Niels Smidth
CPE439
Spring 2015
Getting Started with the Zybo’s XADC

Introduction:

ADC’s are useful for sampling all kinds of analog signals. The ZYNQ has the ability to use its logic or
DSP capabilities to perform filtering or other processing on the signals sampled likely much faster
than a standard microcontroller. Some applications of this are performing DSP on sampled audio or
implementing a digital oscilloscope.

This is a document to help you get started using the ZYNQ XC7Z010’s onboard ADC, the “XADC".
This tutorial was performed on the Zybo board using Vivado 2014.4, using FreeRTOS in the
Processing System (PS).

Temperature Supply vcomT VREP_0 VREFN_O
Sensor Sensors Vocaux (f ?
) VCCcBRAM
Die 1 -
Temperature °c é* xgg:ﬁ:ﬁ)) On-Chip Ref
A
VP 0 o 12-bit, Control |l Stafus
WN_D O—\ Mux 1 MSPS Registers Registers
VAUXP[0] o—i| RN ADC A -
VAUXN[0] O— -
. | | | 64 x 18 bits 84 x 16 bits
. [Read/Write Read Only
External VAUXP[12] 0—— Mux
Analog Inputs | VAUXN[12]O _
VAUXP[13] 0—— 12-bit, >
VAUXN[13]0— < 1 MSPS
VAUXP[14] o—— ADC B <
VAUXN[14]O—
VAUXP[15] O0—]
vnuans]o—/
DRP

FPGA

JTAG Interconnect

UG480_c1_01_04-612

XADC Info:

Table 1: Zyng-7000 All Programmable SoC (Cont'd)

Zyng-7000 All Programmable SoC

Devica Name Z.7010 Z.7015 Z-7020 Z.7030 27035 Z.7045 Z-7100
Part Number XC7Zo1o XC7Zois XC7Zoz20 XC7Zoao XC7Zo3s XC7Zo4s XC7Z100
H e o gmmmabla Artin®7 FPBA | ArficT FPGA | Aric7 FPGA | Kintex®7 FPGA | Kintex7 FRGA | Kintex7 FPGA | Kiniex7 FPGA
Programmable Logic Calls .. 28K Logic Cells | 74K Logic Cells | 85K Logic Cells 125K Logic 275K Logic 350K Logic 444K Logic
{Approximate ASIC Gates)™! (~430K) (~1.1M) {~1.3M) Gells (~1.9M) Cells (-4.1M) Gells {~5.2M) Cells (~6.6M)
Look-Up Tables (LUTS) 17,600 45,200 53,200 78,800 171,900 218,600 277,400
o | Fiip-Flops 35,200 92,400 106,400 157.200 243,800 437,200 554,800
=
g —
2 E‘%‘R‘g‘g@m‘g RAM 240 KB (0) 380 KB (95) 560 KB (140) | 1,060 KB (265) | 2,000 KB (500) | 2,180 KB (545) | 3,020 KB (755)
T
£ [Progmmmable DP Siices) } }
£ | o5 MACts 80 160 220 400 a0 900 2,020
&
2 }?\‘,’,ﬁrﬁgﬁfﬁ"ﬂ"“me 100GMACs | 200GMACs | o78GMACs | 593GMACs | 1334GMACs | 1.334 GMACs | 2,622 GMAGs

PCI Express@ (Floot Complex or

Endpain] — Gen2 x4 — Gean2 x4 Gen2 x8 Genz x& Gen2 x8
Analog Mixed Signal 2x12 bit, MSPS ADCs with up to 17 Differential Inputs

(AMg?l XADC

Security? AES and SHa 256b for Boot Code and Programmable Logic Gonfiguration, Decryption, and Authentication

Figure 1: Xilinx DS190 Zynq Overview

The ZYNQ’s overview states that the Zynq contains two 12-Bit, LMSPS ADCs and is capable of
operating with up to 17 differential inputs. On the Zybo board, the JA PMOD Connector gives access
to some of these inputs. Figure 2 below shows the connection of the PMOD connector to the ZYNQ'’s
pins :

Pmod 14
[ml
Ja1: N1S
o VCC GND 8 signals
: FinB_ X Pin 1
JA3: K16 e rs
e EICIEIEIED
JadKis S Elnlnlﬂln ﬂ
AT N16 — S —
Jam 115 Figure 16. Pmod digrom.
JAg9: 116
Ja10: 114

Table 5. Pmod pinout.
Figure 2: PMOD Connections from ZYBO Ref Manual

Because these ADC inputs are differential, they are grouped into pairs : Pins 1&7, 2&8, 3&9, and 4&10.
These pins are connected to the ZYNQ on the ZYBO board through a partially complete anti-alias filter,
shown below in Figure 3. The capacitors are not installed on the board, so if this anti-aliasing behavior is
desired, they will have to be soldered on, or it might be easier to just make an external network
(because they picked very inconvenient soldering locations for those caps).

