
 

 

I █ www.freenove.com 

support@freenove.com █ 

 support@freenove.com 

Getting Started 

Thank you for choosing Freenove products! 

Get Support and Offer Input 

Freenove provides free, responsive product and technical support, including but not limited to: 

 Product quality issues  

 Product use and build issues 

 Questions regarding the technology employed in our products for learning and education 

 Your input and opinions are always welcome 

 We also encourage your ideas and suggestions for new products and product improvements 

For any of the above, you may send us an email to: 

support@freenove.com 

Safety and Precautions 

Please follow the following safety precautions when using or storing this product: 

 Keep this product out of the reach of children under 6 years old.  

 This product should be used only when there is adult supervision present as young children lack 

necessary judgment regarding safety and the consequences of product misuse.  

 This product contains small parts and parts, which are sharp. This product contains electrically conductive 

parts. Use caution with electrically conductive parts near or around power supplies, batteries and 

powered (live) circuits. 

 When the product is turned ON, activated or tested, some parts will move or rotate. To avoid injuries to 

hands and fingers, keep them away from any moving parts! 

 It is possible that an improperly connected or shorted circuit may cause overheating. Should this happen, 

immediately disconnect the power supply or remove the batteries and do not touch anything until it 

cools down! When everything is safe and cool, review the product tutorial to identify the cause. 

 Only operate the product in accordance with the instructions and guidelines of this tutorial, otherwise 

parts may be damaged or you could be injured. 

 Store the product in a cool dry place and avoid exposing the product to direct sunlight. 

 After use, always turn the power OFF and remove or unplug the batteries before storing. 

  

http://www.freenove.com/
mailto:support@freenove.com
mailto:support@freenove.com


 

 

 support@freenove.com II www.freenove.com █ 

█ support@freenove.com 

Car and Robot for Raspberry Pi 

We also have cars and robot kit for Raspberry Pi. If you are interested in them, please visit our website for 

details.  

http://www.freenove.com/store.html 

FNK0043 Freenove 4WD Smart Car Kit for Raspberry Pi 

  

https://www.youtube.com/watch?v=4Zv0GZUQjZc 

 

FNK0050 Freenove Robot Dog Kit for Raspberry Pi 

 

https://www.youtube.com/watch?v=7BmIZ8_R9d4&t=35s 

  

http://www.freenove.com/
mailto:support@freenove.com
http://www.freenove.com/store.html
https://www.youtube.com/watch?v=4Zv0GZUQjZc
https://www.youtube.com/watch?v=7BmIZ8_R9d4&t=35s


 

 

III █ www.freenove.com 

support@freenove.com █ 

 support@freenove.com 

About Freenove 

Freenove provides open source electronic products and services worldwide. 

 

Freenove is committed to assist customers in their education of robotics, programming and electronic circuits 

so that they may transform their creative ideas into prototypes and new and innovative products. To this end, 

our services include but are not limited to: 

 

 Educational and Entertaining Project Kits for Robots, Smart Cars and Drones 

 Educational Kits to Learn Robotic Software Systems for Arduino, Raspberry Pi and micro: bit 

 Electronic Component Assortments, Electronic Modules and Specialized Tools 

 Product Development and Customization Services 

 

You can find more about Freenove and get our latest news and updates through our website: 

 

http://www.freenove.com 

 

Copyright 

All the files, materials and instructional guides provided are released under Creative Commons Attribution-

NonCommercial-ShareAlike 3.0 Unported License. A copy of this license can be found in the folder containing 

the Tutorial and software files associated with this product. 

 

This means you can use these resource in your own derived works, in part or completely, but NOT for the 

intent or purpose of commercial use. 

 

Freenove brand and logo are copyright of Freenove Creative Technology Co., Ltd. and cannot be used without 

written permission. 

 

 

Free your innovation 

 

 

Raspberry Pi® is a trademark of Raspberry Pi Foundation (https://www.raspberrypi.org/). 

  

○R  

http://www.freenove.com/
mailto:support@freenove.com
http://www.freenove.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.raspberrypi.org/


 

 

 support@freenove.com IV www.freenove.com █ 

█ support@freenove.com 

Contents 

Getting Started ................................................................................................................................................................... I 

Safety and Precautions ................................................................................................................................................ I 

Car and Robot for Raspberry Pi ................................................................................................................................ II 

About Freenove .......................................................................................................................................................... III 

Copyright ..................................................................................................................................................................... III 

Contents ............................................................................................................................................................................. IV 

Preface .................................................................................................................................................................................. 1 

Raspberry Pi ........................................................................................................................................................................ 2 

Installing an Operating System ................................................................................................................................... 9 

Component List ............................................................................................................................................................ 9 

Optional Components .............................................................................................................................................. 11 

Raspberry Pi OS ......................................................................................................................................................... 13 

Getting Started with Raspberry Pi .......................................................................................................................... 17 

Chapter 0 Preparation...................................................................................................................................................29 

Linux Command ......................................................................................................................................................... 29 

Install WiringPi............................................................................................................................................................ 32 

Obtain the Project Code........................................................................................................................................... 34 

Python2 & Python3 ................................................................................................................................................... 35 

Projects Board for Raspberry Pi .............................................................................................................................. 37 

Assembly ..................................................................................................................................................................... 38 

Chapter 1 LED ..................................................................................................................................................................41 

Project 1.1 Blink.......................................................................................................................................................... 41 

Chapter 2 FlowingLight ................................................................................................................................................56 

Project 2.1 Flowing Water Light .............................................................................................................................. 56 

Chapter 3 Buttons & LEDs ...........................................................................................................................................62 

Project 3.1 Push Button Switch & LED ................................................................................................................... 62 

Chapter 4 Analog & PWM ...........................................................................................................................................69 

Project 4.1 Breathing LED......................................................................................................................................... 69 

Chapter 5 RGB LED .........................................................................................................................................................77 

Project 5.1 RainbowLED............................................................................................................................................ 78 

Chapter 6 Buzzer .............................................................................................................................................................85 

Project 6.1 Doorbell .................................................................................................................................................. 85 

Project 6.2 Alertor ...................................................................................................................................................... 93 

(Important) Chapter 7 ADC ...................................................................................................................................... 101 

Project 7.1 Read the Voltage of Potentiometer ................................................................................................. 101 

Project 7.2 Soft Light ............................................................................................................................................... 114 

Project 7.3 Colorful Light........................................................................................................................................ 120 

Chapter 8 Photoresistor & LED .............................................................................................................................. 126 

Project 8.1 NightLamp ............................................................................................................................................ 126 

Chapter 9 Thermistor ................................................................................................................................................. 133 

Project 9.1 Thermometer ....................................................................................................................................... 133 

http://www.freenove.com/
mailto:support@freenove.com


 

 

V █ www.freenove.com 

support@freenove.com █ 

 support@freenove.com 

Chapter 10 Joystick ..................................................................................................................................................... 141 

Project 10.1 Joystick ................................................................................................................................................ 141 

Chapter 11 Motor & Driver ...................................................................................................................................... 148 

Project 11.1 Control a DC Motor with a Potentiometer ................................................................................... 148 

Chapter 12 Relay & LED ............................................................................................................................................ 159 

Project 12.1 Relay & LED ........................................................................................................................................ 159 

Chapter 13 Servo ......................................................................................................................................................... 167 

Project 13.1 Sweep .................................................................................................................................................. 167 

Project 13.2 Knob .................................................................................................................................................... 176 

Chapter 14 Stepper Motor ....................................................................................................................................... 182 

Project 14.1 Stepper Motor ................................................................................................................................... 182 

Chapter 15 LEDpixel ................................................................................................................................................... 194 

Project 15.1 LEDpixel............................................................................................................................................... 194 

Project 15.2 Rainbow Light .................................................................................................................................... 204 

Chapter 16 74HC595 & Bar Graph LED ............................................................................................................... 212 

Project 16.1 Flowing Water Light.......................................................................................................................... 212 

Chapter 17 74HC595 & 4-Digit 7-Segment Display ...................................................................................... 222 

Project 17.1 4-Digit 7-Segment Display ............................................................................................................. 222 

Project 17.2 4-Digit 7-Segment Display ............................................................................................................. 230 

Chapter 18 74HC595 & LED Matrix ...................................................................................................................... 242 

Project 18.1 LED Matrix .......................................................................................................................................... 242 

Chapter 19 LCD1602 ................................................................................................................................................... 254 

Project 19.1 I2C LCD1602 ...................................................................................................................................... 254 

Chapter 20 Hygrothermograph DHT11 .............................................................................................................. 266 

Project 20.1 Hygrothermograph ........................................................................................................................... 266 

Chapter 21 Matrix Keypad ....................................................................................................................................... 274 

Project 21 Matrix Keypad ....................................................................................................................................... 274 

Chapter 22 Infrared Motion Sensor ...................................................................................................................... 284 

Project 22.1 PIR Infrared Motion Detector with LED Indicator........................................................................ 284 

Chapter 23 Ultrasonic Ranging .............................................................................................................................. 292 

Project 23.1 Ultrasonic Ranging ............................................................................................................................ 292 

Chapter 24 Attitude Sensor MPU6050 ................................................................................................................ 302 

Project 24.1 Read an MPU6050 Sensor Module ................................................................................................ 302 

Chapter 25 RFID ........................................................................................................................................................... 311 

Project 25.1 RFID...................................................................................................................................................... 311 

What's Next? ................................................................................................................................................................. 332 

http://www.freenove.com/
mailto:support@freenove.com




 

 support@freenove.com █ 

1 █ www.freenove.com  support@freenove.com 

Preface 

Raspberry Pi is a low cost, credit card sized computer that plugs into a computer monitor or TV, and uses a 

standard keyboard and mouse. It is an incredibly capable little device that enables people of all ages to explore 

computing, and to learn how to program in a variety of computer languages like Scratch and Python. It is 

capable of doing everything you would expect from a desktop computer, such as browsing the internet, 

playing high-definition video content, creating spreadsheets, performing word-processing, and playing video 

games. For more information, you can refer to Raspberry Pi official website. For clarification, this tutorial will 

also reference Raspberry Pi as RPi, RPI and RasPi. 

 

In this tutorial, most chapters consist of Components List, Component Knowledge, Circuit, and Code (C 

code and Python code). We provide both C and Python code for each project in this tutorial. After completing 

this tutorial, you can learn Java by reading Processing.pdf. 

 

This kit contains all the accessory electronic components and modules needed to complete the projects 

described in the index. You can also use these components and modules to create projects of your own 

design. 

  

Additionally, if you encounter any issues or have questions about this tutorial or the contents of kit, you can 

always contact us for free technical support at: 

support@freenove.com 
 

 

 

 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/
mailto:support@freenove.com


 

 █ support@freenove.com 

 support@freenove.com 2 www.freenove.com █ 

Raspberry Pi 

So far, at this writing, Raspberry Pi has advanced to its fourth generation product offering. Version changes 

are accompanied by increases in upgrades in hardware and capabilities.  

 

The A type and B type versions of the first generation products have been discontinued due to various reasons. 

What is most important is that other popular and currently available versions are consistent in the order and 

number of pins and their assigned designation of function, making compatibility of peripheral devices greatly 

enhanced between versions. 

 

Below are the raspberry pi pictures and model pictures supported by this product. They have 40 pins. 

Actual image of Raspberry Pi 4 Model B： 

 

CAD image of Raspberry Pi 4 Model B： 

 
 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

3 █ www.freenove.com  support@freenove.com 

Actual image of Raspberry Pi 3 Model B+： 

 

CAD image of Raspberry Pi 3 Model B+： 

 

Actual image of Raspberry Pi 3 Model B:  

 

CAD image of Raspberry Pi 3 Model B: 

 
 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 4 www.freenove.com █ 

Actual image of Raspberry Pi 2 Model B: 

 

CAD image of Raspberry Pi 2 Model B: 

 
Actual image of Raspberry Pi 1 Model B+: 

 

CAD image of Raspberry Pi 1 Model B+: 

 
 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

5 █ www.freenove.com  support@freenove.com 

Actual image of Raspberry Pi 3 Model A+: 

 

CAD image of Raspberry Pi 3 Model A+: 

 

Actual image of Raspberry Pi 1 Model A+: 

 

CAD image of Raspberry Pi 1 Model A+: 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 6 www.freenove.com █ 

Actual image of Raspberry Pi Zero W: 

 

CAD image of Raspberry Pi Zero W: 

 

Actual image of Raspberry Pi Zero： 

 

CAD image of Raspberry Pi Zero： 

 

 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

7 █ www.freenove.com  support@freenove.com 

Hardware interface diagram of RPi 4B: 

 

 

 

 

 

 

 

Hardware interface diagram of RPi 3B+/3B/2B/1B+: 

 
 

 

 

 

  

GPIO 

Connector 

Display 

Connector 

Power 

Connector 

HDMI 

Connector 

Camera 

Connector 

Ethernet 

Connector 

GPIO 

Connector 

Display 

Connector 

Power 

Connector 

Micro HDMI 

Connector x2 

Camera 

Connector 

Ethernet 

Connector 

USB 

Connector x4 

Audio 

Connector 

USB 

Connector 

Audio 

Connector 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 8 www.freenove.com █ 

Hardware interface diagram of RPi 3A+/A+: 

 

 

 

 

 

 

 

 

Hardware interface diagram of RPi Zero/Zero W: 

 

 

 

 

 

 

 

  

GPIO 

Connector 

Power 

Connector 
HDMI 

Connector 

Camera 

Connector 

USB 

Connector 

GPIO 

Connector 

Display 

Connector 

Power 

Connector 

HDMI 

Connector 

Camera 

Connector 

Audio 

Connector 

USB 

Connector 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

9 █ www.freenove.com  support@freenove.com 

Installing an Operating System 

The first step is to install an operating system on your RPi so that it can be programmed and function. If you 

have installed a system in your RPi, you can start from Chapter 0 Preparation. 

Component List  

Required Components 

Any Raspberry Pi 

 

5V/3A Power Adapter. Note: Different versions of 

Raspberry Pi have different power requirements 

(please check the power requirements for yours 

on the chart in the following page.) 

 

Micro or Type-C USB Cable x1 

 

Micro SD Card (TF Card) x1, Card Reader x1 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 10 www.freenove.com █ 

Power requirements of various versions of Raspberry Pi are shown in following table: 

Product Recommended 

PSU current 

capacity 

Maximum total USB 

peripheral current draw 

Typical bare-board 

active current 

consumption 

Raspberry Pi Model A 700mA 500mA 200mA 

Raspberry Pi Model B 1.2A 500mA 500mA 

Raspberry Pi Model A+ 700mA 500mA 180mA 

Raspberry Pi Model B+ 1.8A 600mA/1.2A (switchable) 330mA 

Raspberry Pi 2 Model B 1.8A 600mA/1.2A (switchable) 350mA 

Raspberry Pi 3 Model B 2.5A 1.2A 400mA 

Raspberry Pi 3 Model A+ 2.5A Limited by PSU, board, and 

connector ratings only. 

350mA 

Raspberry Pi 3 Model B+ 2.5A 1.2A 500mA 

Raspberry Pi 4 Model B 3.0A 1.2A 600mA 

Raspberry Pi Zero W 1.2A Limited by PSU, board, and 

connector ratings only. 

150mA 

Raspberry Pi Zero 1.2A Limited by PSU, board, and 

connector ratings only 

100mA 

For more details, please refer to https://www.raspberrypi.org/help/faqs/#powerReqs 

 

In addition, RPi also needs an Ethernet network cable to connect it to a WAN (Wide Area Network). 

 

All these components are necessary for any of your projects to work. Among them, the power supply of at 

least 5V/2.5A, because a lack of a sufficient power supply may lead to many functional issues and even 

damage your RPi, we STRONGLY RECOMMEND a 5V/2.5A power supply. We also recommend using an SD 

Micro Card with a capacity of 16GB or more (which, functions as the RPI’s “hard drive”) and is used to store 

the operating system and necessary operational files. 

 

  

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/help/faqs/#powerReqs


 

 support@freenove.com █ 

11 █ www.freenove.com  support@freenove.com 

Optional Components 

Under normal circumstances, there are two ways to login to Raspberry Pi: 1) Using a stand-alone monitor. 2) 

Using a remote desktop or laptop computer monitor “sharing” the PC monitor with your RPi. 

Required Accessories for Monitor 

If you choose to use an independent monitor, mouse and keyboard, you also need the following accessories: 

1. A display with a HDMI interface 

2. A Mouse and a Keyboard with an USB interface 

 

As to Pi Zero and Pi Zero W, you also need the following accessories: 

1. A Mini-HDMI to HDMI Adapter and Cable. 

2. A Micro-USB to USB-A Adapter and Cable (Micro USB OTG Cable).  

3. A USB HUB. 

4. USB to Ethernet Interface or USB Wi-Fi receiver.  

 

For different Raspberry Pi Modules, the optional items may vary slightly but they all aim to convert the 

interfaces to Raspberry Pi standards. 

 

 

 

 
Pi Zero Pi A+ 

Pi Zero 

W 
Pi 3A+ Pi B+/2B 

Pi 

3B/3B+ 
Pi 4B 

Monitor Yes (All) 

Mouse Yes (All) 

Keyboard Yes (All) 

Micro-HDMI to HDMI 

Adapter & Cable  
Yes No Yes No No No No 

Micro-HDMI to HDMI 

Adapter & Cable 
No Yes 

Micro-USB to USB-A 

Adapter & Cable 

(Micro USB OTG 

Cable) 

Yes No Yes No 

USB HUB Yes Yes Yes Yes No No  

USB to Ethernet 

Interface  

select one from 

two or select two 

from two 

optional 
Internal 

Integration Internal Integration 

USB Wi-Fi Receiver Internal Integration optional 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 12 www.freenove.com █ 

Required Accessories for Remote Desktop 

If you do not have an independent monitor, or if you want to use a remote desktop, you first need to login 

to Raspberry Pi through SSH, and then open the VNC or RDP service. This requires the following accessories. 

 

 Pi Zero Pi Zero W  Pi A+ Pi 3A+ Pi B+/2B Pi 3B/3B+/4B 

Micro-USB to USB-A 

Adapter & Cable 

(Micro USB OTG 

Cable) 

Yes Yes No  

 

 

NO 

USB to Ethernet 

interface 

Yes Yes Yes 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

13 █ www.freenove.com  support@freenove.com 

Raspberry Pi OS 

Automatically 

You can follow the official method to install the system for raspberry pi via visiting link below: 

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/2 

In this way, the system will be downloaded automatically via the application.  

 

Manually 

After installing the Imager Tool in the link above. You can also download the system manually.  

 

Visit https://www.raspberrypi.org/downloads/ 

  

 
 

mailto:support@freenove.com
http://www.freenove.com/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/2
https://www.raspberrypi.org/downloads/


 

 █ support@freenove.com 

 support@freenove.com 14 www.freenove.com █ 

 

And then the zip file is downloaded.  

 

Write System to Micro SD Card  

First, put your Micro SD card into card reader and connect it to USB port of PC.  

  

 

Then open imager tool. Choose system that you just downloaded in Use custom. 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

15 █ www.freenove.com  support@freenove.com 

 

 
  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 16 www.freenove.com █ 

Choose the SD card. Then click “WRITE”. 

 

Enable ssh 

If you don’t have a separate monitor, after the system is written successfully, create a folder named “ssh” 

under generated boot disk of Micro SD Card. 

 

Then remove SD card from card reader and insert it into Raspberry Pi. 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

17 █ www.freenove.com  support@freenove.com 

Getting Started with Raspberry Pi 

Monitor desktop 

If you do not have a spare monitor, please skip to next section Remote desktop & VNC. If you have a spare 

monitor, please follow the steps in this section.  

After the system is written successfully, take out Micro SD Card and put it into the SD card slot of RPi. Then 

connect your RPi to the monitor through the HDMI port, attach your mouse and keyboard through the USB 

ports, attach a network cable to the network port and finally, connect your power supply (making sure that it 

meets the specifications required by your RPi Module Version. Your RPi should start (power up). Later, after 

setup, you will need to enter your user name and password to login. The default user name: pi; password: 

raspberry. After login, you should see the following screen. 

 
Congratulations! You have successfully installed the RASPBERRY PI OS operating system on your RPi. 

 

Raspberry Pi 4B, 3B+/3B integrates a Wi-Fi adaptor. You can use it to connect to your Wi-Fi. Then you can 

use the wireless remote desktop to control your RPi. This will be helpful for the following work. Raspberry Pi 

of other models can use wireless remote desktop through accessing an external USB wireless card. 

 

 

  

Connect WiFi 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 18 www.freenove.com █ 

Remote desktop & VNC 

If you have logged in Raspberry Pi via display, you can skip to VNC Viewer. 

 

If you don't have a spare display, mouse and keyboard for your RPi, you can use a remote desktop to share 

a display, keyboard, and mouse with your PC. Below is how to use:  

MAC OS remote desktop and Windows OS remote desktop. 

Connect your pi and computer to the router via a network cable. 

 

 

 

MAC OS Remote Desktop 

Open the terminal and type following command. If this command doesn’t work, please move to next page. 

ssh pi@raspberrypi.local 

The password is raspberry by default, case sensitive. 

 

You may need to type yes during the process. 

 

When you see pi@raspberrypi:~ $, you have logged in Pi successfully. Then you can skip to next section. 

  

Router Raspberry Pi 
Network cable 

Computer 
Network cable 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

19 █ www.freenove.com  support@freenove.com 

You can also use the IP address to log in Pi.  

Enter router client to inquiry IP address named “raspberry pi”. For example, I have inquired to my RPi IP 

address, and it is “192.168.1.131". 

 

Open the terminal and type following command. 

ssh pi@192.168.1.131 

 

Then you can skip to VNC Viewer. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 20 www.freenove.com █ 

Windows OS Remote Desktop 

The windows built-in application remote desktop corresponds to the Raspberry Pi xrdp service. 

Download the tool software Putty. Its official address: http://www.putty.org/  

Or download it here: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html  

 

Then use net cable to connect your RPi to the same router with your PC. Then put the system Micro SD Card 

prepared before into the slot of the RPi and turn on the power supply. Enter router client to inquiry IP address 

named “raspberry pi”. For example, my RPi IP address is “192.168.1.108".  

Then open Putty, enter the address, select SSH, and then click "OPEN", as shown below: 

 

 

There will appear a security warning at first login. Just click “YES”. 

 

  

Step1: enter 

the IP address 

Step2:  

Select SSH 

Step3: 

 Click “OPEN” 

mailto:support@freenove.com
http://www.freenove.com/
http://www.putty.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html


 

 support@freenove.com █ 

21 █ www.freenove.com  support@freenove.com 

Then there will be a login interface. Login as: pi; password: raspberry. When you enter the password, there 

will be no display on the screen. This is normal. After the correct input, press “Enter” to confirm. 

 
 

Then enter the command line of RPi, which means that you have successfully logged in to RPi command line 

mode. 

 

 

Next, install an xrdp service, an open source remote desktop protocol(xrdp) server, for RPi. Type the following 

command, then press enter to confirm: 

sudo apt-get install xrdp 

 

Enter "Y", press key “Enter” to confirm. 

After the installation is completed, you can use Windows remote desktop applications to login to your RPi. 

Use "WIN+R" or search function, open the remote desktop application "mstsc.exe" under Windows, enter the 

IP address of RPi and then click “Connect”. 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 22 www.freenove.com █ 

 

 

Later, there will be xrdp login screen. Enter the user name and password of RPi (RPi default user name: pi; 

password: raspberry) and click “OK”. 

 
  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

23 █ www.freenove.com  support@freenove.com 

Later, you can enter the RPi desktop system. 

 

Here, you have successfully used the remote desktop login to RPi. 

 

Raspberry Pi 4B/3B+/3B integrates a Wi-Fi adaptor. You can use it to connect to your Wi-Fi. Then you can 

use the wireless remote desktop to control your RPi.  

 
  

Connect WiFi 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 24 www.freenove.com █ 

VNC Viewer & VNC  

Type the following command. And select 5 Interfacing OptionsP3 VNC YesOKFinish. Here Raspberry 

Pi may need be restarted, and choose ok. Then open VNC interface.  

sudo raspi-config 

 

 

 
 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

25 █ www.freenove.com  support@freenove.com 

Then set resolution. 

<Back> 7 Advanced OptionsA5 Resolution1280x720OKFinish. 

You can also set other resolutions. If you don’t know what to set, you can set it as 1280x720 first. 

 
 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 26 www.freenove.com █ 

Then download and install VNC Viewer according to your computer system by click following link: 

https://www.realvnc.com/en/connect/download/viewer/ 

After installation is completed, open VNC Viewer. And click File  New Connection. Then the interface is 

shown below.  

 
Enter IP address of your Raspberry Pi and fill in a name. Then click OK. 

Then on the VNC Viewer panel, double-click new connection you just created,  

 
and the following dialog box pops up.   

 

mailto:support@freenove.com
http://www.freenove.com/
https://www.realvnc.com/en/connect/download/viewer/


 

 support@freenove.com █ 

27 █ www.freenove.com  support@freenove.com 

Enter username: pi and Password: raspberry. And click OK.      

 
Here, you have logged in to Raspberry Pi successfully by using VNC Viewer 

 

In addition, your VNC Viewer window may zoom your Raspberry Pi desktop. You can change it. On your 

VNC View control panel, click right key. And select Properties->Options label->Scaling. Then set proper 

scaling.  

 

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer and operated proper setting. 

 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 28 www.freenove.com █ 

Raspberry Pi 4B/3B+/3B integrates a Wi-Fi adaptor.If you haven’t connected Pi to WiFi, you can connect it to 

wirelessly control the robot. 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

29 █ www.freenove.com  support@freenove.com 

Chapter 0 Preparation 

Why “Chapter 0”? Because in program code the first number is 0. We choose to follow this rule. In this chapter, 

we will do some necessary foundational preparation work: Start your Raspberry Pi and install some necessary 

libraries.  

Linux Command 

Raspberry Pi OS is based on the Linux Operation System. Now we will introduce you to some frequently used 

Linux commands and rules. 

First, open the Terminal. All commands should be run in Terminal.  

 
When you click the Terminal icon, following interface appears. 

 

  

Terminal 

Browser File  

manager 

Menu 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 30 www.freenove.com █ 

Note: The Linux is case sensitive. 

First, type “ls” into the Terminal and press the “Enter” key. The result is shown below: 

 

The ”ls” command lists information about the files (the current directory by default). 

 

Content between “$” and ”pi@raspberrypi:” is the current working path. “~” represents the user directory, 

which refers to “/home/pi” here.  

 

 

“cd” is used to change directory. “/” represents the root directory.  

 
 

Later in this Tutorial, we will often change the working path. Typing commands under the wrong directory 

may cause errors and break the execution of further commands.  

 

Many frequently used commands and instructions can be found in the following reference table. 

Command instruction 

ls Lists information about the FILEs (the current directory by default) and entries 

alphabetically. 

cd Changes directory 

sudo + cmd Executes cmd under root authority 

./ Under current directory 

gcc GNU Compiler Collection 

git clone URL Use git tool to clone the contents of specified repository, and URL in the repository address. 

There are many commands, which will come later. For more details about commands. You can refer to: 

http://www.linux-commands-examples.com 

  

mailto:support@freenove.com
http://www.freenove.com/
http://www.linux-commands-examples.com/


 

 support@freenove.com █ 

31 █ www.freenove.com  support@freenove.com 

Shortcut Key 

Now, we will introduce several commonly used shortcuts that are very useful in Terminal. 

 

1. Up and Down Arrow Keys: Pressing “↑” (the Up key) will go backwards through the command history and 

pressing “↓” (the Down Key) will go forwards through the command history. 

 

2. Tab Key: The Tab key can automatically complete the command/path you want to type. When there is only 

one eligible option, the command/path will be completely typed as soon as you press the Tab key even you 

only type one character of the command/path.  

