
Remote vehicle control, joystick, Arduino Wemos and communication ESP-NOW

Introduction:

Summary of work:
.- Several analog inputs through a single port.
.- WEMOS, electrical specifications.
.- Communication protocol ESP-NOW.
.- Circuit L298N. Specifications and pinout of it.
Mounting .- vehicle with two DC motors

In this article I explain how to take several analog values and place in a single port on a Wemos A0
plate. Values from a joystick, are transmitted quickly, securely and easily via Wifi using the ESP-
NOW protocol. In the vehicle, another WEMOS receives the data and drives two DC motors for
steering the vehicle.

All part of the idea of moving a wheelchair for disabled staff remotely and to accompany them
without pushing it. As a working example, I created this project. Later you can change the output
circuits and motors with higher-power and coupled to the wheels of the chair a mechanical system
that moves.

Perhaps someone can argue that things exposed these works can be achieved easily and cheaply in a
web, but the fact of do it yourself and components low price is always a pleasure when you see it
working. Other than that, I'll settle for a person like it or clarify a concept or doubt.

I will try to explain the concepts used for better understanding of the work. Perhaps some will find
interesting any part of it.

Arduino development board Wemos:
We are talking about a small development board with wide possibilities:

With it we can perform projector IoT, data analysis and delivery via networks and many other
things, taking advantage of the wireless capabilities of the same. In another project I've done, I think
own wifi network and I can open a remote lock, using a typed from our smartphone, I've also
published key. The difference from the above is that instead of using HTLM protocol for
communication, use very little published WiFi type communication ESP-NOW between two
devices, being easy, quick, secure (encrypted) without feature pairings when acting (only when
configuring the Arduino sketch). Later, when explaining the skit, I will discuss the details to
consider.
The plate has a entry5v power to the pin (or USB) and input GND. Such feeding need not be 5v,
and carrying a voltage regulator which makes 3.3v, which is really the working voltage. In the
datasheet of Wemos we can see and also attached a picture of the regulator datasheet:

According to the link specification ESP8266, you could work even 3v, but should feed a voltage
higher than 3.5V, so that the output of internal regulator have a minimum of 3v. In this link you can
see other technical details that expand this information.
https://cdn-shop.adafruit.com/product-files/2471/0A-ESP8266__Datasheet__EN_v4.3.pdf
The plate also has 9 digital inputs / outputs (D0-D8). All have the ability to work with PWM
outputs, I2C bus, etc.
Detail to take into account when connecting something to the digital output pins, to illuminate
LEDs, activate relays, etc. The maximum current that can deliver a digital pinis 12mA. If you need
to deliver more current, we must be inserted between the pin and a transistor device or an opto
coupler higher power. For example:

With a resistor in series with the output of 330 ohms, a current of 10mA is delivered, so if possible,
increase the value of the resistors. There are many websites recommending a 330 ohm resistor in
series with the LEDs I recommend using higher strengths. If the LED lights to our liking, we do not
need to add any SAVINGS work mA power is always good.
NOTE: digital pins, we can give PWM values between 0 and 1023. Arduino Uno, between 0 and
254.
The WEMOS plate also has a digital input A0, to analog data analysis. Must take into account two
things. The first is that NO can be applied more than 3.3V voltage directly, as it would deteriorate.
If you want to measure higher voltage must be inserted external voltage divider. Said input values
are 0 to 1,024.
Other features:
-Departure 3.3V to power external circuits. 12mA maximum current per pin.
-Connector micro USB for firmware load and 5v power
-Pulsador Reset.

There are many tutorials on how to setup the Arduino IDE to work with this type of plaque as well
as the necessary libraries. I will not go into it too much not to extend this work.

Joystick circuit (remote control):

I like the development board Wemos, as it has little size, it is cheap and has many possibilities. As
only has an analog input A0, the problem of wanting to capture several analog values
simultaneously arises. For my case in particular a Joysick consists of two potentiometers with
analog individual outputs and a push. In addition, I want to analyze the current value of the battery
used in the remote control, so now we need to take 3 different analog values.