N R243 JAL R N =
Ay
I
inF
mip Gam [Molesdt g e
100

Figure 3: Incomplete Anti-Alias Filters from p10 of ZYBO Schematic

These inputs can be run in Unipolar or Bipolar mode, check P31 of UH480 : XADC User guide for more
info on exactly what this means. Don’t put any signals smaller than OV or larger than 1.8V (voltage
supply level to XADC) into either of the ADC pins, or you’ll risk damage to the XADC. If you want to stick
in a signal centered at zero (ex : audio from mp3 player), you’ll need to add external circuitry to bias it at
0.5V.

Tutorial:

- Inthis tutorial, we’re going to be setting up the XADC to be read via AXI using the XADC wizard Xilinx
IP. I'll be using the AUX14 input to the ADC. I'd suggest before you get started, to read some of the
following resources to get to know the XADC you'll be playing with :

o XADC User GuideUG480

o LogiCORE IP AXI XADC Product Guide PG019

o ZYNQ Preliminary Product Specification DS190 (the XADC section)
o ZYNQTechnical Reference Manual UG585 (the XADC section)

o Zybo Manual and Schematic (how is XADC connected?)

- This tutorial assumes you’ve got a fresh new project with only a ZYNQ block added (though I'm sure
it would work fine with other stuff too.

o My ZYNQ block has M AXI GPO interface, Timer 0, Watchdog, and FCLK_CLKO enabled and
had block automation run. See Figure 4 below for my block diagram’s starting point.

processing_system7_0
r-r [10_5Y 1/_ _‘-1

PTP_ETHERMET 0

DDR
FIXED_IO

o
L essing Systen

Figure 4: Starting Block Design

- Now that we have our basic processor block, we want to add the actual XADC. Right click on some

empty space in the block diagram and enter “Add IP...”. Select the “XADC Wizard” as shown below:
|

Search: }{ADC| {1 match)

VLMY

ZYNQY Processing !

Select and press EMTER or drag and drop, ESC to cancel

Figure 5: Adding XADC Wizard

- You’ve now add
our uses.

ed your XADC Wizard IP block. Double click on it to change its settings to better suit

o Under the Basic tab:

We want to read via AXI, so select “AXI4Lite”

We only need one channel for this demo, so select “Single Channel”

We want the XADC to continuously read, so keep it in “Continuous Mode”

Don’t mess with the clocks for now. I've got the DCLK at 100MHz, ADC conversion
rate at 1000KSPS, and acquisition time at 4 CLKs

Basic | ADC Setup | Alarms | Single Channel | Summary
A
Interface Options Timing Mode
(@) AXI4lite (JDRP (_)Mone (@) Continuous Mode (") Event Mode
Startup Channel Selection DRP Timing Options

(") Simultaneous Selection
() Independent ADC DCLK Frequency (MHz) 100] [&.
(®) Single Channel

() Channel Sequencer

AXI4STREAM Options Actual Conversion Rate{KSPS) = 951.54
[] Enable AxI45tream
FIFQ Depth 7 7 2
Control/Status Ports Analog Sim File Options
reset in [| TempBus JTAG Arbiter Sim File Selection | Default h

Event Mode Trigger

/| Enable DCLK

ADC Conversion Rate{K5PS) | 1000

Acquisition Time (CLK) 4 -
Clock divider value = 4
ADC Clock Frequency(MHz) = 25.00

Analog Stimulus File | design

Sim File Location g w

Figure 6: XADC Wizard Setup Basic Tab

o Under the “ADC Setup” tab, I've not touched anything. | keep Channel Averaging to 0

because | want my samples fast. | don’t know enough about the calibrations to know how

importa

nt they are, | will ignore it for now to get you started. You should probably read

about that to see if it is good or not for your application.
o Under the “Alarms” tab, | turned off all alarms for this application. You can use these to
make sure your various voltage rails or on chip temperatures are within limits. But we don’t

need that for this simple tutorial.

o Under the “Single Channel” tab, you’ll have the option to select if you want Bipolar mode

(where Unipolar is default, this is what | used). This will depend on your application, I'll leave

it up to you to find that out. You do want to select your desired channel, which is “VAUXP14
VAUXN14”.