 

As shown below, under the '~' directory, you enter the Documents directory with the “cd” command. After 

typing “cd D”, pressing the Tab key (there is no response), pressing the Tab key again then all the files/folders 

that begin with “D” will be listed. Continue to type the letters "oc" and then pressing the Tab key, the 

“Documents” is typed automatically. 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 32 www.freenove.com █ 

Install WiringPi 

WiringPi is a GPIO access library written in C language for the BCM2835/BMC2836/BMC2837 used in the 

Raspberry Pi. It is released under the GNU LGPLv3 license and is usable from C, C++ and many other 

languages with suitable wrappers (See below). It is designed to be user friendly for those people who have 

had prior experience with the Arduino “wiring” system. (for more details, please refer to http://wiringpi.com/ ) 

WiringPi Installation Steps 

To install the WiringPi library, please open the Terminal and then follow the steps and commands below.   

Note: For a command containing many lines, execute them one line at a time. 

Enter the following command in the terminal to install WiringPi: 

sudo apt-get update 

git clone https://github.com/WiringPi/WiringPi 

cd WiringPi 

./build 

And then the installation will complete quickly as shown below. 

 

 

 

 

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/
https://github.com/WiringPi/WiringPi


 

 support@freenove.com █ 

33 █ www.freenove.com  support@freenove.com 

Run the gpio command to check the installation: 

gpio -v 

That should give you some confidence that the installation was a success. 

 
  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 34 www.freenove.com █ 

Obtain the Project Code 

After the above installation is completed, you can visit our official website (http://www.freenove.com) or our 

GitHub resources at (https://github.com/freenove) to download the latest available project code. We provide 

both C language and Python language code for each project to allow ease of use for those who are skilled 

in either language.  

 

This is the method for obtaining the code: 

In the pi directory of the RPi terminal, enter the following command. 

cd 

git clone https://github.com/Freenove/Freenove_Projects_Kit_for_Raspberry_Pi.git 

(There is no need for a password. If you get some errors, please check your commands.) 

 

After the download is completed, a new folder "Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi" is generated, 

which contains all of the tutorials and required code. 

 

This folder name looks a little too long. We can simply rename it by using the following command.  

mv Freenove_Projects_Kit_for_Raspberry_Pi/ Freenove_Kit/ 

 

"Freenove_Kit" is now the new and much shorter folder name. 

 

If you have no experience with Python, we suggest that you refer to this website for basic information and 

knowledge.  

https://python.swaroopch.com/basics.html  

mailto:support@freenove.com
http://www.freenove.com/
http://www.freenove.com/
https://github.com/freenove
https://github.com/Freenove/Freenove_Projects_Kit_for_Raspberry_Pi.git
https://python.swaroopch.com/basics.html


 

 support@freenove.com █ 

35 █ www.freenove.com  support@freenove.com 

Python2 & Python3 

If you only use C/C++, you can skip this section. 

  

Python code, used in our kits, can now run on Python2 and Python3. Python3 is recommended. If you want 

to use Python2, please make sure your Python version is 2.7 or above. Python2 and Python3 are not fully 

compatible. However, Python2.6 and Python2.7 are transitional versions to python3, therefore you can also 

use Python2.6 and 2.7 to execute some Python3 code. 

 

You can type “python2” or “python3” respectively into Terminal to check if python has been installed. Press 

Ctrl-Z to exit. 

 

 

Type “python”, and Terminal shows that it links to python2. 

 

If you want to use Python3 in Raspberry Pi, it is recommended to set python3 as default Python by following 

the steps below. 

1. Enter directory /usr/bin  

cd /usr/bin 

2. Delete the old python link. 

sudo rm python 

3. Create new python links to python3. 

sudo ln -s python3 python 

4. Execute python to check whether the link succeeds. 

python 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 36 www.freenove.com █ 

If you want to use Python2, repeat the steps above and just change the third command to the following: 

sudo ln -s python2 python 

 

 

We will only use the term “Python” without reference to Python2 or Python3. You can choose to use either.  

Finally, all the necessary preparations have been completed! Next, we will combine the RPi and electronic 

components to build a series of projects from easy to the more challenging and difficult as we focus on 

learning the associated knowledge of each electronic circuit. 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

37 █ www.freenove.com  support@freenove.com 

Projects Board for Raspberry Pi 

 

 

 

 

 

  

Active 

Buzzer 

Passive 

Buzzer 

MPU6050 

ADC Module Joystick Touch Button Potentiometer 

GPIO Indicator LED Power Switch 

RFID External Port 

LED Matrix 4-digit 7-segement 

LED display 
LED Bar Graph 

toggle 

switch 
relay 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 38 www.freenove.com █ 

Assembly 

Install the brass standoffs. 

 
Finish 

 

  

M2.5*14 

https://git

hub.com/

Freenove/

SPI-Py 

M2.5*6 

https://git

hub.com/

Freenove/

SPI-Py 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

39 █ www.freenove.com  support@freenove.com 

Install the Raspberry Pi.   

 

 

 

Install the acrylic part 

 

 

 

 

 

M3*6+6 

M3 

M2.5*6 

https://git

hub.com/

Freenove/

SPI-Py 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 40 www.freenove.com █ 

Finish 

 
 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

41 █ www.freenove.com  support@freenove.com 

Chapter 1 LED 

This chapter is the Start Point in the journey to build and explore RPi electronic projects. We will start with 

simple “Blink” project. 

Project 1.1 Blink 

In this project, we will use RPi to control blinking a common LED. 

GPIO 

GPIO: General Purpose Input/Output. Here we will introduce the specific function of the pins on the Raspberry 

Pi and how you can utilize them in all sorts of ways in your projects. Most RPi Module pins can be used as 

either an input or output, depending on your program and its functions. 

When programming GPIO pins, there are 3 different ways to reference them: GPIO Numbering, Physical 

Numbering and WiringPi GPIO Numbering. 

 

BCM GPIO Numbering 

The Raspberry Pi CPU uses Broadcom (BCM) processing chips BCM2835, BCM2836 or BCM2837. GPIO pin 

numbers are assigned by the processing chip manufacturer and are how the computer recognizes each pin. 

The pin numbers themselves do not make sense or have meaning as they are only a form of identification. 

Since their numeric values and physical locations have no specific order, there is no way to remember them, 

so you will need to have a printed reference or a reference board that fits over the pins. 

Each pin’s functional assignment is defined in the image below: 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 42 www.freenove.com █ 

     

For more details about pin definition of GPIO, please refer to http://pinout.xyz/ 

 

 

 

 

PHYSICAL Numbering 

Another way to refer to the pins is by simply counting across and down from pin 1 at the top left (nearest to 

the SD card). This is 'Physical Numbering', as shown below: 

 

 

mailto:support@freenove.com
http://www.freenove.com/
http://pinout.xyz/


 

 support@freenove.com █ 

43 █ www.freenove.com  support@freenove.com 

WiringPi GPIO Numbering 

Different from the previous two types of GPIO serial numbers, RPi GPIO serial number of the WiringPi are 

numbered according to the BCM chip used in RPi. 

 
(For more details, please refer to https://projects.drogon.net/raspberry-pi/wiringpi/pins/ )  

mailto:support@freenove.com
http://www.freenove.com/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/


 

 █ support@freenove.com 

 support@freenove.com 44 www.freenove.com █ 

You can also use the following command to view their correlation. 

gpio readall 

 

 

Expect to have errors when executing the command “gpio readall” if you are using Raspberry Pi 4B (as shown 

below): 

 
 

This is because the official version of the library supporting RPI 4B, as of this writing, has not yet been released. 

This results in some commands not functioning properly. However, the following projects will not be affected. 

This problem can be solved by installing a patch. Just execute the commands below in the Terminal. 

wget https://project-downloads.drogon.net/wiringpi-latest.deb 

sudo dpkg -i wiringpi-latest.deb 

 

 

For more details about wiringPi, please refer to http://wiringpi.com/ . 

 

  

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/


 

 support@freenove.com █ 

45 █ www.freenove.com  support@freenove.com 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable  

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 46 www.freenove.com █ 

Circuit 

Schematic diagram 

 

GPIO          Resistor          LED       GND 

Hardware connection: 

Turn ON the power switch and NO.5 toggle switch.  

Power switch should be turned ON in all the projects. 

 

 

 

If you have any concerns, please send an email to: support@freenove.com 

It will be introducd when it is needed. 

Modules with same mark can‘t be used as the same time. 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

47 █ www.freenove.com  support@freenove.com 

Component knowledge 

LED 

An LED is a type of diode. All diodes have two Poles and only work if current is flowing in the correct direction. 

An LED will only work (light up) if the longer pin (+) of LED is connected to the positive output from a power 

source and the shorter pin is connected to the negative (-) output, which is also referred to as Ground (GND). 

This type of component is known as “Polar” (think One-Way Street). 

All common 2 lead diodes are the same in this respect. Diodes work only if the voltage of its positive electrode 

is higher than its negative electrode and there is a narrow range of operating voltage for most all common 

diodes of 1.9 and 3.4V. If you use much more than 3.3V the LED will be damaged and burnt out. 

    

Note: LEDs cannot be directly connected to a power supply, which usually ends in a damaged component. A 

resistor with a specified resistance value must be connected in series to the LED you plan to use. 

Resistor 

Resistors use Ohms (Ω) as the unit of measurement of their resistance (R). 1MΩ=1000kΩ, 1kΩ=1000Ω. 

A resistor is a passive electrical component that limits or regulates the flow of current in an electronic circuit. 

On the left, we see a physical representation of a resistor, and the right is the symbol used to represent the 

presence of a resistor in a circuit diagram or schematic. 

 

The bands of color on a resistor is a shorthand code used to identify its resistance value. For more details of 

resistor color codes, please refer to the card in the kit package. 

With a fixed voltage, there will be less current output with greater resistance added to the circuit. The 

relationship between Current, Voltage and Resistance can be expressed by this formula: I=V/R known as 

Ohm’s Law where I = Current, V = Voltage and R = Resistance. Knowing the values of any two of these allows 

you to solve the value of the third. 

In the following diagram, the current through R1 is: I=U/R=5V/10kΩ=0.0005A=0.5mA. 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 48 www.freenove.com █ 

   

WARNING: Never connect the two poles of a power supply with anything of low resistance value (i.e. a 

metal object or bare wire). This is a Short and results in high current that may damage the power supply and 

electronic components. 

Note: Unlike LEDs and Diodes, Resistors have no poles and re non-polar (it does not matter which direction 

you insert them into a circuit, it will work the same) 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

49 █ www.freenove.com  support@freenove.com 

Code 

According to the circuit, when the GPIO17 of RPi output level is high, the LED turns ON. Conversely, when the 

GPIO17 RPi output level is low, the LED turns OFF. Therefore, we can let GPIO17 cycle output high and output 

low level to make the LED blink. We will use both C code and Python code to achieve the target. 

 

C Code 1.1 Blink 

First, enter this command into the Terminal one line at a time. Then observe the results it brings on your 

project, and learn about the code in detail.  

If you want to execute it with editor, please refer to section Code Editor to configure. 

If you have any concerns, please send an email to: support@freenove.com 

It is recommended to execute the code via command line. 

1. If you did not update wiring pi, please execute following commands one by one. 

sudo apt-get update 

git clone https://github.com/WiringPi/WiringPi 

cd WiringPi 

./build 

2. Use cd command to enter 1_Blink directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/1_Blink 

3. Use the following command to compile the code “Blink.c” and generate executable file “Blink”. 

“l” of “lwiringPi” is low case of “L”. 

gcc Blink.c -o Blink -lwiringPi 

4. Then run the generated file “blink”. 

sudo ./Blink 

Now your LED should start blinking! CONGRATUALTIONS! You have successfully completed your first RPi 

circuit!  

 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 50 www.freenove.com █ 

You can also use the file browser. On the left of folder tree, right-click the folder you want to enter, and click 

"Open in Terminal". 

 

 

You can press “Ctrl+C” to end the program. The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

#include <wiringPi.h> 

#include <stdio.h> 

#define  ledPin    0 //define the led pin number 

void main(void) 

{  

 printf("Program is starting ... \n"); 

 wiringPiSetup(); //Initialize wiringPi. 

 pinMode(ledPin, OUTPUT);//Set the pin mode 

 printf("Using pin%d\n",ledPin); //Output information on terminal 

 while(1){ 

  digitalWrite(ledPin, HIGH);  //Make GPIO output HIGH level 

  printf("led turned on >>>\n");  //Output information on terminal 

  delay(1000);      //Wait for 1 second 

  digitalWrite(ledPin, LOW);  //Make GPIO output LOW level 

  printf("led turned off <<<\n");  //Output information on terminal 

  delay(1000);      //Wait for 1 second 

 } 

} 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

51 █ www.freenove.com  support@freenove.com 

In the code above, the configuration function for GPIO is shown below as:  

void pinMode(int pin, int mode);  

This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or GPIO_CLOCK. Note that only 

wiringPi pin 1 (BCM_GPIO 18) supports PWM output and only wiringPi pin 7 (BCM_GPIO 4) supports CLOCK 

output modes. 

This function has no effect when in Sys mode. If you need to change the pin mode, then you can do it with 

the gpio program in a script before you start your program  

void digitalWrite (int pin, int value);  

Writes the value HIGH or LOW (1 or 0) to the given pin, which must have been previously set as an output. 

For more related wiringpi functions, please refer to http://wiringpi.com/reference/  

 

GPIO connected to ledPin in the circuit is GPIO17 and GPIO17 is defined as 0 in the wiringPi numbering. So 

ledPin should be defined as 0 pin. You can refer to the corresponding table in Chapter 0. 

 #define  ledPin    0 //define the led pin number 

 

GPIO Numbering Relationship 

WingPi BCM(Extension) Physical BCM(Extension) WingPi 

3.3V 3.3V 1 2 5V 5V 

8 SDA1 3 4 5V 5V 

9 SCL1 5 6 GND GND 

7 GPIO4 7 8 GPIO14/TXD0 15 

GND GND 9 10 GPIO15/RXD0 16 

0 GPIO17 11 12 GPIO18 1 

2 GPIO27 13 14 GND GND 

3 GPIO22 15 16 GPIO23 4 

3.3V 3.3V 17 18 GPIO24 5 

12 GPIO10/MOSI) 19 20 GND GND 

13 GPIO9/MOIS 21 22 GPIO25 6 

14 GPIO11/SCLK 23 24 GPIO8 /CE0 10 

GND GND 25 26 GPIO7 CE1 11 

30 GPIO0/SDA0 27 28 GPIO1 /SCL0 31 

21 GPIO5 29 30 GND GND 

22 GPIO6 31 32 GPIO12 26 

23 GPIO13 33 34 GND GND 

24 GPIO19 35 36 GPIO16 27 

25 GPIO26 37 38 GPIO20 28 

GND GND 39 40 GPIO21 29 

 

  

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/


 

 █ support@freenove.com 

 support@freenove.com 52 www.freenove.com █ 

In the main function main(), initialize wiringPi first. 

  wiringPiSetup(); //Initialize wiringPi. 

 

After the wiringPi is initialized successfully, you can set the ledPin to output mode and then enter the while 

loop, which is an endless loop (a while loop). That is, the program will always be executed in this cycle, unless 

it is ended because of external factors. In this loop, use digitalWrite (ledPin, HIGH) to make ledPin output high 

level, then LED turns ON. After a period of time delay, use digitalWrite(ledPin, LOW) to make ledPin output low 

level, then LED turns OFF, which is followed by a delay. Repeat the loop, then LED will start blinking. 

  pinMode(ledPin, OUTPUT);//Set the pin mode 

 printf("Using pin%d\n",%ledPin); //Output information on terminal 

 while(1){ 

  digitalWrite(ledPin, HIGH);  //Make GPIO output HIGH level 

  printf("led turned on >>>\n");  //Output information on terminal 

  delay(1000);      //Wait for 1 second 

  digitalWrite(ledPin, LOW);  //Make GPIO output LOW level 

  printf("led turned off <<<\n");  //Output information on terminal 

  delay(1000);      //Wait for 1 second 

 } 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

53 █ www.freenove.com  support@freenove.com 

Python Code 1.1 Blink 

Now, we will use Python language to make a LED blink.  

First, observe the project result, and then learn about the code in detail.  

If you have any concerns, please send an email to: support@freenove.com 

1. Use cd command to enter 1_Blink directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/1_Blink 

2. Use python command to execute python code blink.py. 

python Blink.py 

 

The LED starts blinking. 

 

 

You can press “Ctrl+C” to end the program. The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

import RPi.GPIO as GPIO 

import time 

GPIO.setwarnings(False) 

ledPin = 11   # define ledPin 

def setup(): 

    GPIO.setmode(GPIO.BOARD)       # use PHYSICAL GPIO Numbering 

    GPIO.setup(ledPin, GPIO.OUT)   # set the ledPin to OUTPUT mode 

    GPIO.output(ledPin, GPIO.LOW)  # make ledPin output LOW level  

    print ('using pin%d'%ledPin) 

 

def loop(): 

    while True: 

        GPIO.output(ledPin, GPIO.HIGH)  # make ledPin output HIGH level to turn on led 

        print ('led turned on >>>')     # print information on terminal 

        time.sleep(1)                   # Wait for 1 second 

        GPIO.output(ledPin, GPIO.LOW)   # make ledPin output LOW level to turn off led 

        print ('led turned off <<<') 

        time.sleep(1)                   # Wait for 1 second 

 

def destroy(): 

    GPIO.cleanup()                      # Release all GPIO 

 

if __name__ == '__main__':    # Program entrance 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 54 www.freenove.com █ 

24 

25 

26 

27 

28 

29 

    print ('Program is starting ... \n') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:   # Press ctrl-c to end the program. 

        destroy() 

 

About RPi.GPIO： 

RPi.GPIO  

This is a Python module to control the GPIO on a Raspberry Pi. It includes basic output function and input 

function of GPIO, and functions used to generate PWM.  

GPIO.setmode(mode)  

Sets the mode for pin serial number of GPIO. 

mode=GPIO.BOARD, which represents the GPIO pin serial number based on physical location of RPi. 

mode=GPIO.BCM, which represents the pin serial number based on CPU of BCM chip. 

GPIO.setup(pin,mode)  

Sets pin to input mode or output mode, “pin” for the GPIO pin, “mode” for INPUT or OUTPUT. 

GPIO.output(pin,mode)  

Sets pin to output mode, “pin” for the GPIO pin, “mode” for HIGH (high level) or LOW (low level). 

For more functions related to RPi.GPIO, please refer to: 

https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/  

“import time” time is a module of python. 

https://docs.python.org/2/library/time.html?highlight=time%20time#module-time 

 

In subfunction setup(), GPIO.setmode (GPIO.BOARD) is used to set the serial number for GPIO based on 

physical location of the pin. GPIO17 uses pin 11 of the board, so define ledPin as 11 and set ledPin to output 

mode (output low level). 

 ledPin = 11   # define ledPin 

def setup(): 

    GPIO.setmode(GPIO.BOARD)       # use PHYSICAL GPIO Numbering 

    GPIO.setup(ledPin, GPIO.OUT)   # set the ledPin to OUTPUT mode 

    GPIO.output(ledPin, GPIO.LOW)  # make ledPin output LOW level  

    print ('using pin%d'%ledPin) 

 

  

mailto:support@freenove.com
http://www.freenove.com/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/
https://docs.python.org/2/library/time.html?highlight=time%20time#module-time


 

 support@freenove.com █ 

55 █ www.freenove.com  support@freenove.com 

GPIO Numbering Relationship 

WingPi BCM(Extension) Physical BCM(Extension) WingPi 

3.3V 3.3V 1 2 5V 5V 

8 SDA1 3 4 5V 5V 

9 SCL1 5 6 GND GND 

7 GPIO4 7 8 GPIO14/TXD0 15 

GND GND 9 10 GPIO15/RXD0 16 

0 GPIO17 11 12 GPIO18 1 

2 GPIO27 13 14 GND GND 

3 GPIO22 15 16 GPIO23 4 

3.3V 3.3V 17 18 GPIO24 5 

12 GPIO10/MOSI) 19 20 GND GND 

13 GPIO9/MOIS 21 22 GPIO25 6 

14 GPIO11/SCLK 23 24 GPIO8 /CE0 10 

GND GND 25 26 GPIO7 CE1 11 

30 GPIO0/SDA0 27 28 GPIO1 /SCL0 31 

21 GPIO5 29 30 GND GND 

22 GPIO6 31 32 GPIO12 26 

23 GPIO13 33 34 GND GND 

24 GPIO19 35 36 GPIO16 27 

25 GPIO26 37 38 GPIO20 28 

GND GND 39 40 GPIO21 29 

 

In loop(), there is a while loop, which is an endless loop (a while loop). That is, the program will always be 

executed in this loop, unless it is ended because of external factors. In this loop, set ledPin output high level, 

then the LED turns ON. After a period of time delay, set ledPin output low level, then the LED turns OFF, which 

is followed by a delay. Repeat the loop, then LED will start blinking.  

 def loop(): 

    while True: 

        GPIO.output(ledPin, GPIO.HIGH)  # make ledPin output HIGH level to turn on led 

        print ('led turned on >>>')     # print information on terminal 

        time.sleep(1)                   # Wait for 1 second 

        GPIO.output(ledPin, GPIO.LOW)   # make ledPin output LOW level to turn off led 

        print ('led turned off <<<') 

        time.sleep(1)                   # Wait for 1 second 

 

Finally, when the program is terminated, subfunction (a function within the file) will be executed, the LED will 

be turned off and then the IO port will be released. If you close the program Terminal directly, the program 

will also be terminated but the destroy () function will not be executed. Therefore, the GPIO resources will not 

be released which may cause a warning message to appear the next time you use GPIO. Therefore, do not 

get into the habit of closing Terminal directly. 

 def destroy(): 

    GPIO.cleanup()                      # Release all GPIO 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 56 www.freenove.com █ 

Chapter 2 FlowingLight 

We have learned how to control one LED to blink. Next, we will learn how to control a number of LEDs. 

Project 2.1 Flowing Water Light 

In this project, we use a number of LEDs to make a flowing water light. 

Component List 

Freenove Projects Board for Raspberry Pi  

 

Raspberry Pi 

 

GPIO Ribbon Cable  

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

57 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection. 

 

If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 58 www.freenove.com █ 

Code 

C Code 2.1 LightWater 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

1. Use cd command to enter 2_FlowingLight directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/2_FlowingLight 

2. Use the following command to compile “LightWater.c” and generate executable file “LightWater”. 

gcc FlowingLight.c -o FlowingLight -lwiringPi 

3. Then run the generated file “LightWater”. 

sudo ./FlowingLight 

You can see the LEDs lighting from top to bottom and then back from bottom to top. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

#include <wiringPi.h> 

#include <stdio.h> 

 

#define ledCounts 12 

int pins[ledCounts] = {15,16,1,4,5,6,10,11,26,27,28,29}; 

 

void main(void) 

{ 

 int i; 

 printf("Program is starting ... \n"); 

  

 wiringPiSetup(); //Initialize wiringPi. 

  

 for(i=0;i<ledCounts;i++){       //Set pinMode for all led pins to output 

  pinMode(pins[i], OUTPUT);   

 } 

 while(1){ 

  for(i=0;i<ledCounts;i++){   // move led(on) from top to bottom 

   digitalWrite(pins[i],LOW); 

   delay(100); 

   digitalWrite(pins[i],HIGH); 

  } 

  for(i=ledCounts-1;i>-1;i--){   // move led(on) from bottom to top 

   digitalWrite(pins[i],LOW); 

   delay(100); 

   digitalWrite(pins[i],HIGH); 

  } 

 } 

} 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

59 █ www.freenove.com  support@freenove.com 

In the “while” loop, apply two “for” loop to achieve the flowing water light lighting from top to bottom and 

then back from bottom to top. 

 while(1){ 

  for(i=0;i<ledCounts;i++){   // move led(on) from top to bottom 

   digitalWrite(pins[i],LOW); 

   delay(100); 

   digitalWrite(pins[i],HIGH); 

  } 

  for(i=ledCounts-1;i>-1;i--){   // move led(on) from bottom to top 

   digitalWrite(pins[i],LOW); 

   delay(100); 

   digitalWrite(pins[i],HIGH); 

  } 

 } 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 60 www.freenove.com █ 

Python Code 2.1 LightWater 

First observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

1. Use cd command to enter 2_FlowingLight directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/2_FlowingLight 

2. Use Python command to execute Python code “LightWater.py”. 

python LightWater.py 

 

You can see the LEDs lighting from top to bottom and then back from bottom to top. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

import RPi.GPIO as GPIO 

import time 

 

ledPins = [8,10,12,16,18,22,24,26,32,36,38,40] 

 

def setup():     

    GPIO.setmode(GPIO.BOARD)        # use PHYSICAL GPIO Numbering 

    GPIO.setup(ledPins, GPIO.OUT)   # set all ledPins to OUTPUT mode 

    GPIO.output(ledPins, GPIO.HIGH) # make all ledPins output HIGH level, turn off all led 

 

def loop(): 

    while True: 

        for pin in ledPins:     # make led(on) move from top to bottom 

            GPIO.output(pin, GPIO.LOW)   

            time.sleep(0.1) 

            GPIO.output(pin, GPIO.HIGH) 

        for pin in ledPins[::-1]:       # make led(on) move from bottom to top 

            GPIO.output(pin, GPIO.LOW)   

            time.sleep(0.1) 

            GPIO.output(pin, GPIO.HIGH) 

 

def destroy(): 

    GPIO.cleanup()                     # Release all GPIO 

 

if __name__ == '__main__':     # Program entrance 

    print ('Program is starting...') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy() 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

61 █ www.freenove.com  support@freenove.com 

In the “while” loop, apply two “for” loop to achieve the flowing water light lighting from top to bottom and 

then back from bottom to top. 

 def loop(): 

    while True: 

        for pin in ledPins:     # make led(on) move from top to bottom 

            GPIO.output(pin, GPIO.LOW)   

            time.sleep(0.1) 

            GPIO.output(pin, GPIO.HIGH) 

        for pin in ledPins[::-1]:       # make led(on) move from bottom to top 

            GPIO.output(pin, GPIO.LOW)   

            time.sleep(0.1) 

            GPIO.output(pin, GPIO.HIGH) 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 62 www.freenove.com █ 

Chapter 3 Buttons & LEDs 

Usually, there are three essential parts in a complete automatic control device: INPUT, OUTPUT, and CONTROL. 

In last section, the LED module was the output part and RPI was the control part. In practical applications, we 

not only make LEDs flash, but also make a device sense the surrounding environment, receive instructions 

and then take the appropriate action such as turn on LEDs, make a buzzer beep and so on. 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we will build a simple control system to control an LED through a push button switch. 

Project 3.1 Push Button Switch & LED 

In the project, we will control the LED state through a Push Button Switch. When the button is pressed, our 

LED will turn ON, and when it is released, the LED will turn OFF. This describes a Momentary Switch. 

Component knowledge 

Push Button Switch  

This type of Push Button Switch has 4 pins (2 Pole Switch). Two pins on the left are connected, and both left 

and right sides are the same as per the illustration: 

 
When the button on the switch is pressed, the circuit is completed (your project is Powered ON). 

Input: 

buttons, switches, 

sensors and etc. 

Control: 

RPI, Arduino, 

MCU and etc. 

Output: 

LED, buzzer, 

motor and etc. 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

63 █ www.freenove.com  support@freenove.com 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable  

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 64 www.freenove.com █ 

Circuit 

Schematic diagram 

 
Hardware connection.  

Switch ON NO.5 switch and the four switches of NO.2. 

 
 

If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

65 █ www.freenove.com  support@freenove.com 

Code 

This project is designed for learning how to use Push Button Switch to control an LED. We first need to read 

the state of switch, and then determine whether to turn the LED ON in accordance to the state of the switch. 

