect to IO19
Green: Connect to IO20
Red: Use a Male/Female Extension Jumper
Wire to connect to 5V

If you're familiar with our other products and chipsets you may be famliar with our
drag-n-drop bootloader, a.k.a UF2. We have a UF2 bootloader for the ESP32-S2, that
will let you drag firmware on/off a USB disk drive.

However, thanks to the ROM bootloader, you don't have to worry about it if the UF2
bootloader is damaged. The ROM bootloader can never be disabled or erased, so its
always there if you need it! You can simply re-load the UF2 bootloader (USB-disk-
style) with the ROM bootloader (non-USB-drive)

You can use the TinyUF2 bootloader to load code directly, say CircuitPython or the
binary output of an Arduino compilation or you can use it to load a second bootloader
on, like UF2 which has a drag-n-drop interface.

There are two versions of the Kaluga board, v1.2 and v1.3. Check which version
you have, and install the correct build of CircuitPython. The board revisions
change the pinout of the camera connector slightly.

Do not connect the Red wire to 3V3, it will irreversibly damage the Kaluga.

Unlike the M0 (SAMD21) and M4 (SAMD51) boards, there is no bootloader
protection for the UF2 bootloader. That means it is possible to erase or damage
the bootloader, especially if you upload Arduino sketches to ESP32S2 boards
that doesn't "know" there's a bootloader it should not overwrite!

©Adafruit Industries Page 17 of 59

https://learn.adafruit.com//assets/103223
https://learn.adafruit.com//assets/103223

Method 1: WebSerial ESPTool / esptool
This section outlines using WebSerial ESPTool or esptool to flash the UF2
bootloader onto your ESP32-S2 board.

Step 1. Download the tinyuf2 combined.bin file here

Note that this file is 3MB but that's because the bootloader is near the end of the
available flash. It's not actually 3MB large, most of the file is empty but its easier to
program if we give you one combined 'swiss cheese' file. Save this file to your
desktop or wherever you plan to run esptool from

combined.bin
https://adafru.it/TAI

Step 2. Place your board in bootloader mode

Entering the bootloader is easy. Complete the following steps.

Make sure your ESP32-S2 is plugged into USB port to your computer using a
data/sync cable. Charge-only cables will not work!
Turn on the On/Off switch - If your board has a power switch, check that you
see the OK light on so you know the board is powered, a prerequisite!
Press and hold the DFU / Boot0 button down. Don't let go of it yet!
Press and release the Reset button. You should have the DFU/Boot0 button
pressed while you do this.
Now you can release the DFU / Boot0 button

Installing the UF2 bootloader will erase your board's firmware which is also used
for storing CircuitPython/Arduino/Files! Be sure to back up your data first.

1.

2.

3.
4.

5.

©Adafruit Industries Page 18 of 59

https://cdn-learn.adafruit.com/assets/assets/000/103/224/original/combined.bin?1624988368

Because there are several incompatible versions of the Kaluga TFT display, the
bootloader's screen may appear incorrectly or not at all. This does not affect its
operation.

Check for a new serial / COM port

On Windows check the Device manager -
you will see a COM port, for example here
its COM88. You may also see another
"Other device" called ESP32-S2

It's best to do this with no other dev
boards plugged in so you don't get
confused about which COM port is the
ESP32-S2

©Adafruit Industries Page 19 of 59

https://learn.adafruit.com//assets/101577
https://learn.adafruit.com//assets/101577

On Mac/Linux you will need to find the tty
name which lives under /dev

On Linux, try ls /dev/ttyS* for example, to
find the matching serial port name. In this
case it shows up as /dev/ttyS87. If you
don't see it listed try ls /dev/ttyA* on some
Linux systems it might show up like /dev/
ttyACM0

On Mac, try ls /dev/cu.usbmodem* for
example, to find the matching serial port
name. In this case, it shows up as /dev/
cu.usbmodem01

It's best to do this with no other dev
boards plugged in so you don't get
confused about which serial port is the
ESP32-S2

Step 3 Option A. Use the Web Serial ESPTool to upload

The WebSerial ESPTool was designed to be a web-capable option for programming
ESP32-S2 boards. It allows you to erase the contents of the microcontroller and
program up to 4 files at different offsets.

You will have to use the Chrome browser for this to work, Safari and Firefox, etc are
not supported because we need Web Serial and only Chrome is supporting it to the
level needed.

Enable Web Serial (For older chrome)

As of chrome 89, Web Serial is already enabled, so this step is only necessary on
older browsers.

©Adafruit Industries Page 20 of 59

https://learn.adafruit.com//assets/101578
https://learn.adafruit.com//assets/101578
https://learn.adafruit.com//assets/101579
https://learn.adafruit.com//assets/101579

Visit chrome://flags from within Chrome.
Find and enable the Experimental Web
Platform features

Restart Chrome

Connecting

In the Chrome browser visit https://
adafruit.github.io/
Adafruit_WebSerial_ESPTool/ (https://
adafru.it/PMB). It should look like the
image to the left.

Press the Connect button in the top right
of the web browser. You will get a pop up
asking you to select the COM or Serial
port.

Remember, you should remove all other
USB devices so only the ESP32-S2 board
is attached, that way there's no confusion
over multiple ports!

On some systems, such as MacOS, there
may be additional system ports that
appear in the list.

©Adafruit Industries Page 21 of 59

https://learn.adafruit.com//assets/101562
https://learn.adafruit.com//assets/101562
https://learn.adafruit.com//assets/110625
https://learn.adafruit.com//assets/110625
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://learn.adafruit.com//assets/110626
https://learn.adafruit.com//assets/110626

The Javascript code will now try to
connect to the ROM bootloader. It may
timeout for a bit until it succeeds. On
success, you will see that it
is Connected and will print out a
unique MAC address identifying the board.

Once you have successfully connected,
the command toolbar will appear.

Erasing the Contents

If you would like to erase the entire flash area so that you can start with a clean slate,
you can use the erase feature. We recommend doing this if you are having issues.

To erase the contents, click the Erase
button. You will be prompted whether you
want to continue. Click OK to continue or if
you changed your mind, just click cancel.

©Adafruit Industries Page 22 of 59

https://learn.adafruit.com//assets/110627
https://learn.adafruit.com//assets/110627
https://learn.adafruit.com//assets/110628
https://learn.adafruit.com//assets/110628
https://learn.adafruit.com//assets/110629
https://learn.adafruit.com//assets/110629

Programming the Microcontroller

Programming the microcontroller can be done with up to 4 files at different locations,
but with the tinyuf2combo BIN file, which you should have downloaded under Step 1
on this page, you only need to use 1 file.

You can click on Choose a file... from any
of the available buttons. It will only attempt
to program buttons with a file and a
unique location. Then select the Adafruit
CircuitPython BIN files (not the UF2 file!)

Verify that the Offset box next to the file
location you used is 0x0.

Once you choose a file, the button text will
change to match your filename. You can
then select the Program button to start
flashing.

A progress bar will appear and after a
minute or two, you will have written the
firmware.