o Your XADC IP block / summary should look something like Figure 7

-
- ip2intc_irpt
=P _axi_like
o A channel_out[4:0]
|| s=vp_vn
eoc_out
I|-4]='v'auxl4
] alarm_out
== i aclk
) eos_out
= AXi_aresemn
busy_out

L

[

Basic rADC Setup rAJarms rSingle Channgl/ Summary

Sumrmary

Interface Selected
¥ADC operating mode
AXI45tream Interface
Timing Maode

DCLK Freg(MHz)
Seqguencer Mode
Channel Averaging
Enable External Mux

Figure 7: Complete XADC Wizard

AXIdLite
single_channel
false
Continuous
100

Off

MNone

falze

You might be tempted now to click the tempting “Run Connection Automation” box now to
automatically hook up an AXl interface. This is what | tried first and for some strange reason, never
could get it to work this way (likely because the Connection Automation also adds a “Processor

System Reset” block).

processing_system7_0_axi_periph

\vst _processing_system?_0_100M
oy

xadc_wiz_0

L ——M_AXI_GPO_ACLK ZYN Q‘

—ii | &b 500_axt
2 mb_reset ACLK
t reset_in bus_struct_reset[0:0] RESETN Bl 1]
—aux_reset_in i X | S00_ACLK D%\jnm_mq} “|dns_axi_lite
—imb_debug_sys_rst interconnedt i _ARESETN &y Il
—dcm_locked peripheral_a 1 00_ACLK I

Processor System Reset
processing_system7_0

eas_out
busy_out|

_ARESETN i
m=s_axi_aresetn
e AXT Interconnec?

—

DDR
FIXED_IO

TTCO_WAVEZ_OUT|
WDT_RST_0UT
FCLK_CLKD

FCLK_RESETD_N =t

ZYNQ? Processing System

Figure 8: Wrong Hookup Procedure

PTP_ETHERNET_0: XADC Wizard
DDR<: \X/
FIXED_IO
c_ods /
SDIO_0dh
USBIND_0<h //

From my reading of other tutorials on the internet (namely this one), | tried deleting the “Processor
System Reset” block and hooking up the RST and remaining CLK wires by hand. This did end up
working for me, so I'd suggest you try it this way first. You'll also want to right click on the “Vaux14”

port of the XADC Wizard and make it an external input.

processing_systern?_0

PTP_ETHERNET_04+

M_AXI_GP_ACLK Z YNQ‘ M_AXI_GPD4-

TTCO_WAVEQ
TTCO_WAVEA

processing_system?7_0_axi_periph

i 44 500_AXT

ACLK

ARESETN E—>H
jsuu_m [§jmm_m#

S00_ARESETN []

MDO_ACLK

MDO_ARESETN

ZYNQY Processing System

AXI Interconnect

L[> FIXED IO

Jks_axi_lite

fil4=ve_vn

Vaux14

FVauxl4 3
i adk alarm_out
S_axi_a
S ess_out
iS_axi_aresetn
busy_out|

Figure 9: Correct Hookup

L

XADC Wizard

Now that you’ve got your block diagram set up, you're all ready to generate your HDL wrapper,
Copying generated wrapper to alow user edits as usual. | do receive the following two warnings :

IE,I There were two critical warning messages while Create HOL Wrapper.

Messages

Critical Messages

(1) [BD 41-1348] Reset pin fprocessing_system7_0_axi_periph/500_ARESETN (assodated dodk fprocessing_system?_0_axi_
S00_ACLK) is connected to asynchronous reset source /processing_system7_0/FCLK_RESETO_N.
This may prevent design from meeting timing. Please add Processor System Reset module to create

a reset that is synchronous to the associated dock source fprocessing_system7_0/FCLK_CLKD.
@ [BD 41-1348] Reset pin fprocessing_system7_0_axi_periph/M00_ARESETM (assodated dock fprocessing_system7_0_axi

MO0_ACLK) is connected to asynchronous reset source fprocessing_system?_0/FCLK_RESETO_N.

This may prevent design from meeting timing. Please add Processor System Reset module to create
a reset that is synchronous to the assocdated dock source fprocessing_system?_0/FCLK_CLKD.