C Code 3.1 ButtonLED 

First, observe the project result, then learn about the code in detail.  

If you have any concerns, please send an email to: support@freenove.com 

1. Use cd command to enter 3_ButtonLED directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/3_ButtonLED 

2. Use the following command to compile the code “ButtonLED.c” and generate executable file “ButtonLED” 

gcc ButtonLED.c -o ButtonLED -lwiringPi 

3. Then run the generated file “ButtonLED”. 

sudo ./ButtonLED 

 

Later, the terminal window continues to print out the characters “led off…”. Press the S4 button, then LED is 

turned on and then terminal window prints out the "led on…". Release the button, then LED is turned off and 

then terminal window prints out the "led off…". You can press "Ctrl+C" to terminate the program. 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

#include <wiringPi.h> 

#include <stdio.h> 

 

#define ledPin    0   //define the ledPin 

#define buttonPin 25  //define the buttonPin 

 

void  main(void) 

{ 

 printf("Program is starting ... \n"); 

  

 wiringPiSetup(); //Initialize wiringPi.  

  

 pinMode(ledPin, OUTPUT); //Set ledPin to output 

 pinMode(buttonPin, INPUT);//Set buttonPin to input 

 

 pullUpDnControl(buttonPin, PUD_UP);  //pull up to HIGH level 

 while(1){ 

  if(digitalRead(buttonPin) == LOW){ //button is pressed  

   digitalWrite(ledPin, HIGH);  //Make GPIO output HIGH level 

   printf("Button is pressed, led turned on >>>\n");  //Output information on 

terminal 

  } 

  else {       //button is released  

   digitalWrite(ledPin, LOW);  //Make GPIO output LOW level 

   printf("Button is released, led turned off <<<\n");  //Output information on 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 66 www.freenove.com █ 

26 

27 

28 

29 

terminal 

  } 

 } 

} 

 

Define ledPin and buttonPin as 0 and 25 respectively. 

 #define ledPin    0   //define the ledPin 

#define buttonPin 25  //define the buttonPin 

 

In the while loop of main function, use digitalRead(buttonPin) to determine the state of Button. When the 

button is pressed, the function returns low level, the result of “if” is true, and then turn on LED. Or, turn off 

LED. 

   if(digitalRead(buttonPin) == LOW){ //button is pressed  

   digitalWrite(ledPin, HIGH);  //Make GPIO output HIGH level 

   printf("Button is pressed, led turned on >>>\n");  //Output information on 

terminal 

  } 

  else {       //button is released  

   digitalWrite(ledPin, LOW);  //Make GPIO output LOW level 

   printf("Button is released, led turned off <<<\n");  //Output information on 

terminal 

  } 

 

Reference: 

int digitalRead (int pin);  

This function returns the value read at the given pin. It will be “HIGH” or “LOW”(1 or 0) depending on the 

logic level at the pin. 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

67 █ www.freenove.com  support@freenove.com 

Python Code 3.1 ButtonLED 

First, observe the project result, then learn about the code in detail. Remember in code “button” = switch 

function 

If you have any concerns, please send an email to: support@freenove.com 

1. Use cd command to enter 3_ButtonLED directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/3_ButtonLED 

2. Use Python command to execute btnLED.py. 

python ButtonLED.py 

Then the Terminal window continues to show the characters “led off…”, press the switch button and the LED 

turns ON and then Terminal window shows "led on…". Release the button, then LED turns OFF and then the 

terminal window text "led off…" appears. You can press "Ctrl+C" at any time to terminate the program. 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

import RPi.GPIO as GPIO 

 

ledPin = 11    # define ledPin 

buttonPin = 37    # define buttonPin 

 

def setup(): 

     

    GPIO.setmode(GPIO.BOARD)      # use PHYSICAL GPIO Numbering 

    GPIO.setup(ledPin, GPIO.OUT)   # set ledPin to OUTPUT mode 

    GPIO.setup(buttonPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)    # set buttonPin to PULL UP 

INPUT mode 

 

def loop(): 

    while True: 

        if GPIO.input(buttonPin)==GPIO.LOW: # if button is pressed 

            GPIO.output(ledPin,GPIO.HIGH)   # turn on led 

            print ('led turned on >>>')     # print information on terminal 

        else : # if button is relessed 

            GPIO.output(ledPin,GPIO.LOW) # turn off led  

            print ('led turned off <<<')     

 

def destroy(): 

    GPIO.output(ledPin, GPIO.LOW)     # turn off led  

    GPIO.cleanup()                    # Release GPIO resource 

 

if __name__ == '__main__':     # Program entrance 

    print ('Program is starting...') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy() 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 68 www.freenove.com █ 

In subfunction setup (), GPIO.setmode (GPIO.BOARD) is used to set the serial number of the GPIO, which is 

based on physical location of the pin. Therefore, GPIO17 and GPIO26 correspond to pin11 and pin37 

respectively in the circuit. Then set ledPin to output mode, buttonPin to input mode with a pull resistor. 

 ledPin = 11    # define ledPin 

buttonPin = 37    # define buttonPin 

 

def setup(): 

     

    GPIO.setmode(GPIO.BOARD)      # use PHYSICAL GPIO Numbering 

    GPIO.setup(ledPin, GPIO.OUT)   # set ledPin to OUTPUT mode 

    GPIO.setup(buttonPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)    # set buttonPin to PULL UP 

INPUT mode 

 

The loop continues endlessly to judge whether the key is pressed. When the button is pressed, the 

GPIO.input(buttonPin) will return low level, then the result of “if” is true, ledPin outputs high level, LED is turned 

on. Otherwise, LED will be turned off. 

 def loop(): 

    while True: 

        if GPIO.input(buttonPin)==GPIO.LOW: # if button is pressed 

            GPIO.output(ledPin,GPIO.HIGH)   # turn on led 

            print ('led turned on >>>')     # print information on terminal 

        else : # if button is relessed 

            GPIO.output(ledPin,GPIO.LOW) # turn off led  

            print ('led turned off <<<') 

 

Execute the function destroy (), close the program and release the occupied GPIO pins. 

 def destroy(): 

    GPIO.output(ledPin, GPIO.LOW)     # turn off led  

    GPIO.cleanup()                    # Release GPIO resource 

 

About function GPIO.input (): 

GPIO.input()  

This function returns the value read at the given pin. It will be “HIGH” or “LOW”(1 or 0) depending on the 

logic level at the pin. 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

69 █ www.freenove.com  support@freenove.com 

Chapter 4 Analog & PWM 

In previous chapters, we learned that a Push Button Switch has two states: Pressed (ON) and Released (OFF), 

and an LED has a Light ON and OFF state. Is there a middle or intermediated state? We will next learn how to 

create an intermediate output state to achieve a partially bright (dim) LED. 

First, let us learn how to control the brightness of an LED. 

Project 4.1 Breathing LED 

We describe this project as a Breathing Light. This means that an LED that is OFF will then turn ON gradually 

and then gradually turn OFF like "breathing". Okay, so how do we control the brightness of an LED to create 

a Breathing Light? We will use PWM to achieve this goal. 

Component Knowledge 

Analog & Digital 

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete-

time signal is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A 

familiar example of an Analog Signal would be how the temperature throughout the day is continuously 

changing and could not suddenly change instantaneously from 0℃ to 10℃. However, Digital Signals can 

instantaneously change in value. This change is expressed in numbers as 1 and 0 (the basis of binary code). 

Their differences can more easily be seen when compared when graphed as below. 

 

  
Note that the Analog signals are curved waves and the Digital signals are “Square Waves”.  

In practical applications, we often use binary as the digital signal, that is a series of 0’s and 1’s. Since a binary 

signal only has two values (0 or 1) it has great stability and reliability. Lastly, both analog and digital signals 

can be converted into the other. 

PWM 

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits. 

Digital processors cannot directly output analog signals. PWM technology makes it very convenient to achieve 

this conversion (translation of digital to analog signals). 

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high 

levels and low levels, which alternately last for a while. The total time for each set of high levels and low levels 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 70 www.freenove.com █ 

is generally fixed, which is called the period (Note: the reciprocal of the period is frequency). The time of high 

level outputs are generally called “pulse width”, and the duty cycle is the percentage of the ratio of pulse 

duration, or pulse width (PW) to the total period (T) of the waveform. The longer the output of high levels last, 

the longer the duty cycle and the higher the corresponding voltage in the analog signal will be. The following 

figures show how the analog signal voltages vary between 0V-5V (high level is 5V) corresponding to the pulse 

width 0%-100%: 

 
The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this 

relationship, we can use PWM to control the brightness of an LED or the speed of DC motor and so on. 

It is evident, from the above, that PWM is not actually analog but the effective value of voltage is equivalent 

to the corresponding analog value. Therefore, by using PWM, we can control the output power of to an LED 

and control other devices and modules to achieve multiple effects and actions. 

In RPi, GPIO18 pin has the ability to output to hardware via PWM with a 10-bit accuracy. This means that 100% 

of the pulse width can be divided into 2
10
=1024 equal parts. 

The wiringPi library of C provides both a hardware PWM and a software PWM method, while the wiringPi 

library of Python does not provide a hardware PWM method. There is only a software PWM option for Python. 

 

The hardware PWM only needs to be configured, does not require CPU resources and is more precise in time 

control. The software PWM requires the CPU to work continuously by using code to output high level and 

low level. This part of the code is carried out by multi-threading, and the accuracy is relatively not high enough.  

 

In order to keep the results running consistently, we will use PWM.  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

71 █ www.freenove.com  support@freenove.com 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable  

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 72 www.freenove.com █ 

Circuit 

Schematic diagram 

 
Hardware connection. 

 
If you have any concerns, please send an email to: support@freenove.com 

Code 

C Code 4.1 BreathingLED 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 4_BreathingLED directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/4_BreathingLED 

2. Use following command to compile “BreathingLED.c” and generate executable file “BreathingLED”. 

gcc BreathingLED.c -o BreathingLED -lwiringPi 

3. Then run the generated file “BreathingLED” 

sudo ./BreathingLED 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

73 █ www.freenove.com  support@freenove.com 

After the program is executed, you'll see that LED is turned from on to off and then from off to on gradually 

like breathing. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

#include <wiringPi.h> 

#include <stdio.h> 

#include <softPwm.h> 

 

#define ledPin    0  

 

void main(void) 

{ 

 int i; 

  

 printf("Program is starting ... \n"); 

  

 wiringPiSetup(); //Initialize wiringPi. 

  

 softPwmCreate(ledPin,  0, 100);//Creat SoftPWM pin 

  

 while(1){ 

  for(i=0;i<100;i++){  //make the led brighter 

   softPwmWrite(ledPin, i);  

   delay(20); 

  } 

  delay(300); 

  for(i=100;i>=0;i--){  //make the led darker 

   softPwmWrite(ledPin, i); 

   delay(20); 

  } 

  delay(300); 

 } 

} 

 

First, create a software PWM pin. 

 softPwmCreate(ledPin,  0, 100);//Creat SoftPWM pin 

 

There are two “for” loops in the next endless “while” loop. The first loop outputs a power signal to the ledPin 

PWM from 0% to 100% and the second loop outputs a power signal to the ledPin PWM from 100% to 0%.  

  while(1){ 

  for(i=0;i<100;i++){  //make the led brighter 

   softPwmWrite(ledPin, i);  

   delay(20); 

  } 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 74 www.freenove.com █ 

  delay(300); 

  for(i=100;i>=0;i--){  //make the led darker 

   softPwmWrite(ledPin, i); 

   delay(20); 

  } 

  delay(300); 

 } 

You can also adjust the rate of the state change of LED by changing the parameter of the delay() function in 

the “for” loop. 

 

int softPwmCreate (int pin, int initialValue, int pwmRange) ;  

This creates a software controlled PWM pin. 

void softPwmWrite (int pin, int value) ;  

This updates the PWM value on the given pin. 

For more details, please refer http://wiringpi.com/reference/software-pwm-library/ 

  

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/software-pwm-library/


 

 support@freenove.com █ 

75 █ www.freenove.com  support@freenove.com 

Python Code 4.1 BreathingLED 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

1. Use cd command to enter 4_BreathingLED directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/4_BreathingLED 

2. Use the Python command to execute Python code “BreathingLED.py”. 

python BreathingLED.py 

After the program is executed, you will see that the LED gradually turns ON and then gradually turns OFF 

similar to “breathing”. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

import RPi.GPIO as GPIO 

import time 

 

LedPin = 11     # define the LedPin 

 

def setup(): 

    global p 

    GPIO.setmode(GPIO.BOARD)       # use PHYSICAL GPIO Numbering 

    GPIO.setup(LedPin, GPIO.OUT)   # set LedPin to OUTPUT mode 

    GPIO.output(LedPin, GPIO.LOW)  # make ledPin output LOW level to turn off LED  

 

    p = GPIO.PWM(LedPin, 500)      # set PWM Frequence to 500Hz 

    p.start(0)                     # set initial Duty Cycle to 0 

 

def loop(): 

    while True: 

        for dc in range(0, 101, 1):   # make the led brighter 

            p.ChangeDutyCycle(dc)     # set dc value as the duty cycle 

            time.sleep(0.01) 

        time.sleep(1) 

        for dc in range(100, -1, -1): # make the led darker 

            p.ChangeDutyCycle(dc)     # set dc value as the duty cycle 

            time.sleep(0.01) 

        time.sleep(1) 

 

def destroy(): 

    p.stop() # stop PWM 

    GPIO.cleanup() # Release all GPIO 

 

if __name__ == '__main__':     # Program entrance 

    print ('Program is starting ... ') 

    setup() 

    try: 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 76 www.freenove.com █ 

34 

35 

36 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy() 

 

The LED is connected to the IO port called GPIO17. The LedPin is defined as pin 11 and set to output mode 

according to the corresponding chart for pin designations. Then create a PWM instance and set the PWM 

frequency to 500HZ and the initial duty cycle to 0%. 

 LedPin = 11     # define the LedPin 

 

def setup(): 

    global p 

    GPIO.setmode(GPIO.BOARD)       # use PHYSICAL GPIO Numbering 

    GPIO.setup(LedPin, GPIO.OUT)   # set LedPin to OUTPUT mode 

    GPIO.output(LedPin, GPIO.LOW)  # make ledPin output LOW level to turn off LED  

 

    p = GPIO.PWM(LedPin, 500)      # set PWM Frequence to 500Hz 

    p.start(0)                     # set initial Duty Cycle to 0 

 

There are two “for” loops used to control the breathing LED in the next endless “while” loop. The first loop 

outputs a power signal to the ledPin PWM from 0% to 100% and the second loop outputs a power signal to 

the ledPin PWM from 100% to 0%. 

 def loop(): 

    while True: 

        for dc in range(0, 101, 1):   # make the led brighter 

            p.ChangeDutyCycle(dc)     # set dc value as the duty cycle 

            time.sleep(0.01) 

        time.sleep(1) 

        for dc in range(100, -1, -1): # make the led darker 

            p.ChangeDutyCycle(dc)     # set dc value as the duty cycle 

            time.sleep(0.01) 

        time.sleep(1) 

The related functions of PWM are described as follows: 

p = GPIO.PWM(channel, frequency)  

To create a PWM instance: 

p.start(dc)  

To start PWM, where dc is the duty cycle (0.0 <= dc <= 100.0) 

p.ChangeFrequency(freq)  

To change the frequency, where freq is the new frequency in Hz 

p.ChangeDutyCycle(dc)  

To change the duty cyclewhere 0.0 <= dc <= 100.0 

p.stop()  

To stop PWM. 

For more details regarding methods for using PWM with RPi.GPIO, please refer to: 

https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/   

mailto:support@freenove.com
http://www.freenove.com/
https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/


 

 support@freenove.com █ 

77 █ www.freenove.com  support@freenove.com 

Chapter 5 RGB LED 

In this chapter, we will learn how to control an RGB LED. 

An RGB LED has 3 LEDs integrated into one LED component. It can respectively emit Red, Green and Blue 

light. In order to do this, it requires 4 pins (this is also how you identify it). The long pin (1) is the common 

which is the Anode (+) or positive lead, the other 3 are the Cathodes (-) or negative leads. A rendering of an 

RGB LED and its electronic symbol are shown below. We can make RGB LED emit various colors of light and 

brightness by controlling the 3 Cathodes (2, 3 & 4) of the RGB LED 

 

Red, Green, and Blue light are called 3 Primary Colors when discussing light (Note: for pigments such as paints, 

the 3 Primary Colors are Red, Blue and Yellow). When you combine these three Primary Colors of light with 

varied brightness, they can produce almost any color of visible light. Computer screens, single pixels of cell 

phone screens, neon lamps, etc. can all produce millions of colors due to phenomenon. 

 

 
RGB 

 

If we use a three 8 bit PWM to control the RGB LED, in theory, we can create 2
8
*2

8
*2

8
=16777216 (16 million) 

colors through different combinations of RGB light brightness. 

Next, we will use RGB LED to make a multicolored LED.  

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 78 www.freenove.com █ 

Project 5.1 RainbowLED 

In this project, we will make a multicolored LED, which we can program the RGB LED to automatically change 

colors. 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable  

 

Jumper Wire 

 

 

RGBLED Module 

 
  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

79 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection. 

 
If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com


 

 █ support@freenove.com 

 support@freenove.com 80 www.freenove.com █ 

Code 

We need to use the software to make the ordinary GPIO output PWM, since this project requires 3 PWM and 

in RPi only one GPIO has the hardware capability to output PWM, 

C Code 5.1 RainbowLED 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 5_ RainbowLED directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/5_RainbowLED 

2. Use following command to compile “RainbowLED.c” and generate executable file “RainbowLED”. 

Note: in this project, the software PWM uses a multi-threading mechanism. So “-lpthread” option need 

to be add to the compiler. 

gcc RainbowLED.c -o RainbowLED -lwiringPi -lpthread 

3. And then run the generated file “ColorfulLED”. 

sudo ./RainbowLED 

After the program is executed, you will see that the RGB LED shows lights of different colors randomly. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

#include <wiringPi.h> 

#include <softPwm.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

#define ledPinRed    21 

#define ledPinGreen  22 

#define ledPinBlue   23 

 

void setupLedPin(void) 

{ 

 softPwmCreate(ledPinRed,  0, 100); //Creat SoftPWM pin for red 

 softPwmCreate(ledPinGreen,0, 100);  //Creat SoftPWM pin for green 

 softPwmCreate(ledPinBlue, 0, 100);  //Creat SoftPWM pin for blue 

} 

 

void setLedColor(int r, int g, int b) 

{ 

 softPwmWrite(ledPinRed,   r); //Set the duty cycle  

 softPwmWrite(ledPinGreen, g);   //Set the duty cycle  

 softPwmWrite(ledPinBlue,  b);   //Set the duty cycle  

} 

 

int main(void) 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

81 █ www.freenove.com  support@freenove.com 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

{ 

 int r,g,b; 

  

 printf("Program is starting ...\n"); 

  

 wiringPiSetup(); //Initialize wiringPi. 

  

 setupLedPin(); 

 while(1){ 

  r=random()%100;  //get a random in (0,100) 

  g=random()%100;  //get a random in (0,100) 

  b=random()%100;  //get a random in (0,100) 

  setLedColor(r,g,b);//set random as the duty cycle value  

  printf("r=%d,  g=%d,  b=%d \n",r,g,b); 

  delay(1000); 

 } 

 return 0; 

} 

 

First, in subfunction of ledInit(), create the software PWM control pins used to control the R, G, B pin 

respectively. 

 void setupLedPin(void) 

{ 

 softPwmCreate(ledPinRed,  0, 100); //Creat SoftPWM pin for red 

 softPwmCreate(ledPinGreen,0, 100);  //Creat SoftPWM pin for green 

 softPwmCreate(ledPinBlue, 0, 100);  //Creat SoftPWM pin for blue 

} 

 

Then create subfunction, and set the PWM of three pins. 

 void setLedColor(int r, int g, int b) 

{ 

 softPwmWrite(ledPinRed,   r); //Set the duty cycle  

 softPwmWrite(ledPinGreen, g);   //Set the duty cycle  

 softPwmWrite(ledPinBlue,  b);   //Set the duty cycle  

} 

 

Finally, in the “while” loop of main function, get three random numbers and specify them as the PWM duty 

cycle, which will be assigned to the corresponding pins. So RGB LED can switch the color randomly all the 

time. 

  while(1){ 

  r=random()%100;  //get a random in (0,100) 

  g=random()%100;  //get a random in (0,100) 

  b=random()%100;  //get a random in (0,100) 

  setLedColor(r,g,b);//set random as the duty cycle value  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 82 www.freenove.com █ 

  printf("r=%d,  g=%d,  b=%d \n",r,g,b); 

  delay(1000); 

 } 

 

The related function of PWM Software can be described as follows: 

long random();  

This function will return a random number. 

 

For more details about Software PWM, please refer to: http://wiringpi.com/reference/software-pwm-library/ 

  

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/software-pwm-library/


 

 support@freenove.com █ 

83 █ www.freenove.com  support@freenove.com 

Python Code 5.1 RainbowLED 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 5_RainbowLED directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/5_RainbowLED 

2. Use python command to execute python code “ColorfulLED.py”. 

python RainbowLED.py 

After the program is executed, you will see that the RGB LED randomly lights up different colors. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

import RPi.GPIO as GPIO 

import time 

import random 

 

pins = [29, 31, 33]         # define the pins for R:29,G:31,B:33  

 

def setup(): 

    global pwmRed,pwmGreen,pwmBlue   

    GPIO.setmode(GPIO.BOARD)       # use PHYSICAL GPIO Numbering 

    GPIO.setup(pins, GPIO.OUT)     # set RGBLED pins to OUTPUT mode 

    GPIO.output(pins, GPIO.HIGH)   # make RGBLED pins output HIGH level 

    pwmRed = GPIO.PWM(pins[0], 2000)      # set PWM Frequence to 2kHz 

    pwmGreen = GPIO.PWM(pins[1], 2000)  # set PWM Frequence to 2kHz 

    pwmBlue = GPIO.PWM(pins[2], 2000)    # set PWM Frequence to 2kHz 

    pwmRed.start(0)      # set initial Duty Cycle to 0 

    pwmGreen.start(0) 

    pwmBlue.start(0) 

 

def setColor(r_val,g_val,b_val):      # change duty cycle for three pins to r_val,g_val,b_val 

    pwmRed.ChangeDutyCycle(r_val)     # change pwmRed duty cycle to r_val 

    pwmGreen.ChangeDutyCycle(g_val)    

    pwmBlue.ChangeDutyCycle(b_val) 

 

def loop(): 

    while True : 

        r=random.randint(0,100)  #get a random in (0,100) 

        g=random.randint(0,100) 

        b=random.randint(0,100) 

     

        setColor(r,g,b)          #set random as a duty cycle value  

        print ('r=%d, g=%d, b=%d ' %(r ,g, b)) 

        time.sleep(1) 

         

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 84 www.freenove.com █ 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

def destroy(): 

    pwmRed.stop() 

    pwmGreen.stop() 

    pwmBlue.stop() 

    GPIO.cleanup() 

     

if __name__ == '__main__':     # Program entrance 

    print ('Program is starting ... ') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy() 

 

In last chapter, we learned how to use Python language to make a pin output PWM. In this project, we output 

to three pins via PWM and the method is exactly the same as we used in the last chapter. In the “while” loop 

of “loop” function, we first generate three random numbers, and then specify these three random numbers 

as the PWM values for the three pins, which will make the RGB LED produce multiple colors randomly. 

 def loop(): 

 while True : 

  r=random.randint(0,100)  #get a random in (0,100) 

  g=random.randint(0,100) 

  b=random.randint(0,100) 

  setColor(r,g,b)          #set random as a duty cycle value  

  print ('r=%d, g=%d, b=%d ' %(r ,g, b)) 

  time.sleep(1) 

 

About the randint() function : 

random.randint(a, b)  

This function can return a random integer (a whole number value) within the specified range (a, b). 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

85 █ www.freenove.com  support@freenove.com 

Chapter 6 Buzzer 

In this chapter, we will learn about buzzers and the sounds they make. And in our next project, we will use an 

active buzzer to make a doorbell and a passive buzzer to make an alarm. 

 

Project 6.1 Doorbell 

We will make a doorbell with this functionality: when the Push Button Switch is pressed the buzzer sounds 

and when the button is released, the buzzer stops. This is a momentary switch function. 

Component knowledge 

Buzzer 

A buzzer is an audio component. They are widely used in electronic devices such as calculators, electronic 

alarm clocks, automobile fault indicators, etc. There are both active and passive types of buzzers. Active 

buzzers have oscillator inside, these will sound as long as power is supplied. Passive buzzers require an 

external oscillator signal (generally using PWM with different frequencies) to make a sound. 

 

Active buzzer                                                   Passive buzzer 

                             

 

Active buzzers are easier to use. Generally, they only make a specific sound frequency. Passive buzzers 

require an external circuit to make sounds, but passive buzzers can be controlled to make sounds of various 

frequencies. The resonant frequency of the passive buzzer in this Kit is 2kHz, which means the passive 

buzzer is the loudest when its resonant frequency is 2kHz. 

 

How to identify active and passive buzzer? 

1. As a rule, there is a label on an active buzzer covering the hole where sound is emitted, but there are 

exceptions to this rule. 

2. Active buzzers are more complex than passive buzzers in their manufacture. There are many circuits and 

crystal oscillator elements inside active buzzers; all of this is usually protected with a waterproof coating 

(and a housing) exposing only its pins from the underside. On the other hand, passive buzzers do not 

have protective coatings on their underside. From the pin holes, view of a passive buzzer, you can see 

the circuit board, coils, and a permanent magnet (all or any combination of these components 

depending on the model. 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 86 www.freenove.com █ 

 

Active buzzer bottom                               Passive buzzer bottom 

 

Transistors 

A transistor is required in this project due to the buzzer’s current being so great that GPIO of RPi’s output 

capability cannot meet the power requirement necessary for operation. A NPN transistor is needed here to 

amplify the current.  

Transistors, full name: semiconductor transistor, is a semiconductor device that controls current (think of a 

transistor as an electronic “amplifying or switching device”. Transistors can be used to amplify weak signals, 

or to work as a switch. Transistors have three electrodes (PINs): base (b), collector (c) and emitter (e). When 

there is current passing between "be" then "ce" will have a several-fold current increase (transistor 

magnification), in this configuration the transistor acts as an amplifier. When current produced by "be" exceeds 

a certain value, "ce" will limit the current output. at this point the transistor is working in its saturation region 

and acts like a switch. Transistors are available as two types as shown below: PNP and NPN, 

 

PNP transistor                                                NPN transistor 

                                 

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050. 

 

Thanks to the transistor's characteristics, they are often used as switches in digital circuits. As micro-controllers 

output current capacity is very weak, we will use a transistor to amplify its current in order to drive components 

requiring higher current. 

When we use a NPN transistor to drive a buzzer, we often use the following method. If GPIO outputs high 

level, current will flow through R1 (Resistor 1), the transistor conducts current and the buzzer will make sounds. 

If GPIO outputs low level, no current will flow through R1, the transistor will not conduct currentand buzzer 

will remain silent (no sounds). 

When we use a PNP transistor to drive a buzzer, we often use the following method. If GPIO outputs low level, 

current will flow through R1. The transistor conducts current and the buzzer will make sounds. If GPIO outputs 

high level, no current flows through R1, the transistor will not conduct current and buzzer will remain silent 

(no sounds). Below are the circuit schematics for both a NPN and PNP transistor to power a buzzer. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

87 █ www.freenove.com  support@freenove.com 

NPN transistor to drive buzzer 

 

PNP transistor to drive buzzer 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 88 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi  

 

Raspberry Pi 

 

GPIO Ribbon Cable  

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

89 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram with RPi GPIO Extension Shield 

 
Hardware connection.  