©Adafruit Industries Page 23 of 59

https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/110630
https://learn.adafruit.com//assets/110630
https://learn.adafruit.com//assets/110631
https://learn.adafruit.com//assets/110631

Step 3. Option B. Use esptool.py to upload (for advanced
users)

Once you have entered ROM bootloader mode, you can then use Espressif's esptool
program (https://adafru.it/E9p) to communicate with the chip! esptool is the 'official'
programming tool and is the most common/complete way to program an ESP chip.

Install ESPTool.py

You will need to use the command line / Terminal to install and run esptool .

You will also need to have pip and Python installed (any version!)

Install the latest version using pip (you may be able to run pip without
the 3 depending on your setup):

pip3 install --upgrade esptool

Then, you can run:

esptool.py

Test the Installation

Run esptool.py in a new terminal/command line and verify you get something like
the below:

Run the following command, replacing the identifier after --port with the COMxx , /

dev/cu.usbmodemxx or /dev/ttySxx you found above.

After using the tool, press the reset button to get out of bootloader mode and
launch the new firmware!

Make sure you are running esptool v3.0 or higher, which adds ESP32-S2 support

©Adafruit Industries Page 24 of 59

https://github.com/espressif/esptool
https://github.com/espressif/esptool

esptool.py --port COM88 chip_id

You should get a notice that it connected over that port and found an ESP32-S2

Installing the Bootloader

Run this command and replace the serial port name with your matching port and the
file you just downloaded

esptool.py --port COM88 write_flash 0x0 tinyuf2_combo.bin

Don't forget to change the --port name to match.

There might be a bit of a 'wait' when programming, where it doesn't seem like it's
working. Give it a minute, it has to erase the old flash code which can cause it to
seem like it's not running.

You'll finally get an output like this:

Step 4. Reset the board

Click the RESET button to launch the bootloader. You'll see a new disk drive on your
computer with the name KALUGA1BOOT.

©Adafruit Industries Page 25 of 59

You're now ready to copy the CircuitPython UF2 on to the drive which will set up
CircuitPython!

Method 2: Flash an Arduino Sketch
This section outlines flashing an Arduino sketch onto your ESP32-S2 board, which
automatically installs the UF2 bootloader as well.

Arduino IDE Setup

If you don't already have the Arduino IDE installed, the first thing you will need to do
is to download the latest release of the Arduino IDE. ESP32-S2 requires version 1.8 or
higher. Click the link to download the latest.

Arduino IDE Download
https://adafru.it/Pd5

After you have downloaded and installed the latest version of Arduino IDE, you will
need to start the IDE and navigate to the Preferences menu. You can access it from
the File > Preferences menu in Windows or Linux, or the Arduino > Preferences menu
on OS X.

The Preferences window will open.

In the Additional Boards Manager URLs field, you'll want to add a new URL. The list of
URLs is comma separated, and you will only have to add each URL once. The URLs
point to index files that the Board Manager uses to build the list of available &
installed boards.

Copy the following URL.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/

package_esp32_dev_index.json

Add the URL to the the Additional Boards Manager URLs field (highlighted in red
below).

©Adafruit Industries Page 26 of 59

https://www.arduino.cc/en/software

Click OK to save and close Preferences.

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the
expanded menu, it should contain the ESP32 boards along with all the latest ESP32-
S2 boards.

Now that your IDE is setup, you can continue on to loading the sketch.

Load the Blink Sketch

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the
expanded menu, look for the menu option for the ESP32S2 Dev Module, and click on
it to choose it.

Open the Blink sketch by clicking through File > Examples > 01.Basics > Blink.

Once open, click Upload from the sketch window.

©Adafruit Industries Page 27 of 59

Once successfully uploaded, the little red LED will begin blinking once every second.
At that point, you can now enter the bootloader.

Install CircuitPython on Espressif Kaluga
with TinyUF2
CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)
designed to simplify experimentation and education on low-cost microcontrollers. It
makes it easier than ever to get prototyping by requiring no upfront desktop software
downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

 CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your a Kaluga 1.3
board (a Kaluga 1.2 will NOT WORK).

Download the latest version of
CircuitPython for this board via

circuitpython.org
https://adafru.it/18tF

©Adafruit Industries Page 28 of 59

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/espressif_kaluga_1.3/

Kaluga USB Connection

Neither of the two Micro USB connectors on the Kaluga provide access to the native
USB connection used by CircuitPython. Instead, a USB breakout cable must be
connected as follows:

USB +5V (red) to Kaluga +5V
USB GND (black) to Kaluga GND
USB D+ (green) to Kaluga GPIO20
USB D- (white) to Kaluga GPIO19

Advanced USB connection

Non-populated resistor positions R151 & R152 connect the "J10" micro-USB connector
to native USB. By soldering in a 0-ohm link at these positions, you can use the J10
connector for native USB. Some photos in this guide show a board which has been
modified in this way.

Click the reset button once, and then the boot button once when you see the RGB
status LED turn purple (approximately half a second later). The second tap needs to
happen while the LED is still purple.

Once successful, you will see the RGB status LED(s) turn green (highlighted in green
above). If you see red, try another port, or if you're using an adapter or hub, try
without the hub, or different adapter or hub.

•
•
•
•

©Adafruit Industries Page 29 of 59

If double-clicking doesn't work the first time, try again. Sometimes it can take a few
tries to get the rhythm right!

A lot of people end up using charge-only USB cables and it is very frustrating! Make
sure you have a USB cable you know is good for data sync.

Remember that unless you've modified your Kaluga, you have to use a USB
breakout cable, not the built-in USB Micro-B ports!

You will see a new disk drive appear called
KALUGA1BOOT.

Drag the adafruit-circuitpython-
espressif_kaluga_1.3.uf2 file to
KALUGA1BOOT

Because there are multiple variants of the LCD bundled with the Espressif Kaluga
development kit, TinyUF2 may show a distorted image on the LCD. This is
harmless.

©Adafruit Industries Page 30 of 59

https://learn.adafruit.com//assets/118510
https://learn.adafruit.com//assets/118510
https://learn.adafruit.com//assets/118511
https://learn.adafruit.com//assets/118511

The BOOT drive will disappear and a new
disk drive called CIRCUITPY will appear.

That's it!

Espressif Kaluga Pinout

Setting 'reserved PSRAM'

The 'reserved PSRAM' setting was discussed earlier, but here's a reminder now that
you've got CircuitPython installed:

Edit the settings.toml file within the CIRCUITPY drive, creating it as an empty file if
necessary. Add a line that says CIRCUITPY_RESERVED_PSRAM=1048576

The setting will become effective when the board is reset with the reset button. You
can check it by opening the REPL and running the following lines:

Adafruit CircuitPython 8.0.0-rc.1 on 2023-01-30; Kaluga 1 with ESP32S2
>>> import espidf
>>> espidf.get_reserved_psram()
1048576

Camera Module Connections

Take the assembled Kaluga board stack (all three boards) and attach the camera at
the dedicated header, making sure the pins are inserted properly.

These demos only work with the Kaluga version 1.3. They are not compatible with
version 1.2. Check your board's silkscreen to find the version.