Figure 10: Warning Generated from HDL Wrapper Creation

I've yet to have a problem yet and haven’t succesfully used the System Reset module, so for now
I've ignored it. But unlike me, you good students should go back and figure out how to make this

warning not appear.

http://zynqhowto.blogspot.com/2014/03/zynq-how-tolab3.html

With your wrapper generated you need to connect your Vaux14 input to the outside world through
your constraints file. Go to the “Sources” tab, and right click -> “Add Sources”

Sources — 0O » % =
A= waE R |
[=)-{= Design Sources (1] Qr
: [48, design_1 (design_1.bd) (2]
=& Constraints -
é..1___. Simlulaﬁ % Constraint Set Properties. .. Ctrl+E ¥
G-I sim| Hierarchy Update » b
& Refresh Hierarchy H
IP Hierarchy k P[!&
=
Edit Constraints Sets... e
(=)
Edit Simulation Sets... e
B Add Sources... Alt+A ﬁ
=
3
B
Hierarchy | IP Sources | Libraries | Compile Crder %

Figure 11: Adding Constraint File

You'll want to “Add or Create Constraints”. Add the “ZYBO_Master.xdc” file you’ve used for the
previous tutorials (which you’ve hopefully copied into the project folder). Now under the constraints
folder, open and edit this file.

o This file links the internal signals to the ouside world, so we need to make sure our AUX14
signals we made external are hooked up to the right pins.

o Scroll down to Line 163. Youll see these lines control the connection to the PMOD Header JA
(which is the XADC specified connector). Uncomment the set_property commands
controlling AD14n and AD14P.

o You now need to connect these to the right internal signal. If you check your wrapper, you'll
see the following signals specified :

R L L TP
input Vauxld v _n;
input Vauxld v _p;

Figure 12: Definition of AUX14 Signals in Wrapper

o Now you know the names of the signals to connect. Modify your constraints file to be read

as shown below :

165 et property PACERAGE FIN N1& [get ports [Vauxld v _n]]
166 zet property IOSTANDRRD LWVCMOS33 [get ports [Vauxld v _n}]
147

168 #4I0 LZ1F T3 DOS AD1<4FP 35

169 set property PACKRGE PIN N15 [get ports {Vauxld v _pl]

170 set property IOSTANDARD LWVCMOS33 [get ports [Vauxld v pl]

172 ##I0 L22N T2 AD7N 35

7% Lrat mwmmswdcr DACPFASE DTN TAE Teabk seowbs f9=2 -

Figure 13: Correct Constraint of AUX14 Pins

o Make sure you save your .xdc file to save your changes.

- Now we’ve configured our IP blocks, wrapped them in HDL, and connected it to our PMOD

connector. Run the bitstream generation and go make some tea.
- Once that is complete, export your hardware with bitstream and launch the SDK.

- In SDK, you’ll want to generate your Board Support Package for the design wrapper you just

generated. If you explore the system.mss of the BSP, you’ll hopefully see the “xadc_wiz_0" driver.

This indicates that your BSP saw that you used the XADC wizard and you’ll have access to the

commands necessary to read from the XADC (these are used below in example code).

ps7_usb 0 usbps Docurnentation |mport Examples

ps7_wdt 0 wdtps Documentation |mpeort Examples

ps/ xadc 0 xadeps Documentation |mport Examples

xadec_wiz_0 sysmon Deocumentation |mpeort BExamples

Figure 14: Note "xadc_wiz_0" driver

- lam using the same imported FreeRTOS setup that you’ve used for your previous labs. | won’t even

use tasks for this tutorial because we’re keeping it nice and basic. Using the commands that can be

found in the xadc_wiz_0 documentation, the following simple program is written :

static XSysMon SysMonInst; //a sysmon instance
#define SYSMON_DEVICE_ID XPAR_XADC_WIZ_© DEVICE_ID //ID of xadc wiz 0
#define XSM_CH_AUX_14 30

int main(void)

{
XSysMon_Config *SysMonConfigPtr;
XSysMon *SysMonInstPtr = &SysMonInst;
int xStatus;
ulé TestData;

/* Configure the hardware ready to run the demo. */
prvSetupHardware();

// Prepare the Config Pointer
SysMonConfigPtr = XSysMon_LookupConfig(SYSMON_DEVICE_ID);
if (SysMonConfigPtr == NULL) printf("LookupConfig FAILURE\n\r");

// Set up the XADC

xStatus = XSysMon_CfgInitialize(SysMonInstPtr, SysMonConfigPtr,
SysMonConfigPtr->BaseAddress);

if(xStatus != XST_SUCCESS) printf("CfgInitialize FAILED\r\n");

while(1)
{
// Wait until XADC is finished with a conversion
while ((XSysMon_GetStatus(SysMonInstPtr) & XSM_SR_EOC_MASK) !=
XSM_SR_EOC_MASK) ;