 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 90 www.freenove.com █ 

If you have any concerns, please send an email to: support@freenove.com 

Code 

In this project, a buzzer will be controlled by a push button switch. When the button switch is pressed, the 

buzzer sounds and when the button is released, the buzzer stops. It is analogous to our earlier project that 

controlled an LED ON and OFF. 

C Code 6.1 Doorbell 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 6_1_Doorbell directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/6_1_Doorbell 

2. Use following command to compile “Doorbell.c” and generate executable file “Doorbell.c”. 

gcc Doorbell.c -o Doorbell -lwiringPi 

3. Then run the generated file “Doorbell”. 

sudo ./Doorbell 

 

After the program is executed, press the push button switch and the will buzzer sound. Release the push 

button switch and the buzzer will stop. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

91 █ www.freenove.com  support@freenove.com 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

#include <wiringPi.h> 

#include <stdio.h> 

 

#define buzzerPin 26   //define the buzzerPin 

#define buttonPin 29  //define the buttonPin 

 

void main(void) 

{ 

 printf("Program is starting ... \n"); 

  

 wiringPiSetup(); 

  

 pinMode(buzzerPin, OUTPUT);  

 pinMode(buttonPin, INPUT); 

 

 pullUpDnControl(buttonPin, PUD_UP);  //pull up to HIGH level 

 while(1){ 

   

  if(digitalRead(buttonPin) == LOW){ //button is pressed 

   digitalWrite(buzzerPin, HIGH);   //Turn on buzzer  

   printf("buzzer turned on >>> \n"); 

  } 

  else {    //button is released  

   digitalWrite(buzzerPin, LOW);   //Turn off buzzer 

   printf("buzzer turned off <<< \n"); 

  } 

 } 

} 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 92 www.freenove.com █ 

Python Code 6.1 Doorbell 

First, observe the project result, then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

1. Use cd command to enter 6_1_Doorbell directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/6_1_Doorbell 

2. Use python command to execute python code “Doorbell.py”. 

python Doorbell.py 

 

After the program is executed, press the push button switch and the buzzer will sound. Release the push 

button switch and the buzzer will stop. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

import RPi.GPIO as GPIO 

 

buzzerPin = 32    # define buzzerPin 

buttonPin = 40    # define buttonPin 

 

def setup(): 

    GPIO.setmode(GPIO.BOARD)        # use PHYSICAL GPIO Numbering 

    GPIO.setup(buzzerPin, GPIO.OUT)   # set buzzerPin to OUTPUT mode 

    GPIO.setup(buttonPin, GPIO.IN,pull_up_down=GPIO.PUD_UP)    # set buttonPin to PULL UP 

INPUT mode 

 

def loop(): 

    while True: 

        if GPIO.input(buttonPin)==GPIO.LOW: # if button is pressed 

            GPIO.output(buzzerPin,GPIO.HIGH) # turn on buzzer 

            print ('buzzer turned on >>>') 

        else : # if button is relessed 

            GPIO.output(buzzerPin,GPIO.LOW) # turn off buzzer 

            print ('buzzer turned off <<<') 

 

def destroy(): 

    GPIO.cleanup()                     # Release all GPIO 

 

if __name__ == '__main__':     # Program entrance 

    print ('Program is starting...') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy() 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

93 █ www.freenove.com  support@freenove.com 

Project 6.2 Alertor 

Next, we will use a passive buzzer to make an alarm.  

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable  

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 94 www.freenove.com █ 

Circuit 

Schematic diagram with RPi GPIO Extension Shield 

 

Hardware connection.  

 
If you have any concerns, please send an email to: support@freenove.com 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

95 █ www.freenove.com  support@freenove.com 

Code 

In this project, our buzzer alarm is controlled by the push button switch. Press the push button switch and the 

buzzer will sound. Release the push button switch and the buzzer will stop. 

As stated before, it is analogous to our earlier project that controlled an LED ON and OFF. 

To control a passive buzzer requires PWM of certain sound frequency. 

C Code 6.2 Alertor 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 6_2_Alertor directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/6_2_Alertor 

2. Use following command to compile “Alertor.c” and generate executable file “Alertor”. “-lm” and “-lpthread” 

compiler options need to added here. 

gcc Alertor.c -o Alertor -lwiringPi -lm -lpthread 

3. Then run the generated file “Alertor”. 

sudo ./Alertor 

 

After the program is executed, press the push button switch and the buzzer will sound. Release the push 

button switch and the buzzer will stop. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

#include <wiringPi.h> 

#include <stdio.h> 

#include <softTone.h> 

#include <math.h> 

 

#define buzzerPin    7   //define the buzzerPin 

#define buttonPin   28  //define the buttonPin 

 

void alertor(int pin){ 

 int x; 

 double sinVal, toneVal; 

 for(x=0;x<360;x++){ // frequency of the alertor is consistent with the sine wave  

  sinVal = sin(x * (M_PI / 180));  //Calculate the sine value 

  toneVal = 2000 + sinVal * 500;  //Add the resonant frequency and weighted sine 

value  

  softToneWrite(pin,toneVal);   //output corresponding PWM 

  delay(1); 

 } 

} 

void stopAlertor(int pin){ 

 softToneWrite(pin,0); 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 96 www.freenove.com █ 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

} 

int main(void) 

{ 

 printf("Program is starting ... \n"); 

  

 wiringPiSetup(); 

  

 pinMode(buzzerPin, OUTPUT);  

 pinMode(buttonPin, INPUT); 

 softToneCreate(buzzerPin); //set buzzerPin 

 pullUpDnControl(buttonPin, PUD_UP);  //pull up to HIGH level 

 while(1){  

  if(digitalRead(buttonPin) == LOW){ //button is pressed 

   alertor(buzzerPin);   // turn on buzzer 

   printf("alertor turned on >>> \n"); 

  } 

  else {    //button is released  

   stopAlertor(buzzerPin);   // turn off buzzer 

   printf("alertor turned off <<< \n"); 

  } 

 } 

 return 0; 

} 

 

The code is the same to the active buzzer but the method is different. A passive buzzer requires PWM of a 

certain frequency, so you need to create a software PWM pin though softToneCreate (buzzeRPin).  Here 

softTone is designed to generate square waves with variable frequency and a duty cycle fixed to 50%, which 

is a better choice for controlling the buzzer. 

 softToneCreate(buzzeRPin); 

 

In the while loop of the main function, when the push button switch is pressed the subfunction alertor() will 

be called and the alarm will issue a warning sound. The frequency curve of the alarm is based on a sine curve. 

We need to calculate the sine value from 0 to 360 degrees and multiplied by a certain value (here this value 

is 500) plus the resonant frequency of buzzer. We can set the PWM frequency through softToneWrite (pin, 

toneVal). 

 void alertor(int pin){ 

    int x; 

    double sinVal, toneVal; 

    for(x=0;x<360;x++){ //The frequency is based on the sine curve. 

        sinVal = sin(x * (M_PI / 180)); 

        toneVal = 2000 + sinVal * 500; 

        softToneWrite(pin,toneVal); 

        delay(1); 

    } 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

97 █ www.freenove.com  support@freenove.com 

} 

 

If you want to stop the buzzer, just set PWM frequency of the buzzer pin to 0. 

 void stopAlertor(int pin){ 

    softToneWrite(pin,0); 

} 

 

The related functions of softTone are described as follows:  

int softToneCreate (int pin) ;  

This creates a software controlled tone pin. 

void softToneWrite (int pin, int freq) ;  

This updates the tone frequency value on the given pin. 

For more details about softTone, please refer to :http://wiringpi.com/reference/software-tone-library/  

  

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/software-tone-library/


 

 █ support@freenove.com 

 support@freenove.com 98 www.freenove.com █ 

Python Code 6.2 Alertor 

First observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 6_2_Alertor directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/6_2_Alertor 

2. Use the python command to execute the Python code “Alertor.py”. 

python Alertor.py 

 

After the program is executed, press the push button switch and the buzzer will sound. Release the push 

button switch and the buzzer will stop. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

import RPi.GPIO as GPIO 

import time 

import math 

 

buzzerPin = 7    # define the buzzerPin 

buttonPin = 38    # define the buttonPin 

 

def setup(): 

    global p     

    GPIO.setmode(GPIO.BOARD)         # Use PHYSICAL GPIO Numbering 

    GPIO.setup(buzzerPin, GPIO.OUT)   # set RGBLED pins to OUTPUT mode 

    GPIO.setup(buttonPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)    # Set buttonPin to INPUT mode, 

and pull up to HIGH level, 3.3V 

    p = GPIO.PWM(buzzerPin, 1)  

    p.start(0); 

     

def loop(): 

    while True: 

        if GPIO.input(buttonPin)==GPIO.LOW: 

            alertor() 

            print ('alertor turned on >>> ') 

        else : 

            stopAlertor() 

            print ('alertor turned off <<<') 

def alertor(): 

    p.start(50) 

    for x in range(0,361):      # Make frequency of the alertor consistent with the sine wave  

        sinVal = math.sin(x * (math.pi / 180.0))        # calculate the sine value 

        toneVal = 2000 + sinVal * 500   # Add to the resonant frequency with a Weighted 

        p.ChangeFrequency(toneVal)      # Change Frequency of PWM to toneVal 

        time.sleep(0.001) 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

99 █ www.freenove.com  support@freenove.com 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

         

def stopAlertor(): 

    p.stop() 

             

def destroy(): 

    GPIO.output(buzzerPin, GPIO.LOW)     # Turn off buzzer 

    GPIO.cleanup()                       # Release GPIO resource 

 

if __name__ == '__main__':     # Program entrance 

    print ('Program is starting...') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy() 

 

The code is the same to the active buzzer but the method is different. A passive buzzer requires PWM of a 

certain frequency, so you need to create a software PWM pin though softToneCreate (buzzeRPin). The way 

to create a PWM was introduced earlier in the BreathingLED and RGB LED projects. 

 def setup(): 

 global p  

 GPIO.setmode(GPIO.BOARD)         # Use PHYSICAL GPIO Numbering 

 GPIO.setup(buzzerPin, GPIO.OUT)   # set RGBLED pins to OUTPUT mode 

 GPIO.setup(buttonPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)    # Set buttonPin to INPUT 

mode, and pull up to HIGH level, 3.3V 

 p = GPIO.PWM(buzzerPin, 1)  

 p.start(0); 

 

In the while loop loop of the main function, when the push button switch is pressed the subfunction alertor() 

will be called and the alarm will issue a warning sound. The frequency curve of the alarm is based on a sine 

curve. We need to calculate the sine value from 0 to 360 degrees and multiplied by a certain value (here this 

value is 500) plus the resonant frequency of buzzer. We can set the PWM frequency through softToneWrite 

(pin, toneVal). 

 def alertor(): 

    p.start(50) 

    for x in range(0,361):      # Make frequency of the alertor consistent with the sine wave  

        sinVal = math.sin(x * (math.pi / 180.0))        # calculate the sine value 

        toneVal = 2000 + sinVal * 500   # Add to the resonant frequency with a Weighted 

        p.ChangeFrequency(toneVal)      # Change Frequency of PWM to toneVal 

        time.sleep(0.001) 

 

When the push button switch is released, the buzzer (in this case our Alarm) will stop. 

 def stopAlertor(): 

    p.stop() 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 100 www.freenove.com █ 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

101 █ www.freenove.com  support@freenove.com 

(Important) Chapter 7 ADC 

We have learned how to control the brightness of an LED through PWM and that PWM is not a real analog 

signal. In this chapter, we will learn how to read analog values via an ADC Module and convert these analog 

values into digital. 

Project 7.1 Read the Voltage of Potentiometer  

In this project, we will use the ADC function of an ADC Module to read the voltage value of a potentiometer.  

Circuit knowledge 

ADC 

An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or 

binary form consisting of 1s and 0s. The range of our ADC module is 8 bits, that means the resolution is 

2^8=256, so that its range (at 3.3V) will be divided equally to 256 parts.  

Any analog value can be mapped to one digital value using the resolution of the converter. So the more bits 

the ADC has, the denser the partition of analog will be and the greater the precision of the resulting conversion. 

 
Subsection 1: the analog in range of 0V-3.3/256 V corresponds to digital 0; 

Subsection 2: the analog in range of 3.3 /256 V-2*3.3 /256V corresponds to digital 1; 

The resultant analog signal will be divided accordingly. 

DAC 

The reversing this process requires a DAC, Digital-to-Analog Converter. The digital I/O port can output high 

level and low level (0 or 1), but cannot output an intermediate voltage value. This is where a DAC is useful. 

The DAC module PCF8591 has a DAC output pin with 8-bit accuracy, which can divide VDD (here is 3.3V) into 

2
8
=256 parts. For example, when the digital quantity is 1, the output voltage value is 3.3/256 *1 V, and when 

the digital quantity is 128, the output voltage value is 3.3/256 *128=1.65V, the higher the accuracy of DAC, 

the higher the accuracy of output voltage value will be.  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 102 www.freenove.com █ 

Component knowledge 

Potentiometer 

Potentiometer is a resistive element with three Terminal parts. Unlike the resistors that we have used thus far 

in our project which have a fixed resistance value, the resistance value of a potentiometer can be adjusted. A 

potentiometer is often made up by a resistive substance (a wire or carbon element) and movable contact 

brush. When the brush moves along the resistor element, there will be a change in the resistance of the 

potentiometer’s output side (3) (or change in the voltage of the circuit that is a part). The illustration below 

represents a linear sliding potentiometer and its electronic symbol on the right. 

             

Between potentiometer pin 1 and pin 2 is the resistive element (a resistance wire or carbon) and pin 3 is 

connected to the brush that makes contact with the resistive element. In our illustration, when the brush 

moves from pin 1 to pin 2, the resistance value between pin 1 and pin 3 will increase linearly (until it reaches 

the highest value of the resistive element) and at the same time the resistance between pin 2 and pin 3 will 

decrease linearly and conversely down to zero. At the midpoint of the slider the measured resistance values 

between pin 1 and 3 and between pin 2 and 3 will be the same. 

In a circuit, both sides of resistive element are often connected to the positive and negative electrodes of 

power. When you slide the brush “pin 3”, you can get variable voltage within the range of the power supply. 

 

Rotary potentiometer 

Rotary potentiometers and linear potentiometers have the same function; the only difference being the 

physical action being a rotational rather than a sliding movement. 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

103 █ www.freenove.com  support@freenove.com 

 

 

ADS7830 

The ADS7830 is a single-supply, low-power, 8-bit data acquisition device that features a serial I2C interface 

and an 8-channel multiplexer. The following table is the pin definition diagram of ADS7830. 

SYMBOL PIN DESCRIPTION TOP VIEW 

CH0 1 

Analog input channels 

(A/D converter) 

 

CH1 2 

CH2 3 

CH3 4 

CH4 5 

CH5 6 

CH6 7 

CH7 8 

GND 9 Ground 

REF in/out 10 
Internal +2.5V Reference, 

External Reference Input 

COM 11 Common to Analog Input Channel 

A0 12 
Hardware address 

A1 13 

SCL 14 Serial Clock 

SDA 15 Serial Sata 

+VDD 16 Power Supply, 3.3V Nominal 

 

I2C communication 

I2C (Inter-Integrated Circuit) has a two-wire serial communication mode, which can be used to connect a 

micro-controller and its peripheral equipment. Devices using I2C communications must be connected to the 

serial data line (SDA), and serial clock line (SCL) (called I2C bus). Each device has a unique address which can 

be used as a transmitter or receiver to communicate with devices connected via the bus.  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 104 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

105 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection.  

 
 

If you have any concerns, please send an email to: support@freenove.com 

  

 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 106 www.freenove.com █ 

Configure I2C and Install Smbus  

Enable I2C 

The I2C interface in Raspberry Pi is disabled by default. You will need to open it manually and enable the I2C 

interface as follows: 

Type command in the Terminal: 

sudo raspi-config 

Then open the following dialog box: 

 

Choose “5 Interfacing Options” then “P5 I2C” then “Yes” and then “Finish” in this order and restart your RPi. 

The I2C module will then be started. 

Type a command to check whether the I2C module is started: 

lsmod | grep i2c 

If the I2C module has been started, the following content will be shown. “bcm2708" refers to the CPU model. 

Different models of Raspberry Pi display different contents depending on the CPU installed: 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

107 █ www.freenove.com  support@freenove.com 

Install I2C-Tools 

Next, type the command to install I2C-Tools. It is available with the Raspberry Pi OS by default. 

sudo apt-get install i2c-tools 

I2C device address detection: 

i2cdetect -y 1 

 

When you are using the ADS7830 Module, the result should look like this: 

 

Here, 48 (HEX) is the I2C address of ADC Module (ADS7830). 

 

Install Smbus Module 

sudo apt-get install python-smbus 

sudo apt-get install python3-smbus 

 

Code 

C Code 7.1 ADC 

For C code for the ADC Device, a custom library needs to be installed. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter folder of the ADC Device library. 

cd ~/Freenove_Kit/Libs/C-Libs/ADCDevice 

2. Execute command below to install the library. 

sh ./build.sh 

A successful installation, without error prompts, is shown below: 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 108 www.freenove.com █ 

Next, we will execute the code for this project.  

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please contact us via: support@freenove.com 

1. Use cd command to enter 7_1_ADC directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/7_1_ADC 

2. Use following command to compile “ADC.cpp” and generate the executable file “ADC”. 

sudo g++ ADC.cpp -o ADC -lwiringPi -lADCDevice 

3. Then run the generated file “ADC”. 

sudo ./ADC 

After the program is executed, adjusting the potentiometer will produce a readout display of the 

potentiometer voltage values in the Terminal and the converted digital content. 

 

 

The following is the code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

#include <wiringPi.h> 

#include <stdio.h> 

#include <ADCDevice.hpp> 

 

ADCDevice *adc;  // Define an ADC Device class object 

 

int main(void){ 

    adc = new ADCDevice(); 

    printf("Program is starting ... \n"); 

    if(adc->detectI2C(0x48)){   // Detect the ads7830 

        delete adc;               // Free previously pointed memory 

        adc = new ADS7830(0x48);      // If detected, create an instance of ADS7830. 

    } 

    else{ 

        printf("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        return -1; 

    } 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

109 █ www.freenove.com  support@freenove.com 

20 

21 

22 

23 

24 

25 

26 

27 

28 

     

    while(1){ 

        int adcValue = adc->analogRead(2);    //read analog value of A0 pin 

        float voltage = (float)adcValue / 255.0 * 5.0;  // Calculate voltage 

        printf("ADC value : %d  ,\tVoltage : %.2fV\n",adcValue,voltage); 

        delay(100); 

    } 

    return 0; 

} 

 

In this code, a custom class library "ADCDevice" is used. It contains the method of utilizing the ADC Module 

in this project, through which the ADC Module can easily and quickly be used. In the code, you need to first 

create a class pointer adc, and then point to an instantiated object. (Note: An instantiated object is given a 

name and created in memory or on disk using the structure described within a class declaration.) 

 

 ADCDevice *adc;  // Define an ADC Device class object 

…… 

adc = new ADCDevice(); 

 

Then use the member function detectIC(addr) in the class to detect the I2C module in the circuit. Different 

modules have different I2C addresses. The default address of ADC module ADS7830 is 0x48. 

 if(adc->detectI2C(0x48)){   // Detect the ads7830 

        delete adc;               // Free previously pointed memory 

        adc = new ADS7830(0x48);      // If detected, create an instance of ADS7830. 

    } 

    else{ 

        printf("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        return -1; 

    } 

 

When you have a class object pointed to a specific device, you can get the ADC value of the specific channel 

by calling the member function analogRead (chn) in this class 

 int adcValue = adc->analogRead(2);    //read analog value of A2 pin 

 

Then according to the formula, the voltage value is calculated and displayed on the Terminal. 

         float voltage = (float)adcValue / 255.0 * 5.0;  // Calculate voltage 

        printf("ADC value : %d  ,\tVoltage : %.2fV\n",adcValue,voltage); 

 

 

 

 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 110 www.freenove.com █ 

Reference 

class ADCDevice  

This is a base class. All ADC module classes are its derived classes. It has a real function and a virtual 

function. 

 

int detectI2C(int addr); 

This is a real function, which is used to detect whether the device with given I2C address exists. If it exists, 

return 1, otherwise return 0. 

 

virtual int analogRead(int chn); 

This is a virtual function that reads the ADC value of the specified channel. It is implemented in a derived 

class. 

class ADS7830:public ADCDevice  

These classes are derived from the ADCDevice class and mainly implement the function analogRead(chn). 

 

int analogRead(int chn); 

This returns the value read on the supplied analog input pin. 

Parameter ADS7830, the range of is 0, 1, 2, 3, 4, 5, 6, 7. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

111 █ www.freenove.com  support@freenove.com 

Python Code 7.1 ADC 

For Python code, ADCDevice requires a custom module which needs to be installed. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter folder of ADCDevice. 

cd ~/Freenove_Kit/Libs/Python-Libs 

2. Unzip the file. 

tar zxvf ADCDevice-1.0.4.tar.gz 

3. Open the unzipped folder. 

cd ADCDevice-1.0.4 

4. Install library for python2 and python3. 

sudo python2 setup.py install  

sudo python3 setup.py install  

 

 

A successful installation, without error prompts, is shown below: 

 
 

Execute the following command. Observe the project result and then learn about the code in detail. 

If you have any concerns, please contact us via: support@freenove.com 

1. Use cd command to enter 7_1_ADC directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/7_1_ADC 

2. Use the Python command to execute the Python code “ADC.py”. 

sudo python ADC.py 

After the program is executed, adjusting the potentiometer will produce a readout display of the 

potentiometer voltage values in the Terminal and the converted digital content. 

 

The following is the code: 

1 

2 

3 

4 

5 

import time 

from ADCDevice import * 

 

adc = ADCDevice(0x48) # Define an ADCDevice class object 

 

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com


 

 █ support@freenove.com 

 support@freenove.com 112 www.freenove.com █ 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

def setup(): 

    global adc 

    if(adc.detectI2C(0x48)): 

        adc = ADS7830(0x48) 

    else: 

        print("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        exit(-1) 

         

def loop(): 

    while True: 

        value = adc.analogRead(2)    # read the ADC value of channel 2 

        voltage = value / 255.0 * 5.0  # calculate the voltage value 

        print ('ADC Value : %d, Voltage : %.2f'%(value,voltage)) 

        time.sleep(0.1) 

 

def destroy(): 

    adc.close() 

     

if __name__ == '__main__':   # Program entrance 

    print ('Program is starting ... ') 

    try: 

        setup() 

        loop() 

    except KeyboardInterrupt: # Press ctrl-c to end the program. 

        destroy() 

 

In this code, a custom Python module "ADCDevice" is used. It contains the method of utilizing the ADC 

Module in this project, through which the ADC Module can easily and quickly be used. In the code, you need 

to first create an ADCDevice object adc. 

 adc = ADCDevice(0x48) # Define an ADCDevice class object 

 

Then in setup(), use detecticIC(addr), the member function of ADCDevice, to detect the I2C module in the 

circuit. The default address of ADS7830 is 0x48. 

 def setup(): 

    global adc 

    if(adc.detectI2C(0x48)): 

        adc = ADS7830(0x48) 

    else: 

        print("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        exit(-1) 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

113 █ www.freenove.com  support@freenove.com 

When you have a class object of a specific device, you can get the ADC value of the specified channel by 

calling the member function of this class, analogRead(chn). In loop(), get the ADC value of potentiometer. 

         value = adc.analogRead(2)    # read the ADC value of channel 2 

 

Then according to the formula, the voltage value is calculated and displayed on the terminal monitor. 

         voltage = value / 255.0 * 5.0  # calculate the voltage value 

        print ('ADC Value : %d, Voltage : %.2f'%(value,voltage)) 

        time.sleep(0.1) 

 

Reference 

About smbus Module: 

smbus Module  

The System Management Bus Module defines an object type that allows SMBus transactions on hosts 

running the Linux kernel. The host kernel must support I2C, I2C device interface support, and a bus adapter 

driver. All of these can be either built-in to the kernel, or loaded from modules. 

In Python, you can use help(smbus) to view the relevant functions and their descriptions. 

bus=smbus.SMBus(1)：Create an SMBus class object. 

bus.read_byte_data(address,cmd+chn)： Read a byte of data from an address and return it. 

bus.write_byte_data(address,cmd,value)： Write a byte of data to an address. 

class ADCDevice(object)  

This is a base class.  

int detectI2C(int addr); 

This is a member function, which is used to detect whether the device with the given I2C address exists. If 

it exists, it returns true. Otherwise, it returns false. 

class ADS7830(ADCDevice)  

These classes are derived from the ADCDevice class and mainly implement the function analogRead(chn). 

 

int analogRead(int chn); 

This returns the value read on the supplied analog input pin. 

Parameter chn: For ADS7830, the range is 0, 1, 2, 3, 4, 5, 6, 7. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 114 www.freenove.com █ 

Project 7.2 Soft Light 

In this project, we will make a soft light. We will use an ADC Module to read ADC values of a potentiometer 

and map it to duty cycle ratio of the PWM used to control the brightness of an LED. Then you can change the 

brightness of an LED by adjusting the potentiometer. 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi

 

GPIO Ribbon Cable 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

115 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection 

 
If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 116 www.freenove.com █ 

Code 

C Code 7.2 Softlight 

If you haven’t configured I2C, please refer to Chapter 7. If you’ve done it, please move on. 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 7_2_Softlight directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/7_2_Softlight 

2. Use following command to compile “Softlight.cpp” and generate executable file “Softlight”. 

sudo g++ Softlight.cpp -o Softlight -lwiringPi -lADCDevice 

3. Then run the generated file “Softlight”. 

sudo ./Softlight 

 

After the program is executed, adjusting the potentiometer will display the voltage values of the 

potentiometer in the Terminal window and the converted digital quantity. As a consequence, the brightness 

of LED will be changed. 

 

The following is the code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

#include <wiringPi.h> 

#include <stdio.h> 

#include <softPwm.h> 

#include <ADCDevice.hpp> 

 

#define ledPin 0 

 

ADCDevice *adc;  // Define an ADC Device class object 

 

int main(void){ 

    adc = new ADCDevice(); 

    printf("Program is starting ... \n"); 

     

    if(adc->detectI2C(0x48)){    // Detect the ads7830 

        delete adc;              // Free previously pointed memory 

        adc = new ADS7830(0x48);     // If detected, create an instance of ADS7830. 

    } 

    else{ 

        printf("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        return -1; 

    } 

    wiringPiSetup(); 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

117 █ www.freenove.com  support@freenove.com 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

    softPwmCreate(ledPin,0,100); 

    while(1){ 

        int adcValue = adc->analogRead(2);    //read analog value of A2 pin 

        softPwmWrite(ledPin,adcValue*100/255);    // Mapping to PWM duty cycle 

        float voltage = (float)adcValue / 255.0 * 5.0;  // Calculate voltage 

        printf("ADC value : %d  ,\tVoltage : %.2fV\n",adcValue,voltage); 

        delay(30); 

    } 

    return 0; 

} 

 

In the code, read the ADC value of potentiometer and map it to the duty cycle of PWM to control LED 

brightness. 

         int adcValue = adc->analogRead(2);    //read analog value of A2 pin 

        softPwmWrite(ledPin,adcValue*100/255);    // Mapping to PWM duty cycle 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 118 www.freenove.com █ 

Python Code 7.2 Softlight 

If you haven’t configured I2C, please refer to Chapter 7. If you did, please continue. 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 7_2_Softlight directory of Python code 

cd ~/Freenove_Kit/Code/Python_Code/7_2_Softlight 

2. Use the python command to execute the Python code “Softlight.py”. 

sudo python Softlight.py 

 

After the program is executed, adjusting the potentiometer will display the voltage values of the 

potentiometer in the Terminal window and the converted digital quantity. As a consequence, the brightness 

of LED will be changed. 