On the Kaluga, the camera connector shares pins with the JTAG debugging
facility. It is not possible to use a JTAG debugger together with the camera on
this board.

©Adafruit Industries Page 31 of 59

https://learn.adafruit.com//assets/118512
https://learn.adafruit.com//assets/118512

The camera pins are as follows (though in CircuitPython they also have meaningful
names that should be used when available):

GPIO8 is CAMERA_SIOC - the SCL pin of the camera
GPIO9 is CAMERA_SIOD - the SDA pin of the camera
GPIO33 is CAMERA_PCLK - the pixel clock of the camera
GPIO2 is CAMERA_VSYNC - the vertical sync of the camera
GPIO3 is CAMERA_HREF - the horizontal sync of the camera
GPIO1 is CAMERA_XCLK - the input clock pin of the camera
GPIO36, 37, 41, 42, 39, 40, 21, 38 are CAMERA_DATA - the 8 data pins of the
camera

LCD variants

There are at least 3 variants of the LCD board that ship with the Kaluga:

st7789
ili9341
ili9341 with rotation=90

There are no markings to distinguish the three, so for demos that use the LCD you will
need to try each variant until you find the one that works.

LCD Mirror Demo

•
•
•
•
•
•
•

•
•
•

©Adafruit Industries Page 32 of 59

Install & Use the Demo

First, make sure you can see the Kaluga CIRCUITPY drive and connect to the REPL.
Open the REPL and double check that import espcamera works without showing
an error. Then, copy one of the Adafruit software bundles to your device (the first
appears below, more on subsequent pages). It will automatically reload and start
displaying the image from the camera on the built-in LCD.

By clicking the BOOT button you can swap the camera between live mode & test
pattern mode.

If the live mode image is black, remove the lens cap from the camera.

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, and copy the
entire lib folder and the code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: Copyright (c) 2021 Jeff Epler for Adafruit Industries
#
SPDX-License-Identifier: Unlicense

"""
This demo is designed for the Kaluga development kit version 1.3 with the
ILI9341 display. It requires CircuitPython 8.

To fix the MemoryError when creating a Camera object, Place the line
```toml
CIRCUITPY_RESERVED_PSRAM=1048576
```
in the file **CIRCUITPY/settings.toml** and restart.
"""

import struct

import board
import busio
import keypad
import displayio
import espcamera
import espidf

print("Initializing display")
displayio.release_displays()
spi = busio.SPI(MOSI=board.LCD_MOSI, clock=board.LCD_CLK)
display_bus = displayio.FourWire(

spi,
command=board.LCD_D_C,
chip_select=board.LCD_CS,
reset=board.LCD_RST,
baudrate=80_000_000,

)
_INIT_SEQUENCE = (

b"\x01\x80\x80" # Software reset then delay 0x80 (128ms)
b"\xEF\x03\x03\x80\x02"
b"\xCF\x03\x00\xC1\x30"
b"\xED\x04\x64\x03\x12\x81"
b"\xE8\x03\x85\x00\x78"

©Adafruit Industries Page 33 of 59

b"\xCB\x05\x39\x2C\x00\x34\x02"
b"\xF7\x01\x20"
b"\xEA\x02\x00\x00"
b"\xc0\x01\x23" # Power control VRH[5:0]
b"\xc1\x01\x10" # Power control SAP[2:0];BT[3:0]
b"\xc5\x02\x3e\x28" # VCM control
b"\xc7\x01\x86" # VCM control2
b"\x36\x01\x40" # Memory Access Control
b"\x37\x01\x00" # Vertical scroll zero
b"\x3a\x01\x55" # COLMOD: Pixel Format Set
b"\xb1\x02\x00\x18" # Frame Rate Control (In Normal Mode/Full Colors)
b"\xb6\x03\x08\x82\x27" # Display Function Control
b"\xF2\x01\x00" # 3Gamma Function Disable
b"\x26\x01\x01" # Gamma curve selected
b"\xe0\x0f\x0F\x31\x2B\x0C\x0E\x08\x4E\xF1\x37\x07\x10\x03\x0E\x09\x00" # Set

Gamma
b"\xe1\x0f\x00\x0E\x14\x03\x11\x07\x31\xC1\x48\x08\x0F\x0C\x31\x36\x0F" # Set

Gamma
b"\x11\x80\x78" # Exit Sleep then delay 0x78 (120ms)
b"\x29\x80\x78" # Display on then delay 0x78 (120ms)

)

display = displayio.Display(display_bus, _INIT_SEQUENCE, width=320, height=240)

if espidf.get_reserved_psram() < 1047586:
print("""Place the following line in CIRCUITPY/settings.toml, then hard-reset

the board:
CIRCUITPY_RESERVED_PSRAM=1048576
""")

raise SystemExit

print("Initializing camera")
cam = espcamera.Camera(

data_pins=board.CAMERA_DATA,
external_clock_pin=board.CAMERA_XCLK,
pixel_clock_pin=board.CAMERA_PCLK,
vsync_pin=board.CAMERA_VSYNC,
href_pin=board.CAMERA_HREF,
pixel_format=espcamera.PixelFormat.RGB565,
frame_size=espcamera.FrameSize.QVGA,
i2c=board.I2C(),
external_clock_frequency=20_000_000,
framebuffer_count=2)

print(cam.width, cam.height)
display.auto_refresh = False

k = keypad.Keys([board.IO0], value_when_pressed=False)

ow = (display.width - cam.width) // 2
oh = (display.height - cam.height) // 2
display_bus.send(42, struct.pack(">hh", ow, cam.width + ow - 1))
display_bus.send(43, struct.pack(">hh", oh, cam.height + ow - 1))

while True:
if (e := k.events.get()) is not None and e.pressed:

cam.colorbar = not cam.colorbar

frame = cam.take(1)
display_bus.send(44, frame)

©Adafruit Industries Page 34 of 59

Code Walkthrough

First, the code performs necessary imports and sets up the display. It will stop if it
detects the necessary reserved PSRAM setting is not active:

SPDX-FileCopyrightText: Copyright (c) 2021 Jeff Epler for Adafruit Industries
#
SPDX-License-Identifier: Unlicense

"""
This demo is designed for the Kaluga development kit version 1.3 with the
ILI9341 display. It requires CircuitPython 8.