TestData = XSysMon_GetAdcData(SysMonInstPtr,XSM_CH_AUX_14); //Read the
external Vaux14 Data

}
/* Don't expect to reach here. */
return 0;
}
/* ___ */
The AUX14 channel is defined to be 30 in xsysmon.h :
#define XSM_CH_VCCPDRO OxOF /**< On-chip PS VCCPDRO Channel, Zyng */
#tdefine XSM_CH_AUX_MIN 16 /**< Channel number for 1st Aux Channel */
#tdefine XSM_CH_AUX_MAX 31 /**< Channel number for Last Aux channel */
#tdefine XSM_CH_VUSR® 32 /**< VUSERO Supply - UltraScale */

Since the last AUX channel is AUX15, we know that AUX14 is 30.

I've set a breakpoint on the TestData line so that | can take a new ADC sample each time | press resume.
The XADC is a 12 bit ADC, and uses the top 3 bytes of the 4 byte register to hold the data. So when my
TestData reads “0x0118”, you really are reading the ADC value “0x011”.

Now you’ve got an ADC that works. Play with it some more to get a good feel for the commands that can
be used.

If you are wanting to read XADC values from hardware (VHDL that processes your ADC values),
this is not the best way to do things. There is another option for communication with the XADC, through
the “DRP” (Dynamic Reconfiguration Port). This is a lower level interface allowing writing and reading to
the XADC's internal registers (more like what you may be used to be doing on a microcontroller).

The XADC manual has all the timing info you need to get going on it. For an example of it
running in DRP mode (this little trick is covered in the XADC Wizard manual), configure your XADC in DRP
mode (double click on its block to make this change). It should now look something like this :

xadc_wiz_0 T L
” gbs_drp
1 p-daddr_in[6:0]
L pden_in channel_out[4:0] =
«do_out[15:0] eoc_outpm—
«4drdy_out alarm_out -
] pdwe_in eos_out =
| | J5Vp_Vn busy_out m=
_I——” b Vaux14
dclk_in
XADC Wizard

Figure 15: XADC Wizard in DRP Mode

Now the XADC is read to be run by DRP. Now you’ll want to run the following command in the
TCL console. Note that in the sources tab, we can see this device’s name is “design_1 xadc_wiz_0_0".

[=+{ Design Sources (2]

-8 da design_1_wrapper (desion_1_wrapper.v) (2
=, design_1_i - design_1 {desian_1.bd) (1)
E}'f@ design_1 (design_1.v) (&)

-£|= axi_gpio_0 -design_1_axi_gpio_0_0 (design_1 axi_agp
i--LF processing_system7_0 - design_1_processing_system;

[processing_system7_0_axi_periph - design_1_processi
-~£|= rst_processing_system7_0_100M - design_1_rst_proce

A F wadc_wiz_0 - design_1_xadc_wiz_0_0 {design_1_xadc
----- 59 derp - drp_int (drp_controller.sv)
[-i8 xadc_test_wrapper (xadc_test_wrapper.v) (2)

[+ Constraints (1)
[+~ Simulation Sources (3)

Figure 16: Showing name of XADC Wizard

£

open_example project [get_ips design_l_xa:lu:_wiz_f_'l_ﬂh

o Tcl Console Messages | (&l Log | (2 Reports | I Design Runs

Figure 17: Command to Open Example XADC DRP Project

A new project should open up. It will contain a test bench in the “Simulation Sources” folder. | had to
right click on the XADC_wiz_inst instantiation in the sources tab and “Generate Output Products” to get
rid of some errors. You can modify the analog input simulation file to the XADC in the XADC
configuration window:

DCLK Frequency(MHz) 1IJEI|
ADC Conversion Rate(KSPS) | 1000

Acquisition Time (CLK) 4 A
Clock divider value = 4

ADC Clock Frequency(MHz) = 25.00

Actual Conversion Rate(KSPS) = 961.54

Analog Sim File Options

ITAG Arbiter 5im File Selection | Default -
Analog Stimulus File | design
Sim File Location n
Waveform Type SIN -
Frequency (KHz) 480 [0.1-4

Number of Wave 1

Figure 18: Modifying Analog Stimulus to SIN wave

You might want to “Generate Output Products” again after that is complete if it doesn’t prompt you to
(which generates the stimulus file), | had some problems when | didn’t. Now you can simulate your
XADC to see its natural behavior. | expanded on this testbench to make my own “wrapper” for the XADC
too!

S) S
- lediwe [
S s S B

e - lI I.I

Figure 19: Simulated ADC, showing sampled SIN wave stimulus