 

The following is the code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

import RPi.GPIO as GPIO 

import time 

from ADCDevice import * 

 

ledPin = 11 

adc = ADCDevice(0x48) # Define an ADCDevice class object 

 

def setup(): 

    global adc 

    if(adc.detectI2C(0x48)):  

        adc = ADS7830(0x48) 

    else: 

        print("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        exit(-1) 

    global p 

    GPIO.setmode(GPIO.BOARD) 

    GPIO.setup(ledPin,GPIO.OUT) 

    p = GPIO.PWM(ledPin,1000) 

    p.start(0) 

         

def loop(): 

    while True: 

        value = adc.analogRead(2)    # read the ADC value of channel 0 

        p.ChangeDutyCycle(value*100/255)        # Mapping to PWM duty cycle 

        voltage = value / 255.0 * 5.0  # calculate the voltage value 

        print ('ADC Value : %d, Voltage : %.2f'%(value,voltage)) 

        time.sleep(0.03) 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

119 █ www.freenove.com  support@freenove.com 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

 

def destroy(): 

    GPIO.cleanup() 

    adc.close() 

     

if __name__ == '__main__':   # Program entrance 

    print ('Program is starting ... ') 

    try: 

        setup() 

        loop() 

    except KeyboardInterrupt: # Press ctrl-c to end the program. 

        destroy() 

 

In the code, read ADC value of potentiometers and map it to the duty cycle of the PWM to control LED 

brightness. 

         value = adc.analogRead(2)    # read the ADC value of channel 0 

        p.ChangeDutyCycle(value*100/255)        # Mapping to PWM duty cycle 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 120 www.freenove.com █ 

Project 7.3 Colorful Light  

In this project, 3 potentiometers are used to control the RGB LED and in principle it is the same as with the 

Soft Light. project. Namely, read the voltage value of the potentiometer and then convert it to PWM used to 

control LED brightness. Difference is that the previous soft light project needed only one LED while this one 

required (3) RGB LEDs. 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi

 

GPIO Ribbon Cable 

 

Jumper Wire 

 

 

RGBLED Module 

 
  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

121 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection.  

 

If you have any concerns, please send an email to: support@freenove.com 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 122 www.freenove.com █ 

Code 

C Code 7.3 Colorful Softlight 

If you haven’t configured I2C, please refer to Chapter 7. If you’ve done it, please continue. 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 7_3_ColorfulSoftlight directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/7_3_ColorfulSoftlight 

2. Use following command to compile "ColorfulSoftlight.cpp" and generate executable file 

"ColorfulSoftlight". 

sudo g++ ColorfulSoftlight.cpp -o ColorfulSoftlight -lwiringPi -lADCDevice 

3. Then run the generated file "ColorfulSoftlight". 

sudo ./ColorfulSoftlight 

 

After the program is executed, rotate one of the potentiometers, and the color of RGB LED will change. The 

Terminal window will display the ADC value of each potentiometer.  

 
 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

#include <wiringPi.h> 

#include <stdio.h> 

#include <softPwm.h> 

#include <ADCDevice.hpp> 

 

#define ledRedPin 21         //define 3 pins for RGBLED 

#define ledGreenPin 22 

#define ledBluePin 23 

 

ADCDevice *adc;  // Define an ADC Device class object 

 

int main(void){ 

    adc = new ADCDevice(); 

    printf("Program is starting ... \n"); 

 

    if(adc->detectI2C(0x48)){     // Detect the ads7830 

        delete adc;               // Free previously pointed memory 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

123 █ www.freenove.com  support@freenove.com 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

        adc = new ADS7830(0x48);      // If detected, create an instance of ADS7830. 

    } 

    else{ 

        printf("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        return -1; 

    } 

    wiringPiSetup(); 

    softPwmCreate(ledRedPin,0,100);     //creat 3 PMW output pins for RGBLED 

    softPwmCreate(ledGreenPin,0,100); 

    softPwmCreate(ledBluePin,0,100); 

    while(1){ 

        int val_Red = adc->analogRead(2);  //read analog value of 3 potentiometers 

        int val_Green = adc->analogRead(3); 

        int val_Blue = adc->analogRead(4); 

        softPwmWrite(ledRedPin,100-val_Red*100/255);    //map the read value of potentiometers 

into PWM value and output it 

        softPwmWrite(ledGreenPin,100-val_Green*100/255); 

        softPwmWrite(ledBluePin,100-val_Blue*100/255); 

         

        //print out the read ADC value 

        printf("ADC value val_Red: %d  ,\tval_Green: %d  ,\tval_Blue: %d 

\n",val_Red,val_Green,val_Blue); 

        delay(100); 

    } 

    return 0; 

} 

 

In the code you can read the ADC values of the 3 potentiometers and map it into a PWM duty cycle to control 

the 3 LED elements to vary the color of their respective RGB LED. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 124 www.freenove.com █ 

Python Code 7.3 ColorfulSoftlight 

If you haven’t configured I2C, please refer to Chapter 7. If you’ve done it, please continue. 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 7_3_ColorfulSoftlight directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/7_3_ColorfulSoftlight 

2. Use python command to execute python code "ColorfulSoftlight.py".  

sudo python ColorfulSoftlight.py 

 

After the program is executed, rotate one of the potentiometers, and the color of RGB LED will change. The 

Terminal window will display the ADC value of each potentiometer.  

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

import RPi.GPIO as GPIO 

import time 

from ADCDevice import * 

 

ledRedPin = 29      # define 3 pins for RGBLED 

ledGreenPin = 31 

ledBluePin = 33 

adc = ADCDevice(0x48) # Define an ADCDevice class object 

 

def setup(): 

    global adc 

    if(adc.detectI2C(0x48)): # Detect the pcf8591. 

        adc = ADS7830(0x48) 

    else: 

        print("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        exit(-1) 

         

    global p_Red,p_Green,p_Blue 

    GPIO.setmode(GPIO.BOARD) 

    GPIO.setup(ledRedPin,GPIO.OUT)      # set RGBLED pins to OUTPUT mode 

    GPIO.setup(ledGreenPin,GPIO.OUT) 

    GPIO.setup(ledBluePin,GPIO.OUT) 

     

    p_Red = GPIO.PWM(ledRedPin,1000)    # configure PMW for RGBLED pins, set PWM Frequence to 

1kHz 

    p_Red.start(0) 

    p_Green = GPIO.PWM(ledGreenPin,1000) 

    p_Green.start(0) 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

125 █ www.freenove.com  support@freenove.com 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

    p_Blue = GPIO.PWM(ledBluePin,1000) 

    p_Blue.start(0) 

     

def loop(): 

    while True:      

        value_Red = adc.analogRead(4)       # read ADC value of 3 potentiometers 

        value_Green = adc.analogRead(3) 

        value_Blue = adc.analogRead(2) 

        p_Red.ChangeDutyCycle(100-value_Red*100/255)  # map the read value of potentiometers 

into PWM value and output it  

        p_Green.ChangeDutyCycle(100-value_Green*100/255) 

        p_Blue.ChangeDutyCycle(100-value_Blue*100/255) 

     

        # print read ADC value 

        print ('ADC Value 

value_Red: %d ,\tvlue_Green: %d ,\tvalue_Blue: %d'%(value_Red,value_Green,value_Blue)) 

        time.sleep(0.01) 

 

def destroy(): 

    adc.close() 

    GPIO.cleanup() 

     

if __name__ == '__main__': # Program entrance 

    print ('Program is starting ... ') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt: # Press ctrl-c to end the program. 

        destroy() 

 

In the code you can read the ADC values of the 3 potentiometers and map it into a PWM duty cycle to control 

the 3 LED elements to vary the color of their respective RGB LED. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 126 www.freenove.com █ 

Chapter 8 Photoresistor & LED 

In this chapter, we will learn how to use a photoresistor to make an automatic dimming nightlight. 

Project 8.1 NightLamp 

A Photoresistor is very sensitive to the amount of light present. We can take advantage of the characteristic 

to make a nightlight with the following function. When the ambient light is less (darker environment), the LED 

will automatically become brighter to compensate and when the ambient light is greater (brighter 

environment) the LED will automatically dim to compensate. 

Component List 

Freenove Projects Board for Raspberry Pi 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

127 █ www.freenove.com  support@freenove.com 

Raspberry Pi x1

 

GPIO Ribbon Cable x1 

 

Jumper Wire 

 

 

Photoresistor 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 128 www.freenove.com █ 

Circuit 

Schematic diagram 

 
Hardware connection. 

 
If you have any concerns, please send an email to: support@freenove.com 

 

 

 

 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

129 █ www.freenove.com  support@freenove.com 

Code 

The code used in this project is identical with what was used in the last chapter. 

C Code 8.1 Nightlamp 

If you haven’t configured I2C, please refer to Chapter 7. If you’ve done it, please continue. 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 8_Nightlamp directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/8_Nightlamp 

2. Use following command to compile “Nightlamp.cpp” and generate executable file “Nightlamp”. 

sudo g++ Nightlamp.cpp -o Nightlamp -lwiringPi -lADCDevice 

3. Then run the generated file “Nightlamp”. 

sudo ./Nightlamp 

 

After the program is executed, if you cover the Photoresistor or increase the light shining on it, the brightness 

of the LED changes accordingly. As in previous projects the Terminal window will display the current input 

voltage value of ADC module A1 pin and the converted digital quantity. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

#include <wiringPi.h> 

#include <stdio.h> 

#include <softPwm.h> 

#include <ADCDevice.hpp> 

 

#define ledPin 0 

 

ADCDevice *adc;  // Define an ADC Device class object 

 

int main(void){ 

    adc = new ADCDevice(); 

    printf("Program is starting ... \n"); 

     

    if(adc->detectI2C(0x48)){    // Detect the ads7830 

        delete adc;               // Free previously pointed memory 

        adc = new ADS7830(0x48);      // If detected, create an instance of ADS7830. 

    } 

    else{ 

        printf("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        return -1; 

    }  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 130 www.freenove.com █ 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

    wiringPiSetup();     

    softPwmCreate(ledPin,0,100);     

    while(1){ 

        int value = adc->analogRead(1);  //read analog value of A1 pin 

        softPwmWrite(ledPin,value*100/255); 

        float voltage = (float)value / 255.0 * 5.0;  // calculate voltage 

        printf("ADC value : %d  ,\tVoltage : %.2fV\n",value,voltage); 

        delay(100); 

    } 

    return 0; 

} 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

131 █ www.freenove.com  support@freenove.com 

Python Code 8.1 Nightlamp 

If you haven’t configure I2C, please refer to Chapter 7. If you have done it, please continue. 

First, observe the project result, and then learn about the code in detail.  

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 8_Nightlamp directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/8_Nightlamp 

2. Use the python command to execute the Python code “Nightlamp.py”. 

sudo python Nightlamp.py 

 

After the program is executed, if you cover the Photoresistor or increase the light shining on it, the brightness 

of the LED changes accordingly. As in previous projects the Terminal window will display the current input 

voltage value of ADC module A1 pin and the converted digital quantity. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

import RPi.GPIO as GPIO 

import time 

from ADCDevice import * 

 

ledPin = 11 # define ledPin 

adc = ADCDevice(0x48) # Define an ADCDevice class object 

 

def setup(): 

    global adc 

    if(adc.detectI2C(0x48)): # Detect the pcf8591. 

        adc = ADS7830(0x48) 

    else: 

        print("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        exit(-1) 

    global p 

    GPIO.setmode(GPIO.BOARD) 

    GPIO.setup(ledPin,GPIO.OUT)   # set ledPin to OUTPUT mode 

    GPIO.output(ledPin,GPIO.LOW) 

     

    p = GPIO.PWM(ledPin,1000) # set PWM Frequence to 1kHz 

    p.start(0) 

     

def loop(): 

    while True: 

        value = adc.analogRead(1)    # read the ADC value of channel 0 

        p.ChangeDutyCycle(value*100/255) 

        voltage = value / 255.0 * 5.5 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 132 www.freenove.com █ 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

        print ('ADC Value : %d, Voltage : %.2f'%(value,voltage)) 

        time.sleep(0.01) 

 

def destroy(): 

    adc.close() 

    GPIO.cleanup() 

     

if __name__ == '__main__':   # Program entrance 

    print ('Program is starting ... ') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy() 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

133 █ www.freenove.com  support@freenove.com 

Chapter 9 Thermistor 

In this chapter, we will learn about Thermistors which are another kind of Resistor. 

Project 9.1 Thermometer 

A Thermistor is a type of Resistor whose resistance value is dependent on temperature and changes in 

temperature. Therefore, we can take advantage of this characteristic to make a Thermometer. 

Component knowledge 

Thermistor 

Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance of the 

Thermistor will change. We can take advantage of this characteristic by using a Thermistor to detect 

temperature intensity. A Thermistor and its electronic symbol are shown below. 

         

The relationship between resistance value and temperature of a thermistor is: 

Rt=R*EXP [B*(1/T2-1/T1)] 

Where: 

Rt is the thermistor resistance under T2 temperature; 

R is in the nominal resistance of thermistor under T1 temperature; 

EXP[n] is nth power of e; 

B is for thermal index; 

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature. 

For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25. 

The circuit connection method of the Thermistor is similar to photoresistor, as the following: 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 134 www.freenove.com █ 

 
We can use the value measured by the ADC converter to obtain the resistance value of Thermistor, and then 

we can use the formula to obtain the temperature value. 

Therefore, the temperature formula can be derived as: 

T2 = 1/(1/T1 + ln(Rt/R)/B) 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

135 █ www.freenove.com  support@freenove.com 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi

 

GPIO Ribbon Cable 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 136 www.freenove.com █ 

Circuit 

Schematic diagram 

 
Hardware connection. 

After running the program, hold your finger against the sensor to observe the change. 

 
If you have any concerns, please send an email to: support@freenove.com 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

137 █ www.freenove.com  support@freenove.com 

Code 

In this project code, the ADC value still needs to be read, but the difference here is that a specific formula is 

used to calculate the temperature value. 

C Code 9.1 Thermometer 

If you haven’t configure I2C, please refer to Chapter 7. If you’ve done it, please continue. 

First, observe the project result, and then learn about the code in detail. 

 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 9_Thermometer directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/9_Thermometer 

2 Use following command to compile “Thermometer.cpp” and generate executable file “Thermometer”. 

sudo g++ Thermometer.cpp -o Thermometer -lwiringPi -lADCDevice 

3 Then run the generated file “Thermometer”. 

sudo ./Thermometer 

 

After the program is executed, the Terminal window will display the current ADC value, voltage value and 

temperature value. Try to “pinch” the thermistor with your index finger and thumb for a brief time, you should 

see that the temperature value increases. 

 

 

The following is the code: 

1 

2 

3 

4 

5 

6 

7 

8 

#include <wiringPi.h> 

#include <stdio.h> 

#include <math.h> 

#include <ADCDevice.hpp> 

 

ADCDevice *adc;  // Define an ADC Device class object 

 

int main(void){ 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 138 www.freenove.com █ 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

    adc = new ADCDevice(); 

    printf("Program is starting ... \n"); 

    if(adc->detectI2C(0x48)){    // Detect the ads7830 

        delete adc;               // Free previously pointed memory 

        adc = new ADS7830(0x48);      // If detected, create an instance of ADS7830. 

    } 

    else{ 

        printf("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        return -1; 

    } 

    printf("Program is starting ... \n"); 

    while(1){ 

        int adcValue = adc->analogRead(0);  //read analog value A0 pin     

        float voltage = (float)adcValue / 255.0 * 5.0;    // calculate voltage     

        float Rt = 10 * voltage / (5.0 - voltage);        //calculate resistance value of 

thermistor 

        float tempK = 1/(1/(273.15 + 25) + log(Rt/10)/3950.0); //calculate temperature 

(Kelvin) 

        float tempC = tempK -273.15;        //calculate temperature (Celsius) 

        printf("ADC value : %d  ,\tVoltage : %.2fV, 

\tTemperature : %.2fC\n",adcValue,voltage,tempC); 

        delay(100); 

    } 

    return 0; 

} 

 

In the code, the ADC value of ADC module A0 port is read, and then calculates the voltage and the resistance 

of Thermistor according to Ohms Law. Finally, it calculates the temperature sensed by the Thermistor, 

according to the formula.  

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

139 █ www.freenove.com  support@freenove.com 

Python Code 9.1 Thermometer 

If you haven’t configured I2C, please refer to Chapter 7. If you’ve done it, please continue. 

First, observe the project result, and then learn about the code in detail. 

 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 9_Thermometer directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/9_Thermometer 

2. Use python command to execute Python code “Thermometer.py”. 

sudo python Thermometer.py 

 

After the program is executed, the Terminal window will display the current ADC value, voltage value and 

temperature value. Try to “pinch” the thermistor with your index finger and thumb for a brief time, you should 

see that the temperature value increases. 

 
 

The following is the code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

import RPi.GPIO as GPIO 

import time 

import math 

from ADCDevice import * 

 

adc = ADCDevice(0x48) # Define an ADCDevice class object 

 

def setup(): 

    global adc 

    if(adc.detectI2C(0x48)): # Detect the pcf8591. 

        adc = ADS7830(0x48) 

    else: 

        print("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        exit(-1) 

         

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 140 www.freenove.com █ 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

def loop(): 

    while True: 

        value = adc.analogRead(0)        # read ADC value A0 pin 

        voltage = value / 255.0 * 5.0        # calculate voltage 

        Rt = 10 * voltage / (5.0 - voltage)    # calculate resistance value of thermistor 

        tempK =  1/(1/(273.15 + 25) + math.log(Rt/10)/3950.0) # calculate temperature (Kelvin) 

        tempC = tempK -273.15        # calculate temperature (Celsius) 

        print ('ADC Value : %d, Voltage : %.2f, Temperature : %.2f'%(value,voltage,tempC)) 

        time.sleep(0.01) 

 

def destroy(): 

    adc.close() 

    GPIO.cleanup() 

     

if __name__ == '__main__':  # Program entrance 

    print ('Program is starting ... ') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt: # Press ctrl-c to end the program. 

        destroy() 

 

In the code, the ADC value of ADC module A0 port is read, and then calculates the voltage and the resistance 

of Thermistor according to Ohms Law. Finally, it calculates the temperature sensed by the Thermistor, 

according to the formula.  

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

141 █ www.freenove.com  support@freenove.com 

Chapter 10 Joystick 

In an earlier chapter, we learned how to use Rotary Potentiometer. We will now learn about joysticks, which 

are electronic modules that work on the same principle as the Rotary Potentiometer. 

Project 10.1 Joystick 

In this project, we will read the output data of a joystick and display it to the Terminal screen. 

Component knowledge 

Joystick 

A Joystick is a kind of input sensor used with your fingers. You should be familiar with this concept already as 

they are widely used in gamepads and remote controls. It can receive input on two axes (Y and or X) at the 

same time (usually used to control direction on a two dimensional plane). And it also has a third direction 

capability by pressing down (Z axis/direction). 

 

 
This is accomplished by incorporating two rotary potentiometers inside the Joystick Module at 90 degrees of 

each other, placed in such a manner as to detect shifts in two directions simultaneously and with a Push 

Button Switch in the “vertical” axis, which can detect when a User presses on the Joystick. 

 

When the Joystick data is read, there are some differences between the axes: data of X and Y axes is analog, 

which needs to use the ADC. The data of the Z axis is digital, so you can directly use the GPIO to read this 

data or you have the option to use the ADC to read this. 

  

X 

Y 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 142 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi

 

GPIO Ribbon Cable 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

143 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection. 

 
If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 144 www.freenove.com █ 

Code 

In this project’s code, we will read the ADC values of X and Y axes of the Joystick, and read digital quality of 

the Z axis, then display these out in Terminal. 

C Code 10.1 Joystick 

If you haven’t configured I2C, please refer to Chapter 7. If you’ve done it, please continue. 

First, observe the project result, and then learn about the code in detail. 

 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 10_Joystick directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/10_Joystick 

2. Use following command to compile "Joystick.cpp" and generate executable file "Joystick". 

sudo g++ Joystick.cpp -o Joystick -lwiringPi -lADCDevice 

3. Then run the generated file "Joystick". 

sudo ./Joystick 

 

After the program is executed, the terminal window will display the data of 3 axes X, Y and Z. Shifting (moving) 

the Joystick or pressing it down will make the data change. 

 
 

The flowing is the code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

#include <wiringPi.h> 

#include <stdio.h> 

#include <softPwm.h> 

#include <ADCDevice.hpp> 

 

#define Z_Pin 11     //define pin for axis Z 

 

ADCDevice *adc;  // Define an ADC Device class object 

 

int main(void){ 

    adc = new ADCDevice(); 

    printf("Program is starting ... \n"); 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

145 █ www.freenove.com  support@freenove.com 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

     

    if(adc->detectI2C(0x48)){    // Detect the ads7830 

        delete adc;               // Free previously pointed memory 

        adc = new ADS7830(0x48);      // If detected, create an instance of ADS7830. 

    } 

    else{ 

        printf("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        return -1; 

    }     

    wiringPiSetup();     

    pinMode(Z_Pin,INPUT);       //set Z_Pin as input pin and pull-up mode 

    pullUpDnControl(Z_Pin,PUD_UP);     

    while(1){ 

        int val_Z = digitalRead(Z_Pin);  //read digital value of axis Z 

        int val_Y = adc->analogRead(5);      //read analog value of axis X and Y 

        int val_X = adc->analogRead(6); 

        printf("val_X: %d  ,\tval_Y: %d  ,\tval_Z: %d \n",val_X,val_Y,val_Z); 

        delay(100); 

    } 

    return 0; 

} 

 

In the code, configure Z_Pin to pull-up input mode. In the while loop of the main function, use analogRead 

() to read the value of axes X and Y and use digitalRead () to read the value of axis Z, then display them. 

     while(1){ 

        int val_Z = digitalRead(Z_Pin);  //read digital value of axis Z 

        int val_Y = adc->analogRead(5);      //read analog value of axis X and Y 

        int val_X = adc->analogRead(6); 

        printf("val_X: %d  ,\tval_Y: %d  ,\tval_Z: %d \n",val_X,val_Y,val_Z); 

        delay(100); 

    } 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 146 www.freenove.com █ 

Python Code 10.1 Joystick 

If you haven’t configured I2C, please refer to Chapter 7. If you’ve done it, please continue. 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 10_Joystick directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/10_Joystick 

2. Use Python command to execute Python code "Joystick.py".  

python Joystick.py 

After the program is executed, the Terminal window will display the data of 3 axes X, Y and Z. Shifting (moving) 

the joystick or pressing it down will make the data change. 

 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

import RPi.GPIO as GPIO 

import time 

from ADCDevice import * 

 

Z_Pin = 26      # define Z_Pin 

adc = ADCDevice(0x48) # Define an ADCDevice class object 

 

def setup(): 

    global adc 

    if(adc.detectI2C(0x48)): # Detect the pcf8591. 

        adc = ADS7830(0x48) 

    else: 

        print("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        exit(-1) 

    GPIO.setmode(GPIO.BOARD)         

    GPIO.setup(Z_Pin,GPIO.IN,GPIO.PUD_UP)   # set Z_Pin to pull-up mode 

def loop(): 

    while True:      

        val_Z = GPIO.input(Z_Pin)       # read digital value of axis Z 

        val_Y = adc.analogRead(5)           # read analog value of axis X and Y 

        val_X = adc.analogRead(6) 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

147 █ www.freenove.com  support@freenove.com 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

        print ('value_X: %d ,\tvlue_Y: %d ,\tvalue_Z: %d'%(val_X,val_Y,val_Z)) 

        time.sleep(0.01) 

 

def destroy(): 

    adc.close() 

    GPIO.cleanup() 

     

if __name__ == '__main__': 

    print ('Program is starting ... ') # Program entrance 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt: # Press ctrl-c to end the program. 

        destroy() 

 

In the code, configure Z_Pin to pull-up input mode. In while loop, use analogRead () to read the value of 

axes X and Y and use GPIO.input () to read the value of axis Z, then display them. 

     while True:      

        val_Z = GPIO.input(Z_Pin)       # read digital value of axis Z 

        val_Y = adc.analogRead(5)           # read analog value of axis X and Y 

        val_X = adc.analogRead(6) 

        print ('value_X: %d ,\tvlue_Y: %d ,\tvalue_Z: %d'%(val_X,val_Y,val_Z)) 

        time.sleep(0.01) 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 148 www.freenove.com █ 

Chapter 11 Motor & Driver 

In this chapter, we will learn about DC Motors and DC Motor Drivers and how to control the speed and 

direction of a DC Motor. 

Project 11.1 Control a DC Motor with a Potentiometer 

In this project, a potentiometer will be used to control a DC Motor. When the Potentiometer is at the midpoint 

position, the DC Motor will STOP, and when the Potentiometer is turned in either direction of this midpoint, 

the DC Motor speed increases until it reached the endpoint where the DC Motor achieves its maximum speed. 

When the Potentiometer is turned “Left” of the midpoint, the DC Motor will ROTATE in one direction and 

when turned “Right” the DC Motor will ROTATE in the opposite direction.  

 

Component knowledge 

 

DC Motor 

DC Motor is a device that converts electrical energy into mechanical energy. DC Motors consist of two major 

parts, a Stator and the Rotor. The stationary part of a DC Motor is the Stator and the part that Rotates is the 

Rotor. The Stator is usually part of the outer case of motor (if it is simply a pair of permanent magnets), and 

it has terminals to connect to the power if it is made up of electromagnet coils. Most Hobby DC Motors only 

use Permanent Magnets for the Stator Field. The Rotor is usually the shaft of motor with 3 or more 

electromagnets connected to a commutator where the brushes (via the terminals 1 & 2 below) supply 

electrical power, which can drive other mechanical devices. The diagram below shows a small DC Motor with 

two terminal pins. 

 

When a DC Motor is connected to a power supply, it will rotate in one direction. If you reverse the polarity of 

the power supply, the DC Motor will rotate in opposite direction. This is important to note. 

 

                         

+   -                              -   + 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

149 █ www.freenove.com  support@freenove.com 

L293D 

L293D is an IC Chip (Integrated Circuit Chip) with a 4-channel motor drive. You can drive a Unidirectional DC 

Motor with 4 ports or a Bi-Directional DC Motor with 2 ports or a Stepper Motor (Stepper Motors are covered 

later in this Tutorial). 

 

Port description of L293D module is as follows: 

Pin name Pin number Description 

In x 2, 7, 10, 15 Channel x digital signal input pin 

Out x 3, 6, 11, 14 Channel x output pin, input high or low level according to In x pin, gets 

connected to +Vmotor or 0V 

Enable1 1 Channel 1 and Channel 2 enable pin, high level enable 

Enable2 9 Channel 3 and Channel 4 enable pin, high level enable 

0V 4, 5, 12, 13 Power Cathode (GND) 

+V 16 Positive Electrode (VCC) of power supply, supply voltage 4.5~36V 

+Vmotor 8 Positive Electrode of load power supply, provide power supply for the Out 

pin x, the supply voltage is +V~36V 

 

For more details, please see the datasheet for this IC Chip. 

When using the L293D to drive a DC Motor, there are usually two connection options. 

The following connection option uses one channel of the L239D, which can control motor speed through 

the PWM, However the motor then can only rotate in one direction. 

 

 
 

 

 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 150 www.freenove.com █ 

The following connection uses two channels of the L239D: one channel outputs the PWM wave, and the other 

channel connects to GND. Therefore, you can control the speed of the motor. When these two channel signals 

are exchanged, it not only controls the speed of motor, but also can control the direction of the motor. 

                             
 

In practical use, the motor is usually connected to channel 1 and by outputting different levels to in1 and 

in2 to control the rotational direction of the motor, and output to the PWM wave to Enable1 port to control 

the motor’s rotational speed. If the motor is connected to channel 3 and 4 by outputting different levels to 

in3 and in4 to control the motor's rotation direction, and output to the PWM wave to Enable2 pin to control 

the motor’s rotational speed. 