In the following scheme, Created with Fritzing, we left a voltage divider. If the battery is more than
3.3V, the analog input is at risk of damaged therefore appropriate to reduce the voltage for analysis.
I use 3.7v battery, so when loaded completely is approximately 4v and due to the voltage divider in
the H1 pin 4 have 2v (variable depending on battery status). To the right is a basic joystick,
consisting of two potentiometers and a button (R3 is external to the joystick). They feed with 3.3v
providing WEMOS. In this general scheme, we have three analog values (pins 2, 3 and 4 H1) and a
digital value (pin 1 H1).

To analyze the plaque WEMOS 3 analog values, we use a small optocouplers, the chip SFH615A or
TLP621. Operation is very basic for this work. In the pin 4 of chip I put one of the analog values to
be analyzed. All pin 2 to GND. All pin 3 connected and A0 and each pin 1 to a digital output
through a resistor, which will activating successively and depending which activate and reading the
value A0, I assign each value variable (pot 1y pot 2 joystick and drums).

We must bear in mind that we can not connect the digital output of the Wemos directly to pin 1 of
the TLP621, since this digital output will deteriorate. Each digital pin can supply about 12mA
Wemos. Therefore we intersperse sufficient to activate the internal LED resistance. 470Ω It is
sufficient to activate and requires only 7 mA.

Wanting to enter 3 analog values using this system, we use 3 digital outputs to activate them. If we
want to introduce more analog values A0, we can use other digital outputs more or we can continue
to use only 3 digital outputs, adding a demultiplexer circuit and giving binary values to the inputs,

we get up to 8 possible digital values.

Add the remote control 2 LEDs, one to reflect "Power ON" and the other for battery status and
"Transmission OK".

Add a switch circuit for battery and a connector to recharge it without having to remove it (warning:
OFF TO RECHARGE to avoid damaging the regulator ME6211 of Wemos plate). With everything
explained above, the complete circuit of the remote control joystick is as follows:

Explanation for further development in the Arduino IDE:
A0 I pick the values of the potentiometers and battery level.
In D0 goes HIGH when the joystick button ("STOP") is pressed
If active D1, read the state of the vertical potentiometer joystick in A0.
If active D2, read the status of the horizontal potentiometer joystick in A0.
If active D5, read the battery status in A0. NOTE: Initially I put it in D4, but I did not trouble
flashing the program from the Arduino IDE, so I went to D5
The output D3 is used for the Activity LED (blue). Said LED lights when no movement of joystick
and the transmission was successful. When at rest indicates the state of the battery (1 flicker
between 3.6 and 3.5V, 2 flashings between 3.5 and 3 flashes 3.4vy below 3.4v).
The red LED indicates Power On / Power ON.
S1 is the ignition switch. I should have it off when the battery charge is done or make modifications
to the software (via USB 5v).

The scheme mounted on a breadboard circuit is as follows:

The bottom line is the positive battery voltage. The upper line is positive output of 3.3v WEMOS

I designed the following circuit board with Sprint-Layout 6.0 for connecting the joystick, opto
couplers, Wemos and others. Indian measures in case anyone wants to do (40x95mm).

Must be careful with the pin 1 of the TLP621. They are welded to the square terminal and in the
position shown seen from the side of the components.

The part of the next plate to connectors and WEMOS, the cut out later, it is so comfortably grip the
knob, the ignition and external connections.

Photos of the remote control. At the edges, the USB connection, the charging connector on the
battery and switch ON / OFF.
Easy to hold, albeit a little big. I need to make a case for himself as the 3D printer:

Receiver circuit (Motors):

It comprises another plate WEMOS where the data receipt joystick or remote control activates the
necessary (dual H-bridge) signals to a control L298N and two motors, forward and backward,
steering control. Complementing the circuit, 3 LEDs, one for power ON, the other for data
transmission and a third as indicative of "emergency stop". I take the latter two (flashing) for
indicating the status of the vehicle battery.