To fix the MemoryError when creating a Camera object, Place the line
```toml
CIRCUITPY_RESERVED_PSRAM=1048576
```
in the file **CIRCUITPY/settings.toml** and restart.
"""

import struct

import board
import busio
import keypad
import displayio
import espcamera
import espidf

print("Initializing display")
displayio.release_displays()
spi = busio.SPI(MOSI=board.LCD_MOSI, clock=board.LCD_CLK)
display_bus = displayio.FourWire(
 spi,
 command=board.LCD_D_C,
 chip_select=board.LCD_CS,
 reset=board.LCD_RST,
 baudrate=80_000_000,
)
_INIT_SEQUENCE = (
 b"\x01\x80\x80" # Software reset then delay 0x80 (128ms)
 b"\xEF\x03\x03\x80\x02"
 b"\xCF\x03\x00\xC1\x30"
 b"\xED\x04\x64\x03\x12\x81"
 b"\xE8\x03\x85\x00\x78"
 b"\xCB\x05\x39\x2C\x00\x34\x02"
 b"\xF7\x01\x20"
 b"\xEA\x02\x00\x00"
 b"\xc0\x01\x23" # Power control VRH[5:0]
 b"\xc1\x01\x10" # Power control SAP[2:0];BT[3:0]
 b"\xc5\x02\x3e\x28" # VCM control
 b"\xc7\x01\x86" # VCM control2
 b"\x36\x01\x40" # Memory Access Control

©Adafruit Industries Page 35 of 59

 b"\x37\x01\x00" # Vertical scroll zero
 b"\x3a\x01\x55" # COLMOD: Pixel Format Set
 b"\xb1\x02\x00\x18" # Frame Rate Control (In Normal Mode/Full Colors)
 b"\xb6\x03\x08\x82\x27" # Display Function Control
 b"\xF2\x01\x00" # 3Gamma Function Disable
 b"\x26\x01\x01" # Gamma curve selected
 b"\xe0\x0f\x0F\x31\x2B\x0C\x0E\x08\x4E\xF1\x37\x07\x10\x03\x0E\x09\x00" # Set
Gamma
 b"\xe1\x0f\x00\x0E\x14\x03\x11\x07\x31\xC1\x48\x08\x0F\x0C\x31\x36\x0F" # Set
Gamma
 b"\x11\x80\x78" # Exit Sleep then delay 0x78 (120ms)
 b"\x29\x80\x78" # Display on then delay 0x78 (120ms)
)

display = displayio.Display(display_bus, _INIT_SEQUENCE, width=320, height=240)

if espidf.get_reserved_psram() < 1047586:
 print("""Place the following line in CIRCUITPY/settings.toml, then hard-reset
the board:

CIRCUITPY_RESERVED_PSRAM=1048576
""")
 raise SystemExit

Next, the camera object is created. Since this board has a dedicated camera header,
there are shorthand names in the board module to name the pins; see the Espressif
Overview page for how to adapt the example to other boards.

print("Initializing camera")
cam = espcamera.Camera(
 data_pins=board.CAMERA_DATA,
 external_clock_pin=board.CAMERA_XCLK,
 pixel_clock_pin=board.CAMERA_PCLK,
 vsync_pin=board.CAMERA_VSYNC,
 href_pin=board.CAMERA_HREF,
 pixel_format=espcamera.PixelFormat.RGB565,
 frame_size=espcamera.FrameSize.QVGA,
 i2c=board.I2C(),
 external_clock_frequency=20_000_000,
 framebuffer_count=2)

The BOOT button (also known as IO0) can be used when the demo is running to turn
the test pattern on and off:

k = keypad.Keys([board.IO0], value_when_pressed=False)

To improve the refresh rate of the display, the demo directly sends data to the LCD
rather than going through displayio. The program's forever-loop repeatedly fetches a
frame and then sends its data to the LCD over the fourwire bus:

ow = (display.width - cam.width) // 2
oh = (display.height - cam.height) // 2
display_bus.send(42, struct.pack(">hh", ow, cam.width + ow - 1))
display_bus.send(43, struct.pack(">hh", oh, cam.height + ow - 1))

while True:
 if (e := k.events.get()) is not None and e.pressed:
 cam.colorbar = not cam.colorbar

©Adafruit Industries Page 36 of 59

 frame = cam.take(1)
 display_bus.send(44, frame)

ESP32-S2 Kaluga Dev Kit featuring
ESP32-S2 WROVER
The ESP32-S2-Kaluga-1 kit is a full
featured development kit by Espressif for
the ESP32-S2 that comes with everything
but the kitchen sink! From TFTs to touch
panels,...
https://www.adafruit.com/product/4729

USB Type A Plug Breakout Cable with
Premium Female Jumpers
If you'd like to connect a USB-capable
chip to your USB host, this cable will
make the task very simple. There is no
converter chip in this cable! Its basically
a...
https://www.adafruit.com/product/4448

USB Extension Cable - 3 meters / 10 ft
long
This handy USB extension cable will make
it easy for you to extend your USB cable
when it won't reach. The connectors are
gold plated for years of reliability. We use
these handy...
https://www.adafruit.com/product/993

©Adafruit Industries Page 37 of 59

https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993

ASCII Mirror Demo

Install & Use the Demo

First, make sure you can see the Kaluga CIRCUITPY drive and connect to the REPL.
Open the REPL and double check that import espcamera works without showing
an error. Then, copy the correct bundle to your device. It will automatically reload and
start displaying the image from the camera on the serial REPL as lo-fi ASCII art.

By clicking the BOOT button you can swap the camera between live mode & test
pattern mode.

You will need to use a terminal program that understands ANSI escape codes such as
screen or tio.

If the live mode image is black, remove the lens cap from the camera.

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, and copy the
entire lib folder and the code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: Copyright (c) 2021 Jeff Epler for Adafruit Industries
#
SPDX-License-Identifier: Unlicense

"""
This demo is designed for the Kaluga development kit version 1.3.

To fix the MemoryError when creating a Camera object, Place the line
```toml
CIRCUITPY_RESERVED_PSRAM=1048576
```
in the file **CIRCUITPY/settings.toml** and restart.

©Adafruit Industries Page 38 of 59

"""

import sys

import board
import keypad
import displayio
import espcamera
import espidf

The demo runs very slowly if the LCD display is enabled!
It's intended to be viewed on the REPL on a host computer
displayio.release_displays()

if espidf.get_reserved_psram() < 1047586:
print("""Place the following line in CIRCUITPY/settings.toml, then hard-reset

the board:
CIRCUITPY_RESERVED_PSRAM=1048576
""")

raise SystemExit

print("Initializing camera")
cam = espcamera.Camera(

data_pins=board.CAMERA_DATA,
external_clock_pin=board.CAMERA_XCLK,
pixel_clock_pin=board.CAMERA_PCLK,
vsync_pin=board.CAMERA_VSYNC,
href_pin=board.CAMERA_HREF,
pixel_format=espcamera.PixelFormat.GRAYSCALE,
frame_size=espcamera.FrameSize.QQVGA,
i2c=board.I2C(),
external_clock_frequency=20_000_000,
framebuffer_count=2)

print("initialized")

k = keypad.Keys([board.IO0], value_when_pressed=False)

chars = b" .:-=+*#%@"
remap = [chars[i * (len(chars) - 1) // 255] for i in range(256)]
width = cam.width
row = bytearray(width//2)

sys.stdout.write("\033[2J")

while True:
if (e := k.events.get()) is not None and e.pressed:

cam.colorbar = not cam.colorbar

frame = cam.take(1)

for j in range(0, cam.height, 5):
sys.stdout.write(f"\033[{j//5}H")
for i in range(cam.width // 2):

row[i] = remap[frame[width * j + 2 * i]]
sys.stdout.write(row)
sys.stdout.write("\033[K")

sys.stdout.write("\033[J")

©Adafruit Industries Page 39 of 59

After code that is familiar from the LCD demo is the start of the code specific to the
ASCII art part of the program:

"chars" holds the ASCII characters to use, arranged from darkest to lightest (the
demo is intended to be run on a terminal with a dark background color).
"remap" is a 256-element look-up table from the raw brightness value to a
character
"width" is just a shorthand way to refer to the camera's width property
"row" contains one byte for every 2 characters across the image, which gives a
width of 80 characters, a standard terminal width.