  

GND

GND

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

151 █ www.freenove.com  support@freenove.com 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi  

 

GPIO Ribbon Cable  

 

Jumper Wire 

 

 

 

Motor 

 

9V Battery (you provide) & 9V Battery Cable 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 152 www.freenove.com █ 

Circuit 

Schematic diagram 

 

Hardware connection. 

 

 

If you have any concerns, please send an email to: support@freenove.com 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

153 █ www.freenove.com  support@freenove.com 

Code 

In code for this project, first read the ADC value and then control the rotation direction and speed of the DC 

Motor according to the value of the ADC. 

C Code 11.1 Motor 

If you haven’t configured I2C, please refer to Chapter 7. If you have done it, please continue. 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 11_Motor directory of the C code. 

cd ~/Freenove_Kit/Code/C_Code/11_Motor 

2. Use the following command to compile “Motor.cpp” and generate the executable file “Motor”. 

sudo g++ Motor.cpp -o Motor -lwiringPi -lADCDevice 

3. Then run the generated file ”Motor”.  

sudo ./Motor 

After the program runs, you can use the Potentiometer to control the DC Motor. When the Potentiometer is 

at the midpoint position, the DC Motor will STOP, and when the Potentiometer is turned in either direction of 

this midpoint, the DC Motor speed increases until it reaches the endpoint where the DC Motor achieves its 

maximum speed. When the Potentiometer is turned “Left” of the midpoint, the DC Motor will ROTATE in one 

direction and when turned “Right” the DC Motor will ROTATE in the opposite direction. You will also see the 

ADC value of the potentiometer displayed in the Terminal with the motor direction and the PWM duty cycle 

used to control the DC Motor’s speed. 

 
 

The following is the code: 

1 

2 

3 

4 

5 

#include <wiringPi.h> 

#include <stdio.h> 

#include <softPwm.h> 

#include <math.h> 

#include <stdlib.h> 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 154 www.freenove.com █ 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

#include <ADCDevice.hpp> 

 

#define motorPin1    15        //define the pin connected to L293D 

#define motorPin2    16 

#define enablePin    3 

 

ADCDevice *adc;  // Define an ADC Device class object 

 

//Map function: map the value from a range to another range. 

long map(long value,long fromLow,long fromHigh,long toLow,long toHigh){ 

    return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow; 

} 

//motor function: determine the direction and speed of the motor according to the ADC  

void motor(int ADC){ 

    int value = ADC -128; 

    if(value>0){ 

        softPwmWrite(motorPin1,map(abs(value),0,128,0,100)); 

        softPwmWrite(motorPin2,0); 

        printf("turn Forward...\n"); 

    } 

    else if (value<0){ 

        softPwmWrite(motorPin1,0); 

        softPwmWrite(motorPin2,map(-value,0,128,0,100)); 

        printf("turn Back...\n"); 

    } 

    else { 

        digitalWrite(motorPin1,LOW);  

        digitalWrite(motorPin2,LOW); 

        printf("Motor Stop...\n"); 

    } 

     

    printf("The PWM duty cycle is %d%%\n",abs(value)*100/127);//print the PMW duty cycle 

} 

int main(void){ 

    adc = new ADCDevice(); 

    printf("Program is starting ... \n"); 

     

    if(adc->detectI2C(0x48)){    // Detect the ads7830 

        delete adc;                // Free previously pointed memory 

        adc = new ADS7830(0x48);      // If detected, create an instance of ADS7830. 

    } 

    else{ 

        printf("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

155 █ www.freenove.com  support@freenove.com 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

        "Program Exit. \n"); 

        return -1; 

    } 

    wiringPiSetup(); 

    pinMode(motorPin1,OUTPUT); 

    pinMode(motorPin2,OUTPUT); 

     

    softPwmCreate(motorPin1,0,100);//define PMW pin 

    softPwmCreate(motorPin2,0,100);//define PMW pin 

     

    while(1){ 

        int value = adc->analogRead(2);  //read analog value of A0 pin 

        printf("ADC value : %d \n",value); 

        motor(value);        //make the motor rotate with speed(analog value of A0 pin) 

        delay(100); 

    } 

    return 0; 

} 

 

When ADC value is greater than 128, motorPin2 outputs low lever and motorPin1 output high level. 

When ADC value is less than 128, motorPin2 outputs high lever and motorPin1 output low level. 

The difference between ADC and 128 determines the duty cycle for the PWM. 

 

 void motor(int ADC){ 

    int value = ADC -128; 

    if(value>0){ 

        softPwmWrite(motorPin1,map(abs(value),0,128,0,100)); 

        softPwmWrite(motorPin2,0); 

        printf("turn Forward...\n"); 

    } 

    else if (value<0){ 

        softPwmWrite(motorPin1,0); 

        softPwmWrite(motorPin2,map(-value,0,128,0,100)); 

        printf("turn Back...\n"); 

    } 

    else { 

        digitalWrite(motorPin1,LOW);  

        digitalWrite(motorPin2,LOW); 

        printf("Motor Stop...\n"); 

    } 

     

    printf("The PWM duty cycle is %d%%\n",abs(value)*100/127);//print the PMW duty cycle 

} 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 156 www.freenove.com █ 

Python Code 11.1 Motor 

If you haven’t configured I2C and installed Smbus, please refer to Chapter 7. If you’ve done it, please Continue. 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 11_Motor directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/11_Motor 

2. Use python command to execute the Python code “Motor.py”.  

sudo python Motor.py 

 

After the program runs, you can use the Potentiometer to control the DC Motor. When the Potentiometer is 

at the midpoint position, the DC Motor will STOP, and when the Potentiometer is turned in either direction of 

this midpoint, the DC Motor speed increases until it reaches the endpoint where the DC Motor achieves its 

maximum speed. When the Potentiometer is turned “Left” of the midpoint, the DC Motor will ROTATE in one 

direction and when turned “Right” the DC Motor will ROTATE in the opposite direction. You will also see the 

ADC value of the potentiometer displayed in the Terminal with the motor direction and the PWM duty cycle 

used to control the DC Motor’s speed. 

 

 

The following is the code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

import RPi.GPIO as GPIO 

import time 

from ADCDevice import * 

 

# define the pins connected to L293D  

motoRPin1 = 8 

motoRPin2 = 10 

adc = ADCDevice(0x48) # Define an ADCDevice class object 

 

def setup(): 

    global adc 

    if(adc.detectI2C(0x48)): # Detect the pcf8591. 

        adc = ADS7830(0x48) 

    else: 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

157 █ www.freenove.com  support@freenove.com 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

        print("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        exit(-1) 

    global p1 

    global p2 

    GPIO.setmode(GPIO.BOARD)    

    GPIO.setup(motoRPin1,GPIO.OUT)   # set pins to OUTPUT mode 

    GPIO.setup(motoRPin2,GPIO.OUT) 

     

    p1 = GPIO.PWM(motoRPin1,1000) # creat PWM and set Frequence to 1KHz 

    p1.start(0) 

    p2 = GPIO.PWM(motoRPin2,1000) # creat PWM and set Frequence to 1KHz 

    p2.start(0) 

 

# mapNUM function: map the value from a range of mapping to another range. 

def mapNUM(value,fromLow,fromHigh,toLow,toHigh): 

    return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow 

  

# motor function: determine the direction and speed of the motor according to the input ADC 

value input 

def motor(ADC): 

    value = ADC -128 

     

    if (value > 0):  # make motor turn forward 

        print(abs(value)*100/127) 

        p1.ChangeDutyCycle(abs(value)*100/127) 

        p2.ChangeDutyCycle(0) 

        print ('Turn Forward...') 

    elif (value < 0): # make motor turn backward 

        print(abs(value)*100/128) 

        p1.ChangeDutyCycle(0) 

        p2.ChangeDutyCycle(abs(value)*100/128) 

        print ('Turn Backward...') 

    else : 

        p1.ChangeDutyCycle(0) 

        p2.ChangeDutyCycle(0) 

        print ('Motor Stop...') 

 

def loop(): 

    while True: 

        value = adc.analogRead(2) # read ADC value of channel 0 

        print ('ADC Value : %d'%(value)) 

        motor(value) 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 158 www.freenove.com █ 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

        time.sleep(0.05) 

 

def destroy(): 

    GPIO.cleanup() 

     

if __name__ == '__main__':  # Program entrance 

    print ('Program is starting ... ') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt: # Press ctrl-c to end the program. 

        destroy() 

 

When ADC value is greater than 128, motorPin2 outputs low lever and motorPin1 output high level. 

When ADC value is less than 128, motorPin2 outputs high lever and motorPin1 output low level. 

The difference between ADC and 128 determines the duty cycle for the PWM. 

 def motor(ADC): 

    value = ADC -128 

     

    if (value > 0):  # make motor turn forward 

        print(abs(value)*100/127) 

        p1.ChangeDutyCycle(abs(value)*100/127) 

        p2.ChangeDutyCycle(0) 

        print ('Turn Forward...') 

    elif (value < 0): # make motor turn backward 

        print(abs(value)*100/128) 

        p1.ChangeDutyCycle(0) 

        p2.ChangeDutyCycle(abs(value)*100/128) 

        print ('Turn Backward...') 

    else : 

        p1.ChangeDutyCycle(0) 

        p2.ChangeDutyCycle(0) 

        print ('Motor Stop...') 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

159 █ www.freenove.com  support@freenove.com 

Chapter 12 Relay & LED 

In this chapter, we will learn a kind of special switch module, Relay Module. 

Project 12.1 Relay & LED 

Component knowledge 

Relay 

Relays are a type of Switch that open and close circuits electromechanically or electronically. Relays control 

one electrical circuit by opening and closing contacts in another circuit using an electromagnet to initiate the 

Switch action. When the electromagnet is energized (powered), it will attract internal contacts completing a 

circuit, which act as a Switch. Many times Relays are used to allow a low powered circuit (and a small low 

amperage switch) to safely turn ON a larger more powerful circuit. They are commonly found in automobiles, 

especially from the ignition to the starter motor. 

The following is a basic diagram of a common Relay and the image and circuit symbol diagram of the 5V 

relay used in this project: 

Diagram  

 

Feature： 

 

 

Symbol 

 

 

Pin 5 and pin 6 are internally connected to each other. When the coil pin3 and pin 4 are connected to a 5V 

power supply, pin 1 will be disconnected from pins 5 & 6 and pin 2 will be connected to pins 5 & 6. Pin 1 is 

called Closed End and pin 2 is called the Open End. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 160 www.freenove.com █ 

Inductor 

The symbol of Inductance is “L” and the unit of inductance is the “Henry” (H). Here is an example of how this 

can be encountered: 1H=1000mH, 1mH=1000μH. 

An Inductor is a passive device that stores energy in its Magnetic Field and returns energy to 

the circuit whenever required. An Inductor is formed by a Cylindrical Core with many Turns of conducting wire 

(usually copper wire). Inductors will hinder the changing current passing through it. When the current passing 

through the Inductor increases, it will attempt to hinder the increasing movement of current; and when the 

current passing through the inductor decreases, it will attempt to hinder the decreasing movement of current. 

So the current passing through an Inductor is not transient. 

 

The circuit for a Relay is as follows: The coil of Relay can be equivalent to an Inductor, when a Transistor is 

present in this coil circuit it can disconnect the power to the relay, the current in the Relay’s coil does not stop 

immediately, which affects the power supply adversely. To remedy this, diodes in parallel are placed on both 

ends of the Relay coil pins in opposite polar direction. Having the current pass through the diodes will avoid 

any adverse effect on the power supply. 

 
  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

161 █ www.freenove.com  support@freenove.com 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi

 

GPIO Ribbon Cable 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 162 www.freenove.com █ 

Circuit 

Schematic diagram 

 
Hardware connection.  

 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

163 █ www.freenove.com  support@freenove.com 

If you have any concerns, please send an email to: support@freenove.com 

Code  

C Code 12.1 Relay 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 12_Relay directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/12_Relay 

2. Use following command to compile "Relay.c" and generate executable file "Relay".  

gcc Relay.c -o Relay -lwiringPi 

3. Run the generated file "Relay". 

sudo ./Relay 

After running the program, press the button, the LED near relay will light up. 

Press the button again, the LED will light OFF. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

#include <wiringPi.h> 

#include <stdio.h> 

 

#define relayPin    26   //define the relayPin 

#define buttonPin  27  //define the buttonPin 

int relayState=LOW;   //store the State of relay 

int buttonState=HIGH;  //store the State of button 

int lastbuttonState=HIGH; //store the lastState of button 

long lastChangeTime;  //store the change time of button state 

long captureTime=50;  //set the button state stable time 

int reading; 

int main(void) 

{ 

 printf("Program is starting...\n"); 

  

 wiringPiSetup();  

  

 pinMode(relayPin, OUTPUT);  

 pinMode(buttonPin, INPUT); 

 pullUpDnControl(buttonPin, PUD_UP);  //pull up to high level 

 while(1){ 

  reading = digitalRead(buttonPin); //read the current state of button 

  if( reading != lastbuttonState){  //if the button state changed ,record the time 

point 

   lastChangeTime = millis(); 

  } 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 164 www.freenove.com █ 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

  //if changing-state of the button last beyond the time we set,we considered that  

  //the current button state is an effective change rather than a buffeting 

  if(millis() - lastChangeTime > captureTime){ 

   //if button state is changed, update the data. 

   if(reading != buttonState){ 

    buttonState = reading; 

    //if the state is low, the action is pressing. 

    if(buttonState == LOW){ 

     printf("Button is pressed!\n"); 

     relayState = !relayState; 

     if(relayState){ 

      printf("turn on relay ...\n"); 

     } 

     else { 

      printf("turn off relay ...\n"); 

     } 

    } 

    //if the state is high, the action is releasing. 

    else { 

     printf("Button is released!\n"); 

    } 

   } 

  } 

  digitalWrite(relayPin,relayState); 

  lastbuttonState = reading; 

 } 

 

 return 0; 

} 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

165 █ www.freenove.com  support@freenove.com 

Python Code 12.1 Relay 

First observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 12_Relay directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/12_Relay 

2. Use python command to execute code "Relay.py".  

python Relay.py 

After running the program, press the button, the LED near relay will light up. 

Press the button again, the LED will light OFF. 

 

he following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

import RPi.GPIO as GPIO 

import time 

 

relayPin = 32     # define the relayPin 

buttonPin = 38    # define the buttonPin 

debounceTime = 50 

 

def setup():     

    GPIO.setmode(GPIO.BOARD)        

    GPIO.setup(relayPin, GPIO.OUT)   # set relayPin to OUTPUT mode 

    GPIO.setup(buttonPin, GPIO.IN)   # set buttonPin to INTPUT mode 

 

def loop(): 

    relayState = False 

    lastChangeTime = round(time.time()*1000) 

    buttonState = GPIO.HIGH 

    lastButtonState = GPIO.HIGH 

    reading = GPIO.HIGH 

    while True: 

        reading = GPIO.input(buttonPin)      

        if reading != lastButtonState : 

            lastChangeTime = round(time.time()*1000) 

        if ((round(time.time()*1000) - lastChangeTime) > debounceTime): 

            if reading != buttonState : 

                buttonState = reading; 

                if buttonState == GPIO.LOW: 

                    print("Button is pressed!") 

                    relayState = not relayState 

                    if relayState: 

                        print("Turn on relay ...") 

                    else : 

                        print("Turn off relay ... ") 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 166 www.freenove.com █ 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

                else : 

                    print("Button is released!") 

        GPIO.output(relayPin,relayState) 

        lastButtonState = reading # lastButtonState store latest state 

     

def destroy(): 

    GPIO.cleanup()                       

 

if __name__ == '__main__':     # Program entrance 

    print ('Program is starting...') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:   # Press ctrl-c to end the program. 

        destroy() 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

167 █ www.freenove.com  support@freenove.com 

Chapter 13 Servo 

Previously, we learned how to control the speed and rotational direction of a DC Motor. In this chapter, we 

will learn about Servos which are a rotary actuator type motor that can be controlled rotate to specific angles. 

Project 13.1 Sweep 

First, we need to learn how to make a Servo rotate. 

Component knowledge 

Servo 

Servo is a compact package which consists of a DC Motor, a set of reduction gears to provide torque, a sensor 

and control circuit board. Most Servos only have a 180-degree range of motion via their “horn”. Servos can 

output higher torque than a simple DC Motor alone and they are widely used to control motion in model cars, 

model airplanes, robots, etc. Servos have three wire leads which usually terminate to a male or female 3-pin 

plug. Two leads are for electric power: Positive (2-VCC, Red wire), Negative (3-GND, Brown wire), and the 

signal line (1-Signal, Orange wire) as represented in the Servo provided in your Kit. 

 
We will use a 50Hz PWM signal with a duty cycle in a certain range to drive the Servo. The lasting time 0.5ms-

2.5ms of PWM single cycle high level corresponds to the Servo angle 0 degrees - 180 degree linearly. Part of 

the corresponding values are as follows: 

Note: the lasting time of high level corresponding to the servo angle is absolute instead of accumulating. For 

example, the high level time lasting for 0.5ms correspond to the 0 degree of the servo. If the high level time 

lasts for another 1ms, the servo rotates to 45 degrees. 

High level time Servo angle 

0.5ms 0 degree 

1ms 45 degree 

1.5ms 90 degree 

2ms 135 degree 

2.5ms 180 degree 

 

When you change the Servo signal value, the Servo will rotate to the designated angle. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 168 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi  

 

Raspberry Pi 

 

GPIO Ribbon Cable  

 

Jumper Wire 

 

 

 

 

Servo 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

169 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection.  

 
If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 170 www.freenove.com █ 

Code 

In this project, we will make a Servo rotate from 0 degrees to 180 degrees and then reverse the direction to 

make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop. 

C Code 13.1 Sweep 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 13_1_Sweep directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/13_1_Sweep 

2. Use following command to compile "Sweep.c" and generate executable file "Sweep".  

gcc Sweep.c -o Sweep -lwiringPi 

3. Run the generated file "Sweep". 

sudo ./Sweep 

After the program runs, the Servo will rotate from 0 degrees to 180 degrees and then reverse the direction 

to make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

#include <wiringPi.h> 

#include <softPwm.h> 

#include <stdio.h> 

#define OFFSET_MS 3     //Define the unit of servo pulse offset: 0.1ms 

#define SERVO_MIN_MS 5+OFFSET_MS        //define the pulse duration for minimum angle of servo 

#define SERVO_MAX_MS 25+OFFSET_MS       //define the pulse duration for maximum angle of servo 

 

#define servoPin    1       //define the GPIO number connected to servo 

long map(long value,long fromLow,long fromHigh,long toLow,long toHigh){ 

    return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow; 

} 

void servoInit(int pin){        //initialization function for servo PMW pin 

    softPwmCreate(pin,  0, 200); 

} 

void servoWrite(int pin, int angle){    //Specific a certain rotation angle (0-180) for the 

servo 

    if(angle > 180) 

        angle = 180; 

    if(angle < 0) 

        angle = 0; 

    softPwmWrite(pin,map(angle,0,180,SERVO_MIN_MS,SERVO_MAX_MS));    

} 

void servoWriteMS(int pin, int ms){     //specific the unit for pulse(5-25ms) with specific 

duration output by servo pin: 0.1ms 

    if(ms > SERVO_MAX_MS) 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

171 █ www.freenove.com  support@freenove.com 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

        ms = SERVO_MAX_MS; 

    if(ms < SERVO_MIN_MS) 

        ms = SERVO_MIN_MS; 

    softPwmWrite(pin,ms); 

} 

 

int main(void) 

{ 

    int i; 

     

    printf("Program is starting ...\n"); 

     

    wiringPiSetup();     

    servoInit(servoPin);        //initialize PMW pin of servo 

    while(1){ 

        for(i=SERVO_MIN_MS;i<SERVO_MAX_MS;i++){  //make servo rotate from minimum angle to 

maximum angle 

            servoWriteMS(servoPin,i); 

            delay(10); 

        } 

        delay(500); 

        for(i=SERVO_MAX_MS;i>SERVO_MIN_MS;i--){  //make servo rotate from maximum angle to 

minimum angle 

            servoWriteMS(servoPin,i); 

            delay(10); 

        } 

        delay(500); 

    } 

    return 0; 

} 

 

A 50 Hz pulse for a 20ms cycle is required to control the Servo. In function softPwmCreate (int pin, int 

initialValue, int pwmRange), the unit of the third parameter pwmRange is 100US, specifically 0.1ms. In order 

to get the PWM with a 20ms cycle, the pwmRange shoulde be set to 200. So in the subfunction of servoInit 

(), we create a PWM pin with a pwmRange of 200. 

 void servoInit(int pin){        //initialization function for servo PWM pin 

    softPwmCreate(pin,  0, 200); 

} 

 

Since 0-180 degrees of the Servo’s motion corresponds to the PWM pulse width of 0.5-2.5ms, with a 

PwmRange of 200 ms, we then need the function softPwmWrite (int pin, int value) and the scope 5-25 of 

the parameter values to correspond to 0-180 degrees’ motion of the Servo. What’s more, the number written 

in subfunction servoWriteMS () should be within the range of 5-25. However, in practice, due to the inherent 

error manufactured into each Servo, the pulse width will have a deviation. So we need to define a minimum 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 172 www.freenove.com █ 

and maximum pulse width and an error offset (this is essential in robotics). 

 #define OFFSET_MS 3     //Define the unit of servo pulse offset: 0.1ms 

#define SERVO_MIN_MS 5+OFFSET_MS        //define the pulse duration for minimum angle of 

servo 

#define SERVO_MAX_MS 25+OFFSET_MS       //define the pulse duration for maximum angle of 

servo 

…… 

void servoWriteMS(int pin, int ms){ 

    if(ms > SERVO_MAX_MS) 

        ms = SERVO_MAX_MS; 

    if(ms < SERVO_MIN_MS) 

        ms = SERVO_MIN_MS; 

    softPwmWrite(pin,ms); 

} 

 

In subfunction servoWrite (), directly input an angle value (0-180 degrees), map the angle to the pulse width 

and then output it. 

 void servoWrite(int pin, int angle){    //Specif a certain rotation angle (0-180) for the 

servo 

    if(angle > 180) 

        angle = 180; 

    if(angle < 0) 

        angle = 0; 

    softPwmWrite(pin,map(angle,0,180,SERVO_MIN_MS,SERVO_MAX_MS));    

} 

 

Finally, in the "while" loop of the main function, use two "for" loop to make servo rotate from 0 degrees to 

180 degrees, and then from 180 degrees to 0 degrees. 

     while(1){ 

        for(i=SERVO_MIN_MS;i<SERVO_MAX_MS;i++){  //make servo rotate from minimum angle 

to maximum angle 

            servoWriteMS(servoPin,i); 

            delay(10); 

        } 

        delay(500); 

        for(i=SERVO_MAX_MS;i>SERVO_MIN_MS;i--){  //make servo rotate from maximum angle 

to minimum angle 

            servoWriteMS(servoPin,i); 

            delay(10); 

        } 

        delay(500); 

    } 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

173 █ www.freenove.com  support@freenove.com 

Python Code 13.1 Sweep 

First observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 13_1_Sweep directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/13_1_Sweep 

2. Use python command to execute code "Sweep.py". 

python Sweep.py 

After the program runs, the Servo will rotate from 0 degrees to 180 degrees and then reverse the direction 

to make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

import RPi.GPIO as GPIO 

import time 

OFFSE_DUTY = 0.5        #define pulse offset of servo 

SERVO_MIN_DUTY = 2.5+OFFSE_DUTY     #define pulse duty cycle for minimum angle of servo 

SERVO_MAX_DUTY = 12.5+OFFSE_DUTY    #define pulse duty cycle for maximum angle of servo 

servoPin = 12 

 

def map( value, fromLow, fromHigh, toLow, toHigh):  # map a value from one range to another 

range 

    return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow 

 

def setup(): 

    global p 

    GPIO.setmode(GPIO.BOARD)         # use PHYSICAL GPIO Numbering 

    GPIO.setup(servoPin, GPIO.OUT)   # Set servoPin to OUTPUT mode 

    GPIO.output(servoPin, GPIO.LOW)  # Make servoPin output LOW level 

 

    p = GPIO.PWM(servoPin, 50)     # set Frequece to 50Hz 

    p.start(0)                     # Set initial Duty Cycle to 0 

     

def servoWrite(angle):      # make the servo rotate to specific angle, 0-180  

    if(angle<0): 

        angle = 0 

    elif(angle > 180): 

        angle = 180 

    p.ChangeDutyCycle(map(angle,0,180,SERVO_MIN_DUTY,SERVO_MAX_DUTY)) # map the angle to duty 

cycle and output it 

     

def loop(): 

    while True: 

        for dc in range(0, 181, 1):   # make servo rotate from 0 to 180 deg 

            servoWrite(dc)     # Write dc value to servo 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 174 www.freenove.com █ 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

            time.sleep(0.001) 

        time.sleep(0.5) 

        for dc in range(180, -1, -1): # make servo rotate from 180 to 0 deg 

            servoWrite(dc) 

            time.sleep(0.001) 

        time.sleep(0.5) 

 

def destroy(): 

    p.stop() 

    GPIO.cleanup() 

 

if __name__ == '__main__':     # Program entrance 

    print ('Program is starting...') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy() 

 

A 50 Hz pulse for a 20ms cycle is required to control the Servo, so we need to set the PWM frequency of 

servoPin to 50Hz.  

 p = GPIO.PWM(servoPin, 50)     # Set Frequency to 50Hz 

 

As 0-180 degrees of the Servo’s rotation corresponds to the PWM pulse width 0.5-2.5ms within cycle 20ms 

and to duty cycle 2.5%-12.5%. In subfunction servoWrite (angle), map the angle to duty cycle to output the 

PWM, then the Servo will rotate to specifically determined angle. However, in practice, due to the inherent 

error manufactured into each Servo, the pulse width will have a deviation. So we need to define a minimum 

and maximum pulse width and an error offset (this is essential in robotics). 

 OFFSE_DUTY = 0.5        #define pulse offset of servo 

SERVO_MIN_DUTY = 2.5+OFFSE_DUTY     #define pulse duty cycle for minimum angle of servo 

SERVO_MAX_DUTY = 12.5+OFFSE_DUTY    #define pulse duty cycle for maximum angle of servo 

…… 

def servoWrite(angle):      # make the servo rotate to specific angle, 0-180  

    if(angle<0): 

        angle = 0 

    elif(angle > 180): 

        angle = 180 

    p.ChangeDutyCycle(map(angle,0,180,SERVO_MIN_DUTY,SERVO_MAX_DUTY)) # map the angle to duty 

cycle and output it 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

175 █ www.freenove.com  support@freenove.com 

Finally, in the "while" loop of main function, we need to use two separate cycles to make servo rotate from 0 

degrees to 180 degrees and then from 180 degrees to 0 degrees.  

 def loop(): 

    while True: 

        for dc in range(0, 181, 1):   # make servo rotate from 0 to 180 deg 

            servoWrite(dc)     # Write dc value to servo 

            time.sleep(0.001) 

        time.sleep(0.5) 

        for dc in range(180, -1, -1): # make servo rotate from 180 to 0 deg 

            servoWrite(dc) 

            time.sleep(0.001) 

        time.sleep(0.5) 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 176 www.freenove.com █ 

Project 13.2 Knob 

In this project, we will learn how to control the servo with a potentiometer. 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi

 

GPIO Ribbon Cable  

 

Jumper Wire 

 

 

 

 

Servo 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

177 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection.  