Control of battery status: The first thing to consider is that the battery I am using is 9v. Try to
measure it in A0 directly, is damaging the port, since the maximum value that can be applied is
3.3V. To avoid this, we also another voltage divider, this time more unbalanced than in the remote
control and reduce the value in A0. In this case, I use a 47k resistor in series with another 4K7. The
focal point is where the reference volume to be measured. "Low Battery" between 7V and 5.5V,1
flashLED "Emergency". "Very Low Battery" (below 5.5V,3 flashings LED "Reception ok")

The complete circuit of the vehicle is as follows:

Because this circuit is mounted on a vehicle, I did not want to complicate a lot the Arduino sketch.
Simply receives data via wireless joystick ESP-NOW and converts them into control signals for the
motors. That makes it easier in future software changes or modifications path, be made only on the
remote control (joystick) instead of both.
I have not made any special circuit board. Only a provisional for LEDs and resistors.

L298N (double H-bridge)

This is a short description of the circuit that controls the DC motor that drives the vehicle.
- Connectors A and B (blue 2 pin). They are the current outputs to the motors. If after testing, the
motor rotates the opposite side we want, simply invert pins thereof
Power connector (blue 3-pin). It is the input current to the circuit. As it can be fed between 6 and 36
volts, one must take into account the jumper or bridge next to the connector.If fed with a voltage
from 6 to 12V, the bridge is left in place and have a Vlogico exit 5v towards WEMOS (as in this
study). If the circuit is powered by more than 12V voltage, you must remove the bridge so that the
DC-DC converter leads is not damaged and if we want to run your logic circuitry, we take a cable
5v external to the circuit (5v input).In my case, as I use a 9v battery, I leave it since and I used to
feed the Wemos board through the 5v pin. GND is negative battery and will also G Wemos and
LEDs.

Control connector (6-pin). It has two parts. ENA, IN1, IN2 control the motor connected at A and
ENB, IN3, IN4 controlling motor connected in Table B. In the figure above levels of the signals
must have to set in motion the engines is indicated below , back or braking. ENA and ENB are
some bridges. If we leave posts,L298N engines will input voltage Vm in the indicated direction, no
speed control and voltage regulation. If we remove, we will use these pins for receiving a PWM
signal from the WEMOS plate and thus control the speed of each motor.Arduino is achieved by a
analogWrite () command. Wemos on the plate, all the D port have that capability.

In the figure L298N there is a box with a small sketch for Arduino UNOWhich will rotate the
motor A forward voltage near 75% of Vm.

The text before this graphic explains the relationship of analogWrite () with how output pins to
Arduino UNO. In WEMOS, 100% is achieved with analogWrite (1023) and 50% would
analogWrite (512).

When this project, we must take into account possible ENA and ENB PWM values supplied by the
analogWrite command because depend on the value of the battery voltage and voltage motors. In
this case I use a 9V battery (Vm) and 6V engines. As you increase the PWM signal on them, the
motor voltage rises, but does not begin to move until it reaches a certain value, so that in tests,It
must be set that minimum PWM to do the moveat low speed. On the other hand, if we put the
PWM signal to the maximum, we give the motor voltage Vm battery (9V) and can damage the
same, so in testing, we measure the voltage andestablish the maximum PWM so that it does not
deteriorateand as much provide the maximum 6V. Both, as I said earlier, in the Arduino sketch of
the remote control.

Vehicle Mount:
I have to admit that the assembly is a bit domesticated, but effective. Maybe 3D design and print a
nicer model, but this model "home" has the advantage of better see the operation. There are a
number of engines with gearbox and wheels included for coupling at low prices. I used what I have
on hand.
For assembly, I have 3D printed pieces, wheels, bearing flange / motor and bushings and use 3mm
diameter screws to join the pieces. For binding to the screw shaft motor, I used the contacts of a
strip electrical connection by cutting the outer plastic. When mounting the wheels, the screw should
stick to the wheel to prevent skidding when turning.