Finally, the whole screen is cleared.

chars = b" .:-=+*#%@"
remap = [chars[i * (len(chars) - 1) // 255] for i in range(256)]
width = cam.width
row = bytearray(width//2)

sys.stdout.write("\033[2J")

The forever loop grabs a fresh frame and then converts it to ASCII.

Every 5th row of the input image is used, giving 24 lines of height; every 2nd column
is taken, given 80 characters of width.

First, an escape code is printed to move the cursor to the start of the correct line.

Then, the ASCII characters for the row are calculated by using the remap array

Finally, the row is written, followed by an escape code indicating "clear to end of line".

When the whole thing is written, the remainder of the screen (if any) is cleared.

while True:
 if (e := k.events.get()) is not None and e.pressed:
 cam.colorbar = not cam.colorbar

 frame = cam.take(1)

•

•

•
•

©Adafruit Industries Page 40 of 59

 for j in range(0, cam.height, 5):
 sys.stdout.write(f"\033[{j//5}H")
 for i in range(cam.width // 2):
 row[i] = remap[frame[width * j + 2 * i]]
 sys.stdout.write(row)
 sys.stdout.write("\033[K")
 sys.stdout.write("\033[J")

ESP32-S2 Kaluga Dev Kit featuring
ESP32-S2 WROVER
The ESP32-S2-Kaluga-1 kit is a full
featured development kit by Espressif for
the ESP32-S2 that comes with everything
but the kitchen sink! From TFTs to touch
panels,...
https://www.adafruit.com/product/4729

USB Type A Plug Breakout Cable with
Premium Female Jumpers
If you'd like to connect a USB-capable
chip to your USB host, this cable will
make the task very simple. There is no
converter chip in this cable! Its basically
a...
https://www.adafruit.com/product/4448

USB Extension Cable - 3 meters / 10 ft
long
This handy USB extension cable will make
it easy for you to extend your USB cable
when it won't reach. The connectors are
gold plated for years of reliability. We use
these handy...
https://www.adafruit.com/product/993

©Adafruit Industries Page 41 of 59

https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993

JPEG Capture Demo

Install & Use the Demo

For this demo, you'll need to attach an SD card breakout to your Kaluga using the
following connections:

5V to 5V, or 3V to 3V3 (depends on breakout)
GND to GND
CLK to GPIO18
MOSI to GPIO14
MISO to GPIO10
CS to GPIO12

Now, insert a CircuitPython-supported, formatted SD card. Supported formats include
FAT16 and FAT32, but not exFAT.

Next, copy the correct bundle to your device. It will automatically reload and start
displaying the image from the camera on the LCD.

As of CircuitPython 9, a mount point (folder) named /sd is required on the
CIRCUITPY drive. Make sure to create that directory after upgrading
CircuitPython.

•
•
•
•
•
•

©Adafruit Industries Page 42 of 59

Click the boot button to capture an image in JPEG format to the SD card.

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, and copy the
entire lib folder and the code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: Copyright (c) 2023 Jeff Epler for Adafruit Industries
#
SPDX-License-Identifier: Unlicense

"""
This demo is designed for the Kaluga development kit version 1.3 with the
ILI9341 display. It requires CircuitPython 8.

This demo needs reserved psram properly configured in settings.toml:
CIRCUITPY_RESERVED_PSRAM=1048576

This example also requires an SD card breakout wired as follows:
 * IO18: SD Clock Input
 * IO17: SD Serial Output (MISO)
 * IO14: SD Serial Input (MOSI)
 * IO12: SD Chip Select

Insert a CircuitPython-compatible SD card before powering on the Kaluga.
Press the "BOOT" button to take a photo in BMP format.
"""

import os
import struct

import board
import busio
import displayio
import espcamera
import espidf
import keypad
import sdcardio
import storage

print("Initializing display")
displayio.release_displays()
spi = busio.SPI(MOSI=board.LCD_MOSI, clock=board.LCD_CLK)
display_bus = displayio.FourWire(

spi,
command=board.LCD_D_C,
chip_select=board.LCD_CS,
reset=board.LCD_RST,
baudrate=80_000_000,

)
_INIT_SEQUENCE = (

b"\x01\x80\x80" # Software reset then delay 0x80 (128ms)
b"\xEF\x03\x03\x80\x02"
b"\xCF\x03\x00\xC1\x30"
b"\xED\x04\x64\x03\x12\x81"
b"\xE8\x03\x85\x00\x78"
b"\xCB\x05\x39\x2C\x00\x34\x02"
b"\xF7\x01\x20"
b"\xEA\x02\x00\x00"
b"\xc0\x01\x23" # Power control VRH[5:0]
b"\xc1\x01\x10" # Power control SAP[2:0];BT[3:0]
b"\xc5\x02\x3e\x28" # VCM control
b"\xc7\x01\x86" # VCM control2
b"\x36\x01\x40" # Memory Access Control
b"\x37\x01\x00" # Vertical scroll zero
b"\x3a\x01\x55" # COLMOD: Pixel Format Set

©Adafruit Industries Page 43 of 59

b"\xb1\x02\x00\x18" # Frame Rate Control (In Normal Mode/Full Colors)
b"\xb6\x03\x08\x82\x27" # Display Function Control
b"\xF2\x01\x00" # 3Gamma Function Disable
b"\x26\x01\x01" # Gamma curve selected
b"\xe0\x0f\x0F\x31\x2B\x0C\x0E\x08\x4E\xF1\x37\x07\x10\x03\x0E\x09\x00" # Set

Gamma
b"\xe1\x0f\x00\x0E\x14\x03\x11\x07\x31\xC1\x48\x08\x0F\x0C\x31\x36\x0F" # Set

Gamma
b"\x11\x80\x78" # Exit Sleep then delay 0x78 (120ms)
b"\x29\x80\x78" # Display on then delay 0x78 (120ms)