 
If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 178 www.freenove.com █ 

Code 

C Code 13.2 Knob 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

4. Use cd command to enter 13_2_Knob directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/13_2_Knob 

5. Use following command to compile " Knob.cpp" and generate executable file " Knob".  

sudo g++ Knob.cpp -o Knob -lwiringPi -lADCDevice 

6. Run the generated file " Knob ". 

sudo ./Knob 

After running the program, you can change the angle of the servo by rotating the potentiometer. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

#include <wiringPi.h> 

#include <softPwm.h> 

#include <stdio.h> 

#include <ADCDevice.hpp> 

#define OFFSET_MS 3     //Define the unit of servo pulse offset: 0.1ms 

#define SERVO_MIN_MS 5+OFFSET_MS        //define the pulse duration for minimum angle of servo 

#define SERVO_MAX_MS 25+OFFSET_MS       //define the pulse duration for maximum angle of servo 

 

#define servoPin    1       //define the GPIO number connected to servo 

 

ADCDevice *adc;  // Define an ADC Device class object 

 

long map(long value,long fromLow,long fromHigh,long toLow,long toHigh){ 

    return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow; 

} 

 

void servoInit(int pin){        //initialization function for servo PMW pin 

    softPwmCreate(pin,  0, 200); 

} 

 

void servoWrite(int pin, int angle){    //Specific a certain rotation angle (0-180) for the 

servo 

    if(angle > 180) 

        angle = 180; 

    if(angle < 0) 

        angle = 0; 

    softPwmWrite(pin,map(angle,0,180,SERVO_MIN_MS,SERVO_MAX_MS));    

} 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

179 █ www.freenove.com  support@freenove.com 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

void servoWriteMS(int pin, int ms){     //specific the unit for pulse(5-25ms) with specific 

duration output by servo pin: 0.1ms 

    if(ms > SERVO_MAX_MS) 

        ms = SERVO_MAX_MS; 

    if(ms < SERVO_MIN_MS) 

        ms = SERVO_MIN_MS; 

    softPwmWrite(pin,ms); 

} 

 

int main(void) 

{ 

    int i; 

    printf("Program is starting ...\n"); 

    wiringPiSetup();     

    servoInit(servoPin);              //initialize PMW pin of servo 

    adc = new ADCDevice(); 

    if(adc->detectI2C(0x48)){         // Detect the ads7830 

        delete adc;                   // Free previously pointed memory 

        adc = new ADS7830(0x48);      // If detected, create an instance of ADS7830. 

    } 

    else{ 

        printf("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        return -1; 

    } 

    while(1){ 

        int adcValue = adc->analogRead(2);    //read analog value of A2 pin 

        printf("ADC value : %d  \n",adcValue); 

        servoWrite(servoPin,map(adcValue,0,255,0,180)); 

        delay(10); 

    } 

    return 0; 

} 

 

Read the ADC value of channle2, and then the servo will rotate to corresponding angle. 

     while(1){ 

        int adcValue = adc->analogRead(2);    //read analog value of A2 pin 

        printf("ADC value : %d  \n",adcValue); 

        servoWrite(servoPin,map(adcValue,0,255,0,180)); 

        delay(10); 

    } 

Python Code 13.2 Knob 

First observe the project result, and then learn about the code in detail. 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 180 www.freenove.com █ 

If you have any concerns, please send an email to: support@freenove.com 

3. Use cd command to enter 13_2_Knob directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/13_2_Knob 

4. Use python command to execute code " Knob.py". 

sudo python Knob.py 

After running the program, you can change the angle of the servo by rotating the potentiometer. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

import RPi.GPIO as GPIO 

import time 

from ADCDevice import * 

 

adc = ADCDevice(0x48) # Define an ADCDevice class object 

 

OFFSE_DUTY = 0.5        #define pulse offset of servo 

SERVO_MIN_DUTY = 2.5+OFFSE_DUTY     #define pulse duty cycle for minimum angle of servo 

SERVO_MAX_DUTY = 12.5+OFFSE_DUTY    #define pulse duty cycle for maximum angle of servo 

servoPin = 12 

 

def map( value, fromLow, fromHigh, toLow, toHigh):  # map a value from one range to another 

range 

    return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow 

 

def setup(): 

    global adc 

    if(adc.detectI2C(0x48)): 

        adc = ADS7830(0x48) 

    else: 

        print("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        exit(-1) 

         

    global p 

    GPIO.setmode(GPIO.BOARD)         # use PHYSICAL GPIO Numbering 

    GPIO.setup(servoPin, GPIO.OUT)   # Set servoPin to OUTPUT mode 

    GPIO.output(servoPin, GPIO.LOW)  # Make servoPin output LOW level 

 

    p = GPIO.PWM(servoPin, 50)     # set Frequece to 50Hz 

    p.start(0)                     # Set initial Duty Cycle to 0 

     

def servoWrite(angle):      # make the servo rotate to specific angle, 0-180  

    if(angle<0): 

        angle = 0 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

181 █ www.freenove.com  support@freenove.com 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

    elif(angle > 180): 

        angle = 180 

    p.ChangeDutyCycle(map(angle,0,180,SERVO_MIN_DUTY,SERVO_MAX_DUTY)) # map the angle to duty 

cycle and output it 

     

def loop(): 

    while True: 

        value = adc.analogRead(2)    # read the ADC value of channel 2 

        servoWrite(round(value/255.0*180.0)) 

        print ('ADC Value : %d'%(value)) 

        time.sleep(0.1) 

     

def destroy(): 

    p.stop() 

    GPIO.cleanup() 

 

if __name__ == '__main__':     # Program entrance 

    print ('Program is starting...') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy() 

Read the ADC value of channle2, and then the servo will rotate to corresponding angle. 

 while True: 

        value = adc.analogRead(2)    # read the ADC value of channel 2 

        servoWrite(round(value/255.0*180.0)) 

        print ('ADC Value : %d'%(value)) 

        time.sleep(0.1) 

Finally, in the loop of main function, we need to use two separate cycles to make servo rotate from 0 degrees 

to 180 degrees and then from 180 degrees to 0 degrees.  

 def loop(): 

    while True: 

        for dc in range(0, 181, 1):   #make servo rotate from 0°to 180° 

            servoWrite(dc)     # Write to servo 

            time.sleep(0.001) 

        time.sleep(0.5) 

        for dc in range(180, -1, -1): #make servo rotate from 180°to 0° 

            servoWrite(dc) 

            time.sleep(0.001) 

        time.sleep(0.5) 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 182 www.freenove.com █ 

Chapter 14 Stepper Motor 

Thus far, we have learned about DC Motors and Servos. A DC motor can rotate constantly in on direction but 

we cannot control the rotation to a specific angle. On the contrary, a Servo can rotate to a specific angle but 

cannot rotate constantly in one direction. In this chapter, we will learn about a Stepper Motor which is also a 

type of motor. A Stepper Motor can rotate constantly and also to a specific angle. Using a Stepper Motor can 

easily achieve higher accuracies in mechanical motion. 

Project 14.1 Stepper Motor 

In this project, we will learn how to drive a Stepper Motor, and understand its working principle. 

Component knowledge 

Stepper Motor 

Stepper Motors are an open-loop control device, which converts an electronic pulse signal into angular 

displacement or linear displacement. In a non-overload condition, the speed of the motor and the location 

of the stops depends only on the pulse signal frequency and number of pulses and is not affected by changes 

in load as with a DC Motor. A small Four-Phase Deceleration Stepper Motor is shown here: 

                 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

183 █ www.freenove.com  support@freenove.com 

The electronic schematic diagram of a Four-Phase Stepper Motor is shown below: 

 

The outside case or housing of the Stepper Motor is the Stator and inside the Stator is the Rotor. There is a 

specific number of individual coils, usually an integer multiple of the number of phases the motor has, when 

the Stator is powered ON, an electromagnetic field will be formed to attract a corresponding convex 

diagonal groove or indentation in the Rotor’s surface. The Rotor is usually made of iron or a permanent 

magnet. Therefore, the Stepper Motor can be driven by powering the coils on the Stator in an ordered 

sequence (producing a series of “steps” or stepped movements). 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 184 www.freenove.com █ 

A common driving sequence is shown here: 

 
In the sequence above, the Stepper Motor rotates by a certain angle at once, which is called a “step”. By 

controlling the number of rotational steps, you can then control the Stepper Motor’s rotation angle. By 

defining the time between two steps, you can control the Stepper Motor’s rotation speed. When rotating 

clockwise, the order of coil powered on is: A  B  C  D  A …… . And the rotor will rotate in accordance 

with this order, step by step, called four-steps, four-part. If the coils is powered ON in the reverse order, D  

C  B  A  D … , the rotor will rotate in counter-clockwise direction. 

 

There are other methods to control Stepper Motors, such as: connect A phase, then connect A B phase, the 

stator will be located in the center of A B, which is called a half-step. This method can improve the stability of 

the Stepper Motor and reduces noise. Tise sequence of powering the coils looks like this: A  AB  B  BC 

 C  CD  D  DA  A ……, the rotor will rotate in accordance to this sequence ar, a half-step at a 

time, called four-steps, eight-part. Conversely, if the coils are powered ON in the reverse order the Stepper 

Motor will rotate in the opposite direction. 

 

The stator in the Stepper Motor we have supplied has 32 magnetic poles. Therefore, to complete one full 

revolution requires 32 full steps. The rotor (or output shaft) of the Stepper Motor is connected to a speed 

reduction set of gears and the reduction ratio is 1:64. Therefore, the final output shaft (exit ing the Stepper 

Motor’s housing) requires 32 X 64 = 2048 steps to make one full revolution. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

185 █ www.freenove.com  support@freenove.com 

ULN2003 Stepper Motor driver 

A ULN2003 Stepper Motor Driver is used to convert weak signals into more powerful control signals in order 

to drive the Stepper Motor. In the illustration below, the input signal IN1-IN4 corresponds to the output signal 

A-D, and 4 LEDs are integrated into the board to indicate the state of these signals. The PWR interface can 

be used as a power supply for the Stepper Motor. By default, PWR and VCC are connected. 

                 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 186 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi

 

GPIO Ribbon Cable 

 

Stepper Motor 

 
 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

187 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection. 

 
 

 

 

If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 188 www.freenove.com █ 

Code 

This code uses the four-step, four-part mode to drive the Stepper Motor in the clockwise and anticlockwise 

directions. 

C Code 14.1 SteppingMotor 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 14_SteppingMotor directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/14_SteppingMotor 

2. Use following command to compile "SteppingMotor.c" and generate executable file "SteppingMotor".  

gcc SteppingMotor.c -o SteppingMotor -lwiringPi 

3. Run the generated file "SteppingMotor". 

sudo ./SteppingMotor 

After the program runs, the Stepper Motor will rotate 360° clockwise and then 360° anticlockwise and repeat 

this action in an endless loop. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

#include <stdio.h> 

#include <wiringPi.h> 

 

const int motorPins[]={21,22,23,24};    //define pins connected to four phase ABCD of stepper 

motor  

const int CCWStep[]={0x01,0x02,0x04,0x08};  //define power supply order for coil for rotating 

anticlockwise  

const int CWStep[]={0x08,0x04,0x02,0x01};   //define power supply order for coil for rotating 

clockwise 

//as for four phase stepping motor, four steps is a cycle. the function is used to drive the 

stepping motor clockwise or anticlockwise to take four steps 

void moveOnePeriod(int dir,int ms){ 

    int i=0,j=0; 

    for (j=0;j<4;j++){  //cycle according to power supply order  

        for (i=0;i<4;i++){  //assign to each pin, a total of 4 pins 

            if(dir == 1)    //power supply order clockwise 

                digitalWrite(motorPins[i],(CCWStep[j] == (1<<i)) ? HIGH : LOW); 

            else        //power supply order anticlockwise 

                digitalWrite(motorPins[i],(CWStep[j] == (1<<i)) ? HIGH : LOW); 

            printf("motorPin %d, %d \n",motorPins[i],digitalRead(motorPins[i])); 

        } 

        printf("Step cycle!\n"); 

        if(ms<3)        //the delay can not be less than 3ms, otherwise it will exceed speed 

limit of the motor 

            ms=3; 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

189 █ www.freenove.com  support@freenove.com 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

        delay(ms); 

    } 

} 

//continuous rotation function, the parameter steps specifies the rotation cycles, every four 

steps is a cycle 

void moveSteps(int dir, int ms, int steps){ 

    int i; 

    for(i=0;i<steps;i++){ 

        moveOnePeriod(dir,ms); 

    } 

} 

void motorStop(){   //function used to stop rotating 

    int i; 

    for(i=0;i<4;i++){ 

        digitalWrite(motorPins[i],LOW); 

    }    

} 

int main(void){ 

    int i; 

 

    printf("Program is starting ...\n"); 

 

    wiringPiSetup(); 

     

    for(i=0;i<4;i++){ 

        pinMode(motorPins[i],OUTPUT); 

    }  

 

    while(1){ 

        moveSteps(1,3,512);     //rotating 360° clockwise, a total of 2048 steps in a circle, 

namely, 512 cycles. 

        delay(500); 

        moveSteps(0,3,512);     //rotating 360° anticlockwise 

        delay(500); 

    } 

    return 0; 

} 

 

In the code we define the four pins of the Stepper Motor and the order to supply power to the coils for a 

four-step rotation mode. 

 const int motorPins[]={21,22,23,24};    //define pins connected to four phase ABCD of stepper 

motor  

const int CCWStep[]={0x01,0x02,0x04,0x08};  //define power supply order for coil for rotating 

anticlockwise  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 190 www.freenove.com █ 

const int CWStep[]={0x08,0x04,0x02,0x01};   //define power supply order for coil for rotating 

clockwise 

 

Subfunction moveOnePeriod ((int dir,int ms) will drive the Stepper Motor rotating four-step clockwise or 

anticlockwise, four-step as a cycle. Where parameter "dir" indicates the rotation direction, if "dir" is 1, the 

servo will rotate clockwise, otherwise it rotates to anticlockwise. Parameter "ms" indicates the time between 

each two steps. The "ms" of Stepper Motor used in this project is 3ms (the shortest time period), a value of 

less than 3ms will exceed the limits of the Stepper Motor with a result that it does not rotate. 

 void moveOnePeriod(int dir,int ms){ 

    int i=0,j=0; 

    for (j=0;j<4;j++){  //cycle according to power supply order 

        for (i=0;i<4;i++){  //assign to each pin, a total of 4 pins 

            if(dir == 1)    //power supply order clockwise 

                digitalWrite(motorPins[i],(CCWStep[j] == (1<<i)) ? HIGH : LOW); 

            else        //power supply order anticlockwise 

                digitalWrite(motorPins[i],(CWStep[j] == (1<<i)) ? HIGH : LOW); 

            printf("motorPin %d, %d \n",motorPins[i],digitalRead(motorPins[i])); 

        } 

        printf("Step cycle!\n"); 

        if(ms<3)        //the delay can not be less than 3ms, otherwise it will exceed 

speed limit of the motor 

            ms=3; 

        delay(ms); 

    } 

} 

 

Subfunction moveSteps (int dir, int ms, int steps) is used to specific cycle number of Stepper Motor. 

 void moveSteps(int dir, int ms, int steps){ 

    int i; 

    for(i=0;i<steps;i++){ 

        moveOnePeriod(dir,ms); 

    } 

} 

 

Subfunction motorStop () is used to stop the Stepper Motor. 

 void motorStop(){   //function used to stop rotating 

    int i; 

    for(i=0;i<4;i++){ 

        digitalWrite(motorPins[i],LOW); 

    }    

} 

 

 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

191 █ www.freenove.com  support@freenove.com 

Finally, in the while loop of main function, rotate one revolution clockwise, and then one revolution 

anticlockwise. According to the previous material covered, the Stepper Motor rotating for one revolution 

requires 2048 steps, that is, 2048/4=512 cycle. 

     while(1){ 

        moveSteps(1,3,512);     //rotating   360° clockwise, a total of 2048 steps in a 

circle, namely, this function(four steps) will be called 512 times. 

        delay(500); 

        moveSteps(0,3,512);     //rotating 360° anticlockwise 

        delay(500); 

    } 

 

Python Code 14.1 SteppingMotor 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 14_StepperMotor directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/14_StepperMotor 

2. Use Python command to execute code "SteppingMotor.py". 

python SteppingMotor.py 

After the program runs, the Stepper Motor will rotate 360° clockwise and then 360° anticlockwise and repeat 

this action in an endless loop. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

import RPi.GPIO as GPIO 

import time  

 

motorPins = (29, 31, 33, 35)    # define pins connected to four phase ABCD of stepper motor 

CCWStep = (0x01,0x02,0x04,0x08) # define power supply order for rotating anticlockwise  

CWStep = (0x08,0x04,0x02,0x01)  # define power supply order for rotating clockwise 

 

def setup():     

    GPIO.setmode(GPIO.BOARD)       # use PHYSICAL GPIO Numbering 

    for pin in motorPins: 

        GPIO.setup(pin,GPIO.OUT) 

         

# as for four phase stepping motor, four steps is a cycle. the function is used to drive the 

stepping motor clockwise or anticlockwise to take four steps     

def moveOnePeriod(direction,ms):     

    for j in range(0,4,1):      # cycle for power supply order 

        for i in range(0,4,1):  # assign to each pin 

            if (direction == 1):# power supply order clockwise 

                GPIO.output(motorPins[i],((CCWStep[j] == 1<<i) and GPIO.HIGH or GPIO.LOW)) 

            else :              # power supply order anticlockwise 

                GPIO.output(motorPins[i],((CWStep[j] == 1<<i) and GPIO.HIGH or GPIO.LOW)) 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 192 www.freenove.com █ 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

        if(ms<3):       # the delay can not be less than 3ms, otherwise it will exceed speed 

limit of the motor 

            ms = 3 

        time.sleep(ms*0.001)     

         

# continuous rotation function, the parameter steps specifies the rotation cycles, every four 

steps is a cycle 

def moveSteps(direction, ms, steps): 

    for i in range(steps): 

        moveOnePeriod(direction, ms) 

         

# function used to stop motor 

def motorStop(): 

    for i in range(0,4,1): 

        GPIO.output(motorPins[i],GPIO.LOW) 

             

def loop(): 

    while True: 

        moveSteps(1,3,512)  # rotating 360 deg clockwise, a total of 2048 steps in a circle, 

512 cycles 

        time.sleep(0.5) 

        moveSteps(0,3,512)  # rotating 360 deg anticlockwise 

        time.sleep(0.5) 

 

def destroy(): 

    GPIO.cleanup()             # Release resource 

 

if __name__ == '__main__':     # Program entrance 

    print ('Program is starting...') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy() 

 

In the code we define the four pins of the Stepper Motor and the order to supply power to the coils for a 

four-step rotation mode. 

 motorPins = (29, 31, 33, 35)    # define pins connected to four phase ABCD of stepper motor 

CCWStep = (0x01,0x02,0x04,0x08) # define power supply order for rotating anticlockwise  

CWStep = (0x08,0x04,0x02,0x01)  # define power supply order for rotating clockwise 

 

Subfunction moveOnePeriod ((int dir, int ms) will drive the Stepper Motor rotating four-step clockwise or 

anticlockwise, four-step as a cycle. Where parameter "dir" indicates the rotation direction, if "dir" is 1, the 

servo will rotate clockwise, otherwise it rotates to anticlockwise. Parameter "ms" indicates the time between 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

193 █ www.freenove.com  support@freenove.com 

each two steps. The "ms" of Stepper Motor used in this project is 3ms (the shortest time period), a value of 

less than 3ms will exceed the limits of the Stepper Motor with a result that it does not rotate. 

 def moveOnePeriod(direction,ms):     

    for j in range(0,4,1):      # cycle for power supply order 

        for i in range(0,4,1):  # assign to each pin 

            if (direction == 1):# power supply order clockwise 

                GPIO.output(motorPins[i],((CCWStep[j] == 1<<i) and GPIO.HIGH or GPIO.LOW)) 

            else :              # power supply order anticlockwise 

                GPIO.output(motorPins[i],((CWStep[j] == 1<<i) and GPIO.HIGH or GPIO.LOW)) 

        if(ms<3):       # the delay can not be less than 3ms, otherwise it will exceed speed 

limit of the motor 

            ms = 3 

        time.sleep(ms*0.001) 

 

Subfunction moveSteps (direction, ms, steps) is used to specify the cycle number of Stepper Motor. 

 def moveSteps(direction, ms, steps): 

    for i in range(steps): 

        moveOnePeriod(direction, ms) 

 

Subfunction motorStop () is used to stop the Stepper Motor. 

 def motorStop(): 

    for i in range(0,4,1): 

        GPIO.output(motorPins[i],GPIO.LOW) 

 

Finally, in the while loop of main function, rotate one revolution clockwise, and then one revolution 

anticlockwise. According to the previous material covered, the Stepper Motor rotating for one revolution 

requires 2048 steps, that is, 2048/4=512 cycle. 

 while True: 

        moveSteps(1,3,512)  # rotating 360 deg clockwise, a total of 2048 steps in a circle, 

512 cycles 

        time.sleep(0.5) 

        moveSteps(0,3,512)  # rotating 360 deg anticlockwise 

        time.sleep(0.5) 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 194 www.freenove.com █ 

Chapter 15 LEDpixel 

In this chapter, we will learn Freenove 8 RGB LED Module 

Project 15.1 LEDpixel 

This project will achieve an RGB triple colored flowing water.  

Component knowledge 

Freenove 8 RGB LED Module 

The Freenove 8 RGB LED Module is as below. You can use only one data pin to control the eight LEDs on the 

module. As shown below: 

            

 

And you can also control many modules at the same time. Just connect OUT pin of one module to IN pin of 

another module. In such way, you can use one data pin to control 8, 16, 32 … LEDs. 

                  

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

195 █ www.freenove.com  support@freenove.com 

Pin description: 

(IN) (OUT) 

symbol Function symbol Function 

S Input control signal  S Output control signal  

V Power supply pin, +3.5V~5.5V V Power supply pin, +3.5V~5.5V 

G GND G GND 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 196 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable 

 

Jumper Wire 

 

 

 

Freenove 8 RGB LED Module 

 
 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

197 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection.  

 
If you have any concerns, please send an email to: support@freenove.com 

Code 

C Code 15.1 Ledpixel 

Before running C code, please install WS281X library. 

1. Enter the directory where the library locates: 

cd ~/Freenove_Kit/Libs/C-Libs/libWS281X 

2. Run the program 

sudo sh ./build.sh 

The installation is completed as shown in the figure below 

 

 

 

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com


 

 █ support@freenove.com 

 support@freenove.com 198 www.freenove.com █ 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

3. Use cd command to enter 15_1_Ledpixel directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/15_1_Ledpixel 

4. Use following command to compile " Ledpixel.cpp" and generate executable file "Ledpixel".  

sudo g++ Ledpixel.cpp -o Ledpixel -lwiringPi -lWS281X 

5. Run the generated file " Ledpixel". 

sudo ./Ledpixel 

After the program runs, the LEDpixel will emit red, blue and green colors in turn like flowing water. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

#include <wiringPi.h> 

#include "Freenove_WS2812_Lib_for_Raspberry_Pi.hpp" 

Freenove_WS2812 *a; 

int constrain(int value,int min,int max){ 

    if (value>max){ 

        return max; 

    } 

    else if (value<min){ 

        return min; 

    } 

    else { 

        return value; 

    } 

}  

int main(){ 

    printf("Program is starting ...\n"); 

    int i; 

    a= new Freenove_WS2812(18,8,GRB);//pin led_count type 

    a->set_Led_Brightness(50);  

    for(i=0;i<8;i++){ 

        a->set_Led_Color(i,255,0,0);   

        a->show(); 

        delay(100); 

        } 

    for(i=0;i<8;i++){ 

        a->set_Led_Color(i,0,255,0);   

        a->show(); 

        delay(100); 

        } 

    for(i=0;i<8;i++){ 

        a->set_Led_Color(i,0,0,255);   

        a->show(); 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

199 █ www.freenove.com  support@freenove.com 

33 

34 

35 

36 

37 

        delay(100); 

        } 

    a->clear(); 

    return 0; 

} 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 200 www.freenove.com █ 

Include "Freenove_WS2812_Lib_for_Raspberry_Pi.hpp" 

 #include "Freenove_WS2812_Lib_for_Raspberry_Pi.hpp" 

 

Create the object of the class and set the brightness to 50%. The eight LEDs will then light up red, green and 

blue in turn. 

 int main(){ 

    printf("Program is starting ...\n"); 

    int i; 

    a= new Freenove_WS2812(18,8,GRB);//pin led_count type 

    a->set_Led_Brightness(50);  

    for(i=0;i<8;i++){ 

        a->set_Led_Color(i,255,0,0);   

        a->show(); 

        delay(100); 

        } 

    for(i=0;i<8;i++){ 

        a->set_Led_Color(i,0,255,0);   

        a->show(); 

        delay(100); 

        } 

    for(i=0;i<8;i++){ 

        a->set_Led_Color(i,0,0,255);   

        a->show(); 

        delay(100); 

        } 

    a->clear(); 

    return 0; 

} 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

201 █ www.freenove.com  support@freenove.com 

Python Code 15.1 Ledpixel 

Before running python code, please install WS281X library first. 

1. Enter the following command to install. 

sudo pip3 install rpi_ws281x 

The installation is completed as shown in the figure below. 

 
First observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 15_1_Ledpixel directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/15_1_Ledpixel 

2. Use python command to execute code "Led.py". 

sudo python Led.py 

After the program runs, the LEDpixel will emit red, green and blue colors in turn like flowing water. 

If you want to run Led.py via thonny, you need use sudo thonny Led.py to open it first. 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

import time 

from rpi_ws281x import * 

# LED strip configuration: 

LED_COUNT      = 8      # Number of LED pixels. 

LED_PIN        = 18      # GPIO pin connected to the pixels (18 uses PWM!). 

LED_FREQ_HZ    = 800000  # LED signal frequency in hertz (usually 800khz) 

LED_DMA        = 10      # DMA channel to use for generating signal (try 10) 

LED_BRIGHTNESS = 255     # Set to 0 for darkest and 255 for brightest 

LED_INVERT     = False   # True to invert the signal (when using NPN transistor level shift) 

LED_CHANNEL    = 0       # set to '1' for GPIOs 13, 19, 41, 45 or 53 

# Define functions which animate LEDs in various ways. 

class Led: 

    def __init__(self): 

        #Control the sending order of color data 

        self.ORDER = "RGB"   

        # Create NeoPixel object with appropriate configuration. 

        self.strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, 

LED_BRIGHTNESS, LED_CHANNEL) 

        # Intialize the library (must be called once before other functions). 

        self.strip.begin() 

        #self.strip.setPixelColor(i, color) 

        #self.strip.show() 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 202 www.freenove.com █ 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

 

 

led=Led()                  

# Main program logic follows: 

if __name__ == '__main__': 

    print ('Program is starting ... ') 

    col=[Color(255,0,0),Color(0,255,0),Color(0,0,255)] 

    try: 

        while True: 

            for c in range(3): 

                for i in range(8): 

                    led.strip.setPixelColor(i,col[c]) 

                    time.sleep(0.1) 

                    led.strip.show() 

    except KeyboardInterrupt:  # When 'Ctrl+C' is pressed, the child program destroy() will be  

executed. 

        for i in range(8): 

            led.strip.setPixelColor(i, Color(0,0,0)) 

        led.strip.show() 

 

Import rpi_ws281x modile. Set the number, pins and brightness of the LED. 

 from rpi_ws281x import * 

# LED strip configuration: 

LED_COUNT      = 8      # Number of LED pixels. 

LED_PIN        = 18      # GPIO pin connected to the pixels (18 uses PWM!). 