The following shows the bearing housing / motor and the part that holds 3D

Amount wheel. Take measures, short screw and one is left:

Once completed the assembly of the two motor sets, attached to a platform (white). You one other
platform to support circuit and the rear wheel. The height difference brand type wheel say, to
maintain the horizontal vehicle. The distance between the rear wheel and the first platform we must
ensure the rotation of the same, so I had to correct the first hole, as you see in the pictures.

Add circuits and end with a connector battery to charge.

As you can see, it's not a great design. I intend to apply this system to a wheelchair as I said at the
beginning of this work. But since I have it developed, possibly design a more elegant type of
vehicle.

And now we come to the explanation of Arduino sketch I made.

Arduino

As I wrote at the beginning, I can not dwell much and I waive how to configure the Arduino IDE,
libraries and how it should recognize the Wemos plate to work with them. Only a few details:
.- In Preferences Manager additional URLs:
http://arduino.esp8266.com/stable/package_esp8266com_index.json
.- In Tools (Tools), Manager cards:

As a preliminary and essential step before working with the ESP-NOW protocol, we charge this
little skit in Wemos with which we will work to find out the MAC of AP ESP8266 leading
integrated. Tools, Series Monitor can see the result of the sketch and note especially of each plate
Wemos AP

I tend to buy on receiving that frame the bags and board with the data:

Once the AP MAC plates, start talking about the ESP-NOW protocol developed by Espressif:

"ESP-NOW allows a direct, low-power intelligent lights control without the need for a router. This method is energy efficient and
convenient.
ESP-Now is another protocol developed by Espressif, which allows multiple devices to communicate with each other without using Wi-
Fi. The protocol is similar to the low-power wireless connectivity 2.4GHz often deployed in wireless mice. Therefore, pairing between
devices is required before disclosure. Once the match is made, the connection is secure and equal terms, without needed a handshake.
"

More information in the link:
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_now.html
ESP-NOW is a spacious and with many possibilities protocol, but want to show you an easy way to
communicate two devices and transfer data between them without using complex shapes.

The sketch I have prepared only one device transmits (joystick) and another receives data (vehicle).
But both must have necessarily common things, which I describe.
.- Home Seller ESP-NOW

.- The structure of data to transmit / receive. We can not define variables with variable length, but
fixed length, because when all the data at once, which receives should know how to separate each
byte received and know that variable value assign those bytes received are transmitted. It's like
when a train is prepared with different station wagons and receiving them you must know how and
that company should go. I want to transmit data at a time 5, If I press the joystick, and voltages
(Left and Right motor) and direction (forward / backward) of each motor vehicle, which draw from
the position thereof.

.- I define the type of function performed every WEMOS. Perhaps because of the lack of experience
in the ESP-NOW protocol, I had some problems when I define one as the master and the other as
slave. It has always worked for me as putting the two-way (Role = 3)

.- Pairing the devices. In the skit joystck I put the AP MAC Wemos vehicle. In the sketch of the
vehicle, I put the AP MAC joystick.

.- Sending data to the vehicle, following figure. First you have to prepare these train cars to be sent
(data) with red box. Then you have to define who sent it (da)which it is the AP MAC Wemos
vehicleand the total length of TREN. Once these above data, the data packet (green box) is sent.
Remember: I want to transmit data at a time 5, If I press the joystick, and voltages (Left and Right
motor) and direction (forward / backward) of each motor vehicle.
After shipment, I verify that the vehicle has received the data correctly (blue box).

.- Receiving data in the vehicle. This is the function I used in the Wemos the vehicle. As you can be
seen the wear mode reception (reply, call back) and the received data assigned to variables (rail
cars) with the same structure used in both:

And just with this, I can transmit / receive data via wireless ESP-NOW easily.