)

display = displayio.Display(display_bus, _INIT_SEQUENCE, width=320, height=240)

if espidf.get_reserved_psram() < 1047586:
print("""Place the following line in CIRCUITPY/settings.toml, then hard-reset

the board:
CIRCUITPY_RESERVED_PSRAM=1048576
""")

raise SystemExit

print("Initializing SD card")
sd_spi = busio.SPI(clock=board.IO18, MOSI=board.IO14, MISO=board.IO17)
sd_cs = board.IO12
sdcard = sdcardio.SDCard(sd_spi, sd_cs)
vfs = storage.VfsFat(sdcard)
storage.mount(vfs, "/sd")

print("Initializing camera")
cam = espcamera.Camera(

data_pins=board.CAMERA_DATA,
external_clock_pin=board.CAMERA_XCLK,
pixel_clock_pin=board.CAMERA_PCLK,
vsync_pin=board.CAMERA_VSYNC,
href_pin=board.CAMERA_HREF,
pixel_format=espcamera.PixelFormat.RGB565,
frame_size=espcamera.FrameSize.QVGA,
i2c=board.I2C(),
external_clock_frequency=20_000_000,
framebuffer_count=1)

print("initialized")
display.auto_refresh = False

def exists(filename):
try:

os.stat(filename)
return True

except OSError:
return False

_image_counter = 0

def open_next_image(extension="jpg"):
global _image_counter # pylint: disable=global-statement
while True:

filename = f"/sd/img{_image_counter:04d}.{extension}"
_image_counter += 1
if exists(filename):

continue
print("#", filename)
return open(filename, "wb")

ow = (display.width - cam.width) // 2
oh = (display.height - cam.height) // 2

k = keypad.Keys([board.IO0], value_when_pressed=False)

©Adafruit Industries Page 44 of 59

while True:
frame = cam.take(1)
display_bus.send(42, struct.pack(">hh", ow, cam.width + ow - 1))
display_bus.send(43, struct.pack(">hh", oh, cam.height + ow - 1))
display_bus.send(44, frame)
if (e := k.events.get()) is not None and e.pressed:

cam.reconfigure(
pixel_format=espcamera.PixelFormat.JPEG,
frame_size=espcamera.FrameSize.SVGA,

)
frame = cam.take(1)
if isinstance(frame, memoryview):

jpeg = frame
print(f"Captured {len(jpeg)} bytes of jpeg data")

with open_next_image() as f:
f.write(jpeg)

cam.reconfigure(
pixel_format=espcamera.PixelFormat.RGB565,
frame_size=espcamera.FrameSize.QVGA,

)

Code walkthrough

These functions help with opening the next numbered image in a sequence, so that
files are named img0000 img0001 etc.

def exists(filename):
 try:
 os.stat(filename)
 return True
 except OSError:
 return False

_image_counter = 0

def open_next_image(extension="jpg"):
 global _image_counter # pylint: disable=global-statement
 while True:
 filename = f"/sd/img{_image_counter:04d}.{extension}"
 _image_counter += 1
 if exists(filename):
 continue
 print("#", filename)
 return open(filename, "wb")

©Adafruit Industries Page 45 of 59

Inside the forever loop, when the shutter button is pressed, these lines change the
camera to JPEG mode, capture an image to the SD card, and then set the camera
back to RGB mode:

if (e := k.events.get()) is not None and e.pressed:
 cam.reconfigure(
 pixel_format=espcamera.PixelFormat.JPEG,
 frame_size=espcamera.FrameSize.SVGA,
)
 frame = cam.take(1)
 if isinstance(frame, memoryview):
 jpeg = frame
 print(f"Captured {len(jpeg)} bytes of jpeg data")

 with open_next_image() as f:
 f.write(jpeg)
 cam.reconfigure(
 pixel_format=espcamera.PixelFormat.RGB565,
 frame_size=espcamera.FrameSize.QVGA,
)

ESP32-S2 Kaluga Dev Kit featuring
ESP32-S2 WROVER
The ESP32-S2-Kaluga-1 kit is a full
featured development kit by Espressif for
the ESP32-S2 that comes with everything
but the kitchen sink! From TFTs to touch
panels,...
https://www.adafruit.com/product/4729

USB Type A Plug Breakout Cable with
Premium Female Jumpers
If you'd like to connect a USB-capable
chip to your USB host, this cable will
make the task very simple. There is no
converter chip in this cable! Its basically
a...
https://www.adafruit.com/product/4448

©Adafruit Industries Page 46 of 59

https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448

USB Extension Cable - 3 meters / 10 ft
long
This handy USB extension cable will make
it easy for you to extend your USB cable
when it won't reach. The connectors are
gold plated for years of reliability. We use
these handy...
https://www.adafruit.com/product/993

espcamera documentation
espcamera documentation (https://adafru.it/18tC)

Raspberry Pi RP2040 Overview
The CircuitPython imagecapture module is available on most supported RP2040
boards including the Raspberry Pi Pico.

This low-level module works together with a camera-specific high-level module such
as adafruit_ov5640, to set up the camera.

Image storage

A 320×240 image at 16bpp takes about 150kB of RAM to store. The RP2040 has this
much storage, but as memory can become fragmented, it's generally a good idea to
allocate storage for the image just once at the beginning of your program. As shown
in the example, a displayio.Bitmap object can be used for this.

Pin choices

By selecting appropriate pins, you can use the adafruit_ov5640 library on other
boards with the RP2040 microcontroller:

xclk, pclk, vsync, href: Free choice of any pin
reset, shutdown: Free choice of any pin. Can omit one or both, but the
initialization sequence is less reliable.
data_pins: Any 8 sequential pins in GPIO ordering (e.g., GPIO2..GPIO9).

•
•

•

©Adafruit Industries Page 47 of 59

https://www.adafruit.com/product/993
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993
https://docs.circuitpython.org/en/latest/shared-bindings/espcamera/index.html

By convention, if a board has an integrated camera or a dedicated camera connector,
the following will exist in the board module:

CAMERA_SIOC - the SCL pin of the camera
CAMERA_SIOD - the SDA pin of the camera
CAMERA_PCLK - the pixel clock of the camera
CAMERA_VSYNC - the vertical sync of the camera
CAMERA_HREF - the horizontal sync of the camera
CAMERA_XCLK - the input clock pin of the camera
CAMERA_DATA - the 8 data pins of the camera

Continue to the next page to see how to use the camera module with the Raspberry
Pi Pico module on a permaproto board. Be prepared to do quite a bit of wiring &
soldering for the required connections.

Raspberry Pi Pico Usage
Camera connections

For the Raspberry Pi Pico setup shown in these examples, wire the following
connections:

OV5640 GND to Pi Pico GND
OV5640 3V to Pi Pico 3V3
OV5640 SDA to Pi Pico GP8
OV5640 SCL to Pi Pico GP9
OV5640 HS to Pi Pico GP21
OV5640 VS to Pi Pico GP7
OV5640 XC to Pi Pico GP20
OV5640 PC to Pi Pico GP11
OV5640 D2..D9 to Pi Pico GP12..GP19
OV5640 RT to Pi Pico GP10

The pull-up resistors shown on GP8 and GP9 are not required for Adafruit's OV5640
camera break-out board but may be required for other camera breakout boards.

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

Many of these connections carry high frequency signals. Keep wire lengths short
and consider using a perma-proto board to improve signal integrity.

©Adafruit Industries Page 48 of 59

LCD connections

For the LCD display, make the following connections:

Display V+ to Pi Pico VBUS
Display GND to Pi Pico GND
Display CK to Pi Pico GP2
Display SI to Pi Pico GP3
Display DC to Pi Pico GP0
Display TC to Pi Pico GP1

Here's a diagram of the many connections required; rather than trying to trace out the
connections from this image, though, it's better to use the bullet list of connections
above.