In the next step will be a description of Arduino sketch remote control (joystick)

Arduino (Joystick)
.-After defining the library ESP-NOW, I define the pins that will use the Wemos:

I define the variables .-'ll use later:

.- Already in setup (), in the first part, I define as they go to work the pins of the Wemos and an
initial value thereof. Also verify that the ESP-NOW protocol is initialized well. And after that, I
define the working mode and previously commented pairings:

.- Start the loop () with a delay that makes us the number of transmissions or joystick readings I
want to do per second (see figure below). I put 60 msg, so I make about 15 readings per second or
less. After I read the state of emergency button. If pressed, I put zero values engines, transmit and
establish a delay which does not respond to anything until you pass the time (in my case 5 seconds
delay (5000)).

.- The rest of the loop () are calls to functions that I use, which later explain.

.- Leo the status of potentiometers and battery. leePots (); . Delays (delay) that put the 5msg are for
optocouplers readings are accurate. It should be borne in mind that since the LED is activated, it
takes a few microseconds (about 10) to stabilize the output, so I put five msg to the readings are
more accurate. This delay could be down perfectly.

.- After reading the potentiometers and battery status, we must transform the movement of the
joystick in the direction and flow to the engines. If we analyze the vertical potentiometer, for
example, the steps are shown in the following figure.
1. The total value (minimum, rest maximum) movement is between 0 and 1024.
2. Find out which is the midpoint thereof (rest of the lever). See leePot ();
3. Establish a margin so that the vehicle does not move with slight movements or fluctuations do
not affect electricity.
4. Convert the movements up or down direction and motor current.

Steps 2 through 4 were conducted at ajustePots () ;.

.- We assume that a device with two motors, without steering shaft, need direction and values of
voltage to them. The conversion of forward / backward and left / right direction / voltage as
conducted in dirMot (), taking into account the three directions forward left / front / right, the same
back and incorporate rotation on itself. When going forward and turning, I do is to reduce the
voltage of the wheel to which rotation proportionally to movement of the joystick and avoiding
negative values, therefore, the reduction value can never be less than the feed rate (as much for the
motor). Hence the use of the variable rotation (VariableGiro).

.- Finally, control of battery status. When the joystick is at rest, or was unable to transmit, increase
onecounter. If reaches a desired (50 times) value, analyze the state of the battery and I flashing LED
(1 flash = low, 2 = very low flicker)

Once commented the joystick for Arduino sketch, we see the sketch of the vehicle.

Arduino (Vehicle)
On the corresponding communications (ESP-NOW) with the joystick part, and they were discussed
above, so I discuss the rest. Must take into account that I have simplified enough, so whether to
make changes, you work better by changing the remote control have to put the vehicle back on the
table and connect it to your computer. Therefore, I limit myself to collect motion data and transfer
them to L298N to move engines. Prioritized receiving emergency button and motionless time, I
analyze the state of the battery.

Pines .- input and output variables used WEMOS plate:

.- already in the setup () start the pins and its initial state. The remaining setup is about ESP-NOW:

.- In loop (), Aside from looking at the battery status, run two control functions, an annotated and
speaking of the ESP-NOW, reception () and the other performs management L298N with the
received data. Of course, the first thing is to analyze a possible emergency and stop the vehicle.
First I set a small delay in communications to synchronize the receiver more or less with the
transmitter. Run the receive function () and analyze if pressed "Emergency" to proceed with
immobilisation. If I do not receive data or movement of any of the engines, unemployment also by
sending data to the writeL298N () function. If no data, increment a counter for battery check. If
there is data received, turn on the LED communications and of course the command to writeL298N
() function to move the engine according to the data.

.- writeL298N function ()
If you remember L298N table, simply write these values with the data received

This is all. It is difficult for a project goes prize in a contest where there are not many friends to vote
for you. I do not intend to win competitions, but to clarify concepts. If a person appreciates this
work serves to acquire knowledge and then develop some own idea, I'm content.

A greeting:
Miguel A.