•
•
•
•
•
•

©Adafruit Industries Page 49 of 59

Depending whether you are using the optional LCD display, continue on to the LCD or
ASCII mirror demo on the following pages.

ASCII Mirror Demo

Install & Use the Demo

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, and copy the
entire lib folder and the code.py file to your CIRCUITPY drive.

©Adafruit Industries Page 50 of 59

You will need to use a terminal program that understands ANSI escape codes such as
screen or tio . Connect to your device using a compatible terminal program and
you will see the image captured as lo-fi ASCII art.

If the live mode image is black, remove the lens cap from the camera.

SPDX-FileCopyrightText: Copyright (c) 2023 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: Unlicense
"""
This demo is designed for the Raspberry Pi Pico.

It shows the camera image as ASCII art on the USB REPL.
"""

import sys
import time
import busio
import board
import digitalio
import adafruit_ov5640

print("construct bus")
bus = busio.I2C(board.GP9, board.GP8)
print("construct camera")
reset = digitalio.DigitalInOut(board.GP10)
cam = adafruit_ov5640.OV5640(

bus,
data_pins=(

board.GP12,
board.GP13,
board.GP14,
board.GP15,
board.GP16,
board.GP17,
board.GP18,
board.GP19,

),
clock=board.GP11,
vsync=board.GP7,
href=board.GP21,
mclk=board.GP20,
shutdown=None,
reset=reset,
size=adafruit_ov5640.OV5640_SIZE_QQVGA,

)
print("print chip id")
print(cam.chip_id)

cam.colorspace = adafruit_ov5640.OV5640_COLOR_YUV
cam.flip_y = True
cam.flip_x = True
cam.test_pattern = False

buf = bytearray(cam.capture_buffer_size)
chars = b" .':-+=*%$#"
remap = [chars[i * (len(chars) - 1) // 255] for i in range(256)]

width = cam.width
row = bytearray(width)

print("capturing")
cam.capture(buf)

©Adafruit Industries Page 51 of 59

print("capture complete")

sys.stdout.write("\033[2J")
while True:

cam.capture(buf)
for j in range(0, cam.height, 2):

sys.stdout.write(f"\033[{j//2}H")
for i in range(cam.width):

row[i] = remap[buf[2 * (width * j + i)]]
sys.stdout.write(row)
sys.stdout.write("\033[K")

sys.stdout.write("\033[J")
time.sleep(0.1)

After code that is familiar from the LCD demo is the start of the code specific to the
ASCIi art part of the program:

"chars" holds the ASCII characters to use, arranged from darkest to lightest (the
demo is intended to be run on a terminal with a dark background color).
"remap" is a 256-element look-up table from the raw brightness value to a
character
"width" is just a short-hand way to refer to the camera's width property
"row" contains one byte for every 2 characters across the image, which gives a
width of 80 characters, a standard terminal width.

Finally, the whole screen is cleared.

chars = b" .:-=+*#%@"
remap = [chars[i * (len(chars) - 1) // 255] for i in range(256)]
width = cam.width
row = bytearray(width//2)

sys.stdout.write("\033[2J")

The forever loop grabs a fresh frame and then converts it to ASCII.

Every 5th row of the input image is used, giving 24 lines of height; every 2nd column
is taken, given 80 characters of width.

First, an escape code is printed to move the cursor to the start of the correct line.

•

•

•
•

©Adafruit Industries Page 52 of 59

Then, the ASCII characters for the row are calculated by using the remap array

Finally, the row is written, followed by an escape code indicating "clear to end of line".

When the whole thing is written, the remainder of the screen (if any) is cleared.

sys.stdout.write("\033[2J")
while True:
 cam.capture(buf)
 for j in range(0, cam.height, 2):
 sys.stdout.write(f"\033[{j//2}H")
 for i in range(cam.width):
 row[i] = remap[buf[2 * (width * j + i)]]
 sys.stdout.write(row)
 sys.stdout.write("\033[K")
 sys.stdout.write("\033[J")
 time.sleep(0.1)

ESP32-S2 Kaluga Dev Kit featuring
ESP32-S2 WROVER
The ESP32-S2-Kaluga-1 kit is a full
featured development kit by Espressif for
the ESP32-S2 that comes with everything
but the kitchen sink! From TFTs to touch
panels,...
https://www.adafruit.com/product/4729

USB Type A Plug Breakout Cable with
Premium Female Jumpers
If you'd like to connect a USB-capable
chip to your USB host, this cable will
make the task very simple. There is no
converter chip in this cable! Its basically
a...
https://www.adafruit.com/product/4448

©Adafruit Industries Page 53 of 59

https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4729
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/4448

USB Extension Cable - 3 meters / 10 ft
long
This handy USB extension cable will make
it easy for you to extend your USB cable
when it won't reach. The connectors are
gold plated for years of reliability. We use
these handy...
https://www.adafruit.com/product/993

LCD Mirror Demo

Install & Use the Demo

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, and copy the
entire lib folder and the code.py file to your CIRCUITPY drive.

If the live mode image is black, remove the lens cap from the camera.

SPDX-FileCopyrightText: Copyright (c) 2023 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: Unlicense
"""
This demo is designed for the Raspberry Pi Pico. with 240x240 SPI TFT display

It shows the camera image on the LCD

©Adafruit Industries Page 54 of 59

https://www.adafruit.com/product/993
https://www.adafruit.com/product/993
https://www.adafruit.com/product/993

"""
import time
import busio
import board
import digitalio
import adafruit_ov5640
import adafruit_st7789
import displayio

Set up the display (You must customize this block for your display!)
displayio.release_displays()
spi = busio.SPI(clock=board.GP2, MOSI=board.GP3)
display_bus = displayio.FourWire(spi, command=board.GP0, chip_select=board.GP1,
reset=None)
display = adafruit_st7789.ST7789(display_bus, width=240, height=240, rowstart=80,
rotation=0)

print("construct bus")
bus = busio.I2C(board.GP9, board.GP8)
print("construct camera")
reset = digitalio.DigitalInOut(board.GP10)
cam = adafruit_ov5640.OV5640(

bus,
data_pins=(

board.GP12,
board.GP13,
board.GP14,
board.GP15,
board.GP16,
board.GP17,
board.GP18,
board.GP19,

),
clock=board.GP11,
vsync=board.GP7,
href=board.GP21,
mclk=board.GP20,
shutdown=None,
reset=reset,
size=adafruit_ov5640.OV5640_SIZE_240X240,

)
print("print chip id")
print(cam.chip_id)

cam.colorspace = adafruit_ov5640.OV5640_COLOR_RGB
cam.flip_y = False
cam.flip_x = False
cam.test_pattern = False

width = display.width
height = display.height

#cam.test_pattern = OV7670_TEST_PATTERN_COLOR_BAR_FADE
bitmap = displayio.Bitmap(cam.width, cam.height, 65535)
print(width, height, cam.width, cam.height)
if bitmap is None:

raise SystemExit("Could not allocate a bitmap")

g = displayio.Group(scale=1, x=(width-cam.width)//2, y=(height-cam.height)//2)
tg = displayio.TileGrid(bitmap,

pixel_shader=displayio.ColorConverter(input_colorspace=displayio.Colorspace.RGB565_SWAPPED)
)
g.append(tg)
display.root_group = g

t0 = time.monotonic_ns()
display.auto_refresh = False
while True:

©Adafruit Industries Page 55 of 59

cam.capture(bitmap)
bitmap.dirty()
display.refresh(minimum_frames_per_second=0)
t1 = time.monotonic_ns()
print("fps", 1e9 / (t1 - t0))
t0 = t1

Code Walkthrough

First, the code performs necessary imports and sets up the display.

SPDX-FileCopyrightText: Copyright (c) 2023 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: Unlicense
"""
This demo is designed for the Raspberry Pi Pico. with 240x240 SPI TFT display
It shows the camera image on the LCD
"""
import time
import busio
import board
import digitalio
import adafruit_ov5640
import adafruit_st7789
import displayio

Set up the display (You must customize this block for your display!)
displayio.release_displays()
spi = busio.SPI(clock=board.GP2, MOSI=board.GP3)
display_bus = displayio.FourWire(spi, command=board.GP0, chip_select=board.GP1,
reset=None)
display = adafruit_st7789.ST7789(display_bus, width=240, height=240, rowstart=80,
rotation=0)

Next, the camera object is created and configured.

print("construct bus")
bus = busio.I2C(board.GP9, board.GP8)
print("construct camera")
reset = digitalio.DigitalInOut(board.GP10)
cam = adafruit_ov5640.OV5640(
 bus,
 data_pins=(
 board.GP12,
 board.GP13,
 board.GP14,
 board.GP15,

©Adafruit Industries Page 56 of 59

 board.GP16,
 board.GP17,
 board.GP18,
 board.GP19,
),
 clock=board.GP11,
 vsync=board.GP7,
 href=board.GP21,
 mclk=board.GP20,
 shutdown=None,
 reset=reset,
 size=adafruit_ov5640.OV5640_SIZE_240X240,
)
print("print chip id")
print(cam.chip_id)

cam.colorspace = adafruit_ov5640.OV5640_COLOR_RGB
cam.flip_y = False
cam.flip_x = False
cam.test_pattern = False

width = display.width
height = display.height

This demo integrates with displayio for display, so a bitmap object is needed:

bitmap = displayio.Bitmap(cam.width, cam.height, 65535)
print(width, height, cam.width, cam.height)
if bitmap is None:
 raise SystemExit("Could not allocate a bitmap")

g = displayio.Group(scale=1, x=(width-cam.width)//2, y=(height-cam.height)//2)
tg = displayio.TileGrid(bitmap,

pixel_shader=displayio.ColorConverter(input_colorspace=displayio.Colorspace.RGB565_SWAPPED)
)
g.append(tg)
display.root_group = g

The forever loop grabs a frame to the bitmap and then refreshes the display. It tracks
the approximate refresh rate (FPS) of the demo; this demo achieves about 2fps due
mostly to the overhead of displayio & communication with the display.

t0 = time.monotonic_ns()
display.auto_refresh = False
while True:
 cam.capture(bitmap)
 bitmap.dirty()
 display.refresh(minimum_frames_per_second=0)
 t1 = time.monotonic_ns()
 print("fps", 1e9 / (t1 - t0))
 t0 = t1

adafruit_ov5640 documentation
adafruit_ov5640 documentation (https://adafru.it/18tD)

©Adafruit Industries Page 57 of 59

https://docs.circuitpython.org/projects/ov5640/en/latest/

Downloads
Files

OV5640 Datasheet (https://adafru.it/18em)
OV5640 Register Datasheet (https://adafru.it/18en)
OV5640 Firmware User Guide (https://adafru.it/18eo)
EagleCAD PCB files on GitHub (https://adafru.it/18uc)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/18ud)

Schematic and Fab Print

•
•
•
•
•

©Adafruit Industries Page 58 of 59

https://cdn-learn.adafruit.com/assets/assets/000/118/306/original/ov5640_datasheet.pdf?1675869959
https://cdn-learn.adafruit.com/assets/assets/000/118/994/original/OV5640_datasheet.pdf?1677598686
https://cdn-learn.adafruit.com/assets/assets/000/126/084/original/ov5640-firmware-user-guide.pdf?1700151367
https://github.com/adafruit/Adafruit-OV5640-Camera-Breakout-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20OV5640%20Camera%20Breakout.fzpz

©Adafruit Industries Page 59 of 59

	Adafruit OV5640 Camera Breakouts
	Table of Contents
	Overview
	Pinouts
	Assembly
	CircuitPython Camera Libraries
	Espressif ESP32-family Overview
	Install TinyUF2 on Espressif Kaluga
	Install CircuitPython on Espressif Kaluga with TinyUF2
	Espressif Kaluga Pinout
	LCD Mirror Demo
	ASCII Mirror Demo
	JPEG Capture Demo
	espcamera documentation
	Raspberry Pi RP2040 Overview
	Raspberry Pi Pico Usage
	ASCII Mirror Demo
	LCD Mirror Demo
	adafruit_ov5640 documentation
	Downloads

	Overview
	Pinouts
	A note on silkscreen labels
	Camera Lens
	Power Supply
	Power Down & Reset
	Power LED
	I2C Pins
	Clock and Synchronization Pins
	Data Pins
	Autofocus Motor Power
	Test Bar Mode

	Assembly
	CircuitPython Camera Libraries
	Camera Pin Naming

	Espressif ESP32-family Overview
	Setting 'reserved PSRAM'
	Pin Choices

	Install TinyUF2 on Espressif Kaluga
	Method 1: WebSerial ESPTool / esptool
	Step 1. Download the tinyuf2 combined.bin file here
	Step 2. Place your board in bootloader mode
	Check for a new serial / COM port

	Step 3 Option A. Use the Web Serial ESPTool to upload
	Enable Web Serial (For older chrome)
	Connecting
	Erasing the Contents
	Programming the Microcontroller

	Step 3. Option B. Use esptool.py to upload (for advanced users)
	Install ESPTool.py
	Test the Installation
	Installing the Bootloader

	Step 4. Reset the board

	Method 2: Flash an Arduino Sketch
	Arduino IDE Setup
	Load the Blink Sketch

	Install CircuitPython on Espressif Kaluga with TinyUF2
	CircuitPython Quickstart
	Kaluga USB Connection
	Advanced USB connection

	Espressif Kaluga Pinout
	Setting 'reserved PSRAM'
	Camera Module Connections
	LCD variants

	LCD Mirror Demo
	Install & Use the Demo
	Code Walkthrough

	ASCII Mirror Demo
	Install & Use the Demo

	JPEG Capture Demo
	Install & Use the Demo
	Code walkthrough

	espcamera documentation
	Raspberry Pi RP2040 Overview
	Image storage
	Pin choices

	Raspberry Pi Pico Usage
	Camera connections
	LCD connections

	ASCII Mirror Demo
	Install & Use the Demo

	LCD Mirror Demo
	Install & Use the Demo
	Code Walkthrough

	adafruit_ov5640 documentation
	Downloads
	Files
	Schematic and Fab Print