LED_FREQ_HZ    = 800000  # LED signal frequency in hertz (usually 800khz) 

LED_DMA        = 10      # DMA channel to use for generating signal (try 10) 

LED_BRIGHTNESS = 255     # Set to 0 for darkest and 255 for brightest 

LED_INVERT     = False   # True to invert the signal (when using NPN transistor level shift) 

LED_CHANNEL    = 0       # set to '1' for GPIOs 13, 19, 41, 45 or 53 

 

Define LED class. 

 class Led: 

    def __init__(self): 

        #Control the sending order of color data 

        self.ORDER = "RGB"   

        # Create NeoPixel object with appropriate configuration. 

        self.strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, 

LED_BRIGHTNESS, LED_CHANNEL) 

        # Intialize the library (must be called once before other functions). 

        self.strip.begin() 

        #self.strip.setPixelColor(i, color) 

        #self.strip.show() 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

203 █ www.freenove.com  support@freenove.com 

Light up the eight LEDs in red, green and blue in turn. 

     col=[Color(255,0,0),Color(0,255,0),Color(0,0,255)] 

    try: 

        while True: 

            for c in range(3): 

                for i in range(8): 

                    led.strip.setPixelColor(i,col[c]) 

                    time.sleep(0.1) 

                    led.strip.show() 

    except KeyboardInterrupt:  # When 'Ctrl+C' is pressed, the child program destroy() will be  

executed. 

        for i in range(8): 

            led.strip.setPixelColor(i, Color(0,0,0)) 

        led.strip.show() 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 204 www.freenove.com █ 

Project 15.2 Rainbow Light 

In this project, we will learn to control the LED module with a potentiometer. 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable 

 

Jumper Wire 

 

 

 

Freenove 8 RGB LED Module 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

205 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection.  

 
If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 206 www.freenove.com █ 

Code 

C Code 15.2 Rainbow Light 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

3. Use cd command to enter 15_2_RainbowLight directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/15_2_RainbowLight 

4. Use following command to compile " RainbowLight.cpp " and generate executable file " RainbowLight ".  

sudo g++ RainbowLight.cpp -o RainbowLight -lwiringPi -lWS281X -lADCDevice 

5. Run the generated file " RainbowLight ". 

sudo ./RainbowLight 

After running the program, you can change the color of the LED module by rotating the potentiometer. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

#include <stdio.h> 

#include <wiringPi.h> 

#include <ADCDevice.hpp> 

#include "Freenove_WS2812_Lib_for_Raspberry_Pi.hpp" 

 

Freenove_WS2812 *led; 

ADCDevice *adc;   

int red,green,blue; 

 

void HSL_RGB(int degree){ 

    degree=degree/360.0*255; 

    if (degree < 85){ 

            red = 255 - degree * 3; 

            green = degree * 3; 

            blue = 0; 

        } 

    else if (degree < 170){ 

            degree = degree - 85; 

            red = 0; 

            green = 255 - degree * 3; 

            blue = degree * 3; 

        } 

    else{ 

            degree = degree - 170; 

            red = degree * 3; 

            green = 0; 

            blue = 255 - degree * 3; 

        }    

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

207 █ www.freenove.com  support@freenove.com 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

} 

         

int main(){ 

    printf("Program is starting ...\n"); 

    adc = new ADCDevice(); 

    int i; 

    led= new Freenove_WS2812(18,8,GRB);//pin led_count type 

    led->set_Led_Brightness(50); 

     

    if(adc->detectI2C(0x48)){   // Detect the ads7830 

        delete adc;               // Free previously pointed memory 

        adc = new ADS7830(0x48);      // If detected, create an instance of ADS7830. 

    } 

    else{ 

        printf("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        return -1; 

    } 

     

     

    while(1){ 

        for(i=0;i<8;i++){ 

            int degree = (int)(adc->analogRead(2)/255.0*360+i*45);    //read analog value of 

A0 pin 

            if (degree > 360){ 

                degree=degree-360; 

                } 

            HSL_RGB(degree); 

            led->set_Led_Color(i,red,green,blue);   

            led->show(); 

         

        } 

    } 

     

    return 0; 

} 

 

This function converts HSL colors to RGB colors. 

 void HSL_RGB(int degree){ 

    degree=degree/360.0*255; 

    if (degree < 85){ 

            red = 255 - degree * 3; 

            green = degree * 3; 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 208 www.freenove.com █ 

            blue = 0; 

        } 

    else if (degree < 170){ 

            degree = degree - 85; 

            red = 0; 

            green = 255 - degree * 3; 

            blue = degree * 3; 

        } 

    else{ 

            degree = degree - 170; 

            red = degree * 3; 

            green = 0; 

            blue = 255 - degree * 3; 

        }    

} 

 

Read the ADC value of channel 2 in an infinite loop. Let the color of the eight LEDs change according to 

the value of the ADC. 

 while(1){ 

        for(i=0;i<8;i++){ 

            int degree = (int)(adc->analogRead(2)/255.0*360+i*45);    //read analog value of 

A2 pin 

            if (degree > 360){ 

                degree=degree-360; 

                } 

            HSL_RGB(degree); 

            led->set_Led_Color(i,red,green,blue);   

            led->show(); 

         

        } 

    } 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

209 █ www.freenove.com  support@freenove.com 

Python Code 15.2 Rainbow Light 

First observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

6. Use cd command to enter 15.2 Rainbow Light directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/15_2_RainbowLight 

7. Use python command to execute code " Led.py ". 

sudo python Led.py 

After running the program, you can change the color of the LED module by rotating the potentiometer. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

import time 

from rpi_ws281x import * 

from ADCDevice import * 

# LED strip configuration: 

LED_COUNT      = 8      # Number of LED pixels. 

LED_PIN        = 18      # GPIO pin connected to the pixels (18 uses PWM!). 

LED_FREQ_HZ    = 800000  # LED signal frequency in hertz (usually 800khz) 

LED_DMA        = 10      # DMA channel to use for generating signal (try 10) 

LED_BRIGHTNESS = 255     # Set to 0 for darkest and 255 for brightest 

LED_INVERT     = False   # True to invert the signal (when using NPN transistor level shift) 

LED_CHANNEL    = 0       # set to '1' for GPIOs 13, 19, 41, 45 or 53 

# Define functions which animate LEDs in various ways. 

class Led: 

    def __init__(self): 

        #Control the sending order of color data 

        self.ORDER = "RGB"   

        # Create NeoPixel object with appropriate configuration. 

        self.strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, 

LED_BRIGHTNESS, LED_CHANNEL) 

        # Intialize the library (must be called once before other functions). 

        self.strip.begin() 

         

        self.adc = ADCDevice(0x48) # Define an ADCDevice class object 

        if(self.adc.detectI2C(0x48)): 

            self.adc = ADS7830(0x48) 

        else: 

            print("No correct I2C address found, \n" 

            "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

            "Program Exit. \n"); 

            exit(-1) 

 

     

    def HSL_RGB(self,degree): 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 210 www.freenove.com █ 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

        degree=degree/360*255 

        if degree < 85: 

            red = 255 - degree * 3 

            green = degree * 3 

            blue = 0 

        elif degree < 170: 

            degree = degree - 85 

            red = 0 

            green = 255 - degree * 3 

            blue = degree * 3 

        else: 

            degree = degree - 170 

            red = degree * 3 

            green = 0 

            blue = 255 - degree * 3 

        return int(red),int(green),int(blue) 

led=Led()                  

# Main program logic follows: 

if __name__ == '__main__': 

    print ('Program is starting ... ') 

    try: 

        while True: 

                for i in range(8): 

                    value = round(led.adc.analogRead(2) / 255.0 * 360+i*45)    # read the ADC 

value of channel 2 

                    if value > 360 : 

                        value = value-360 

                    red,green,blue=led.HSL_RGB(value) 

                    led.strip.setPixelColor(i, Color(red,green,blue)) 

                time.sleep(0.1) 

                led.strip.show() 

    except KeyboardInterrupt:  # When 'Ctrl+C' is pressed, the child program destroy() will be  

executed. 

        led.adc.close() 

        for i in range(8): 

            led.strip.setPixelColor(i, Color(0,0,0)) 

        led.strip.show() 

 

This function converts HSL colors to RGB colors. 

     def HSL_RGB(self,degree): 

        degree=degree/360*255 

        if degree < 85: 

            red = 255 - degree * 3 

            green = degree * 3 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

211 █ www.freenove.com  support@freenove.com 

            blue = 0 

        elif degree < 170: 

            degree = degree - 85 

            red = 0 

            green = 255 - degree * 3 

            blue = degree * 3 

        else: 

            degree = degree - 170 

            red = degree * 3 

            green = 0 

            blue = 255 - degree * 3 

        return int(red),int(green),int(blue) 

 

Read the ADC value of channel 2 in an infinite loop. Let the color of the eight LEDs change according to 

the value of the ADC. 

         while True: 

                for i in range(8): 

                    value = round(led.adc.analogRead(2) / 255.0 * 360+i*45)    # read the ADC 

value of channel 2 

                    if value > 360 : 

                        value = value-360 

                    red,green,blue=led.HSL_RGB(value) 

                    led.strip.setPixelColor(i, Color(red,green,blue)) 

                time.sleep(0.1) 

                led.strip.show() 

 

Finally, in the loop of main function, we need to use two separate cycles to make servo rotate from 0 degrees 

to 180 degrees and then from 180 degrees to 0 degrees.  

 def loop(): 

    while True: 

        for dc in range(0, 181, 1):   #make servo rotate from 0°to 180° 

            servoWrite(dc)     # Write to servo 

            time.sleep(0.001) 

        time.sleep(0.5) 

        for dc in range(180, -1, -1): #make servo rotate from 180°to 0° 

            servoWrite(dc) 

            time.sleep(0.001) 

        time.sleep(0.5) 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 212 www.freenove.com █ 

Chapter 16 74HC595 & Bar Graph LED 

We have used LED Bar Graph to make a flowing water light, in which 10 GPIO ports of RPi are occupied. More 

GPIO ports mean that more peripherals can be connected to RPi, so GPIO resource is very precious. Can we 

make flowing water light with less GPIO ports? In this chapter, we will learn a component, 74HC595, which 

can achieve the target. 

Project 16.1 Flowing Water Light 

Now let us learn how to use the 74HC595 IC Chip to make a flowing water light using less GPIO.  

Component knowledge 

Bar Graph LED 

A Bar Graph LED has 10 LEDs integrated into one compact component. The two rows of pins at its bottom 

are paired to identify each LED like the single LED used earlier.  

             
  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

213 █ www.freenove.com  support@freenove.com 

74HC595 

A 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert the serial data 

of one byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With this 

characteristic, the 74HC595 chip can be used to expand the IO ports of a Raspberry Pi. At least 3 ports on the 

RPI board are required to control the 8 ports of the 74HC595 chip. 

 
 

The ports of the 74HC595 chip are described as follows: 

Pin name Pin number Description 

Q0-Q7 15, 1-7 Parallel Data Output 

VCC 16 The Positive Electrode of the Power Supply, the Voltage is 2~6V 

GND 8 The Negative Electrode of Power Supply 

DS 14 Serial Data Input 

OE 13 Enable Output, 

When this pin is in high level, Q0-Q7 is in high resistance state 

When this pin is in low level, Q0-Q7 is in output mode 

ST_CP 12 Parallel Update Output: when its electrical level is rising, it will update the 

parallel data output. 

SH_CP 11 Serial Shift Clock: when its electrical level is rising, serial data input register 

will do a shift. 

MR 10 Remove Shift Register: When this pin is in low level, the content in shift 

register will be cleared. 

Q7' 9 Serial Data Output: it can be connected to more 74HC595 chips in series. 

For more details, please refer to the datasheet on the 74HC595 chip. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 214 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi

 

GPIO Ribbon Cable 

 

Bar Graph LED 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

215 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 
Hardware connection.  

If it dosen’t work, rotate the LED bar graph for 180°. 

 

 

If you have any concerns, please send an email to: support@freenove.com 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 216 www.freenove.com █ 

Code 

In this project we will make a flowing water light with a 74HC595 chip to learn about its functions. 

C Code 16.1 LightWater02 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 16_FlowingLight02 directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/16_FlowingLight02 

2. Use following command to compile “FlowingLight02.c” and generate executable file “FlowingLight02”. 

gcc FlowingLight02.c -o FlowingLight02 -lwiringPi 

3. Then run the generated file “FlowingLight02”. 

sudo ./FlowingLight02 

After the program runs, you will see that Bar Graph LED starts with the flowing water pattern flashing from 

right to left and then back from left to right. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

#include <wiringPi.h> 

#include <stdio.h> 

#include <wiringShift.h> 

 

#define   dataPin   3   //DS Pin of 74HC595(Pin14) 

#define   latchPin  2   //ST_CP Pin of 74HC595(Pin12) 

#define   clockPin 0    //CH_CP Pin of 74HC595(Pin11) 

 

void _shiftOut(int dPin,int cPin,int order,int val){    

 int i;   

    for(i = 0; i < 10; i++){ 

        digitalWrite(cPin,LOW); 

        if(order == LSBFIRST){ 

            digitalWrite(dPin,((0x01&(val>>i)) == 0x01) ? HIGH : LOW); 

            delayMicroseconds(10); 

  } 

        else { 

            digitalWrite(dPin,((0x80&(val<<i)) == 0x80) ? HIGH : LOW); 

            delayMicroseconds(10); 

  } 

        digitalWrite(cPin,HIGH); 

        delayMicroseconds(10); 

 } 

} 

 

int main(void) 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

217 █ www.freenove.com  support@freenove.com 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

{ 

 int i; 

 unsigned long x; 

  

 printf("Program is starting ...\n"); 

  

 wiringPiSetup(); 

  

 pinMode(dataPin,OUTPUT); 

 pinMode(latchPin,OUTPUT); 

 pinMode(clockPin,OUTPUT); 

 while(1){ 

  x=0x0001; 

  for(i=0;i<10;i++){ 

   digitalWrite(latchPin,LOW);  // Output low level to latchPin 

   _shiftOut(dataPin,clockPin,LSBFIRST,x);// Send serial data to 74HC595 

   digitalWrite(latchPin,HIGH);   //Output high level to latchPin, and 74HC595 will 

update the data to the parallel output port. 

   x<<=1;      //make the variable move one bit to left once, then the bright LED 

move one step to the left once. 

   delay(100); 

  } 

  x=0x0200; 

  for(i=0;i<10;i++){ 

   digitalWrite(latchPin,LOW); 

   _shiftOut(dataPin,clockPin,LSBFIRST,x); 

   digitalWrite(latchPin,HIGH); 

   x>>=1; 

   delay(100); 

  } 

 } 

 return 0; 

} 

 

In the code, we configure three pins to control the 74HC595 chip and define a one-byte variable to control 

the state of the 10 LEDs (in the Bar Graph LED Module) through the 10 bits of the variable. The LEDs light ON 

when the corresponding bit is 1. If the variable is assigned to 0x01, that is 00000001 in binary, there will be 

only one LED ON.  

 x=0x0001; 

 

In the “while” loop of main function, use two loops to send x to 74HC595 output pin to control the LED. In 

one cycle, x will shift one bit to the LEFT in one cycle, then when data of x is sent to 74HC595, the LED that is 

turned ON will move one bit to the LEFT once. 

 for(i=0;i<10;i++){ 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 218 www.freenove.com █ 

   digitalWrite(latchPin,LOW);  // Output low level to latchPin 

   _shiftOut(dataPin,clockPin,LSBFIRST,x);// Send serial data to 74HC595 

   digitalWrite(latchPin,HIGH);   //Output high level to latchPin, and 74HC595 will 

update the data to the parallel output port. 

   x<<=1;      //make the variable move one bit to left once, then the bright LED 

move one step to the left once. 

   delay(100); 

  } 

 

In second cycle, the situation is the same. The difference is that x is shift from 0x80 to the RIGHT in order. 

<< operator  

"<<" is the left shift operator, which can make all bits of 1 byte shift by several bits to the left (high) direction 

and add 0 on the right (low). For example, shift binary 00000001 by 1 bit to left: 

byte x = 1 << 1; 

←     ←    ←     ←    ←     ←    ← 

 ← 0 0 0 0 0 0 0 1 ← 0 

The result of x is 2（binary 00000010）. 

  0 0 0 0 0 0 1 0   

 

There is another similar operator" >>". For example, shift binary 00000001 by 1 bit to right: 

 byte x = 1 >> 1; 

→     →    →     →    →     →    → 

0 → 0 0 0 0 0 0 0 1 →  

The result of x is 0（00000000）. 

  0 0 0 0 0 0 0 0   
 

 

X <<= 1 is equivalent to x = x << 1 and x >>= 1 is equivalent to x = x >> 1 

 

About shift function 

void _shiftOut (uint8_t dPin, uint8_t cPin, uint8_t order, uint8_t val) ;  

This is used to shift a 10-bit data value out with the data being sent out on dPin and the clock being sent 

out on the cPin. order is as above. Data is clocked out on the rising or falling edge - ie. dPin is set, then 

cPin is taken high then low - repeated for the 10 bits. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

219 █ www.freenove.com  support@freenove.com 

Python Code 16.1 LightWater02  

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 16_FlowingLight02 directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/16_FlowingLight02 

2. Use python command to execute Python code “FlowingLight02.py”.  

python FlowingLight02.py 

After the program runs, you will see that Bar Graph LED starts with the flowing water pattern flashing from 

right to left and then back from left to right. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

import RPi.GPIO as GPIO 

import time 

# Defines the data bit that is transmitted preferentially in the shiftOut function. 

LSBFIRST = 1 

MSBFIRST = 2 

# define the pins for 74HC595 

dataPin   = 15      # DS Pin of 74HC595(Pin14) 

latchPin  = 13      # ST_CP Pin of 74HC595(Pin12) 

clockPin = 11       # CH_CP Pin of 74HC595(Pin11) 

 

def setup(): 

    GPIO.setmode(GPIO.BOARD)    # use PHYSICAL GPIO Numbering 

    GPIO.setup(dataPin, GPIO.OUT) # set pin to OUTPUT mode 

    GPIO.setup(latchPin, GPIO.OUT) 

    GPIO.setup(clockPin, GPIO.OUT) 

     

# shiftOut function, use bit serial transmission.  

def shiftOut(dPin,cPin,order,val): 

    for i in range(0,10): 

        GPIO.output(cPin,GPIO.LOW); 

        if(order == LSBFIRST): 

            GPIO.output(dPin,(0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW) 

        elif(order == MSBFIRST): 

            GPIO.output(dPin,(0x80&(val<<i)==0x80) and GPIO.HIGH or GPIO.LOW) 

        GPIO.output(cPin,GPIO.HIGH); 

 

def loop(): 

    while True: 

        x=0x0001 

        for i in range(0,10): 

            GPIO.output(latchPin,GPIO.LOW)  # Output low level to latchPin 

            shiftOut(dataPin,clockPin,LSBFIRST,x) # Send serial data to 74HC595 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 220 www.freenove.com █ 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

            GPIO.output(latchPin,GPIO.HIGH) # Output high level to latchPin, and 74HC595 will 

update the data to the parallel output port. 

            x<<=1 # make the variable move one bit to left once, then the bright LED move one 

step to the left once. 

            time.sleep(0.1) 

        print(hex(x)) 

        x=0x0200 

        for i in range(0,10): 

            GPIO.output(latchPin,GPIO.LOW) 

            shiftOut(dataPin,clockPin,LSBFIRST,x) 

            GPIO.output(latchPin,GPIO.HIGH) 

            x>>=1 

            time.sleep(0.1) 

        print(hex(x),int(x)) 

         

 

def destroy():    

    GPIO.cleanup() 

 

if __name__ == '__main__': # Program entrance 

    print ('Program is starting...' ) 

    setup()  

    try: 

        loop()   

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy() 

 

In the code, we define a shiftOut() function, which is used to output values with bits in order, where the dPin 

for the data pin, cPin for the clock and order for the priority bit flag (high or low). This function conforms to 

the operational modes of the 74HC595. LSBFIRST and MSBFIRST are two different flow directions. 

 def shiftOut(dPin,cPin,order,val): 

    for i in range(0,10): 

        GPIO.output(cPin,GPIO.LOW); 

        if(order == LSBFIRST): 

            GPIO.output(dPin,(0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW) 

        elif(order == MSBFIRST): 

            GPIO.output(dPin,(0x80&(val<<i)==0x80) and GPIO.HIGH or GPIO.LOW) 

        GPIO.output(cPin,GPIO.HIGH); 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

221 █ www.freenove.com  support@freenove.com 

In the loop() function, we use two loops to achieve the action goal. First, define a variable x=0x0001. When it 

is transferred to the output port of 74HC595, the low bit outputs high level, then an LED turns ON. Next, x is 

shifted one bit, when x is transferred to the output port of 74HC595 once again, the LED that turns ON will 

be shifted. Repeat the operation, over and over and the effect of a flowing water light will be visible. If the 

direction of the shift operation for x is different, the flowing direction is different. 

 def loop(): 

    while True: 

        x=0x0001 

        for i in range(0,10): 

            GPIO.output(latchPin,GPIO.LOW)  # Output low level to latchPin 

            shiftOut(dataPin,clockPin,LSBFIRST,x) # Send serial data to 74HC595 

            GPIO.output(latchPin,GPIO.HIGH) # Output high level to latchPin, and 74HC595 will 

update the data to the parallel output port. 

            x<<=1 # make the variable move one bit to left once, then the bright LED move one 

step to the left once. 

            time.sleep(0.1) 

        print(hex(x)) 

        x=0x0200 

        for i in range(0,10): 

            GPIO.output(latchPin,GPIO.LOW) 

            shiftOut(dataPin,clockPin,LSBFIRST,x) 

            GPIO.output(latchPin,GPIO.HIGH) 

            x>>=1 

            time.sleep(0.1) 

        print(hex(x),int(x)) 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 222 www.freenove.com █ 

Chapter 17 74HC595 & 4-Digit 7-Segment Display 

In this chapter, we will introduce the 7-Segment Display. 

Project 17.1 4-Digit 7-Segment Display 

We will use a 74HC595 IC Chip to control a 4-Digit 7-Segment Display and make it display sixteen decimal 

characters "0” to “F". 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable 

 

 

4-Digit 7-Segment Display 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

223 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection.  

 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 224 www.freenove.com █ 

 

If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

225 █ www.freenove.com  support@freenove.com 

Component knowledge 

4 Digit 7-Segment Display 

A 4 Digit 7-segment display integrates four 7-Segment Displays into one module, therefore it can display 

more characters. All of the LEDs contained have a Common Anode and individual Cathodes. Its internal 

structure and pin designation diagram is shown below: 

 
The internal electronic circuit is shown below, and all 8 LED cathode pins of each 7-Segment Display are 

connected together. 

 

Display method of 4 Digit 7-segment display is similar to 1 Digit 7-segment display. The difference between 

them is that the 4-Digit displays each Digit is visible in turn, one by one and not together. We need to first 

send high level to the common end of the first Digit Display, and send low level to the remaining three 

common ends, and then send content to 8 LED cathode pins of the first Digit Display. At this time, the first 7-

Segment Display will show visible content and the remaining three will be OFF. 

Similarly, the second, third and fourth 7-Segment Displays will show visible content in turn by scanning the 

display. Although the four number characters are displayed in turn separately, this process is so fast that it is 

unperceivable to the naked eye. This is due to the principle of optical afterglow effect and the vision 

persistence effect in human sight. This is how we can see all 4 number characters at the same time. However, 

if each number character is displayed for a longer period, you will be able to see that the number characters 

are displayed separately.  

 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 226 www.freenove.com █ 

Code 

This code uses a 74HC595 IC Chip to control the 4-Digit 7-Segment Display. The use of the 74HC595 IC Chip 

is generally the same throughout this Tutorial. We need code to display the characters “0” to “F” one character 

at a time, and then output to display them with the 74HC595 IC Chip. 

C Code 17.1 SevenSegmentDisplay 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 17_1_SevenSegmentDisplay directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/17_1_SevenSegmentDisplay 

2. Use following command to compile “SevenSegmentDisplay.c” and generate executable file 

“SevenSegmentDisplay”. 

gcc SevenSegmentDisplay.c -o SevenSegmentDisplay -lwiringPi 

3. Then run the generated file “SevenSegmentDisplay”. 

sudo ./SevenSegmentDisplay 

After the program runs, the 4-Digit 7-Segment Display starts to display the characters “0” to “F” in succession. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

#include <wiringPi.h> 

#include <stdio.h> 

#include <wiringShift.h> 

 

#define   dataPin   3   //DS Pin of 74HC595(Pin14) 

#define   latchPin  2   //ST_CP Pin of 74HC595(Pin12) 

#define   clockPin  0    //CH_CP Pin of 74HC595(Pin11) 

//encoding for character 0-F of common anode SevenSegmentDisplay.  

unsigned long 

num[]={0xffc0,0xfff9,0xffa4,0xffb0,0xff99,0xff92,0xff82,0xfff8,0xff80,0xff90,0xff88,0xff83,0xf

fc6,0xffa1,0xff86,0xff8e}; 

 

void _shiftOut(int dPin,int cPin,int order,int val){    

 int i;   

    for(i = 0; i < 16; i++){ 

        digitalWrite(cPin,LOW); 

        if(order == LSBFIRST){ 

            digitalWrite(dPin,((0x01&(val>>i)) == 0x01) ? HIGH : LOW); 

            delayMicroseconds(10); 

  } 

        else { 

            digitalWrite(dPin,((0x8000&(val<<i)) == 0x8000) ? HIGH : LOW); 

            delayMicroseconds(10); 

  } 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

227 █ www.freenove.com  support@freenove.com 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

        digitalWrite(cPin,HIGH); 

        delayMicroseconds(10); 

 } 

} 

 

int main(void) 

{ 

 int i; 

  

 printf("Program is starting ...\n"); 

  

 wiringPiSetup(); 

  

 pinMode(dataPin,OUTPUT); 

 pinMode(latchPin,OUTPUT); 

 pinMode(clockPin,OUTPUT); 

 while(1){ 

  for(i=0;i<sizeof(num);i++){ 

   digitalWrite(latchPin,LOW); 

   _shiftOut(dataPin,clockPin,MSBFIRST,num[i]);//Output the figures and the highest 

level is transfered preferentially.  

   digitalWrite(latchPin,HIGH); 

   delay(500); 

  } 

 } 

 return 0; 

} 

 

First, we need to create encoding for characters “0” to “F” in the array. 

 unsigned long 

num[]={0xffc0,0xfff9,0xffa4,0xffb0,0xff99,0xff92,0xff82,0xfff8,0xff80,0xff90,0xff88,0xff83,0xffc6

,0xffa1,0xff86,0xff8e}; 

 

In the “for” loop of loop() function, use the 74HC595 IC Chip to output contents of array “num” successively. 

SevenSegmentDisplay can then correctly display the corresponding characters.  

 while(1){ 

  for(i=0;i<sizeof(num);i++){ 

   digitalWrite(latchPin,LOW); 

   _shiftOut(dataPin,clockPin,MSBFIRST,num[i]);//Output the figures and the highest 

level is transfered preferentially.  

   digitalWrite(latchPin,HIGH); 

   delay(500); 

  } 

 } 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 228 www.freenove.com █ 

Python Code 17.1 SevenSegmentDisplay 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 17_1_SevenSegmentDisplay directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/17_1_SevenSegmentDisplay 

2. Use Python command to execute Python code “SevenSegmentDisplay.py”. 

python SevenSegmentDisplay.py 

 

After the program runs, the 4-Digit 7-Segment Display starts to display the characters “0” to “F” in succession. 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

import RPi.GPIO as GPIO 

import time 

 

LSBFIRST = 1 

MSBFIRST = 2 

# define the pins for 74HC595 

dataPin   = 15      # DS Pin of 74HC595(Pin14) 

latchPin  = 13      # ST_CP Pin of 74HC595(Pin12) 

clockPin = 11       # CH_CP Pin of 74HC595(Pin11) 

# SevenSegmentDisplay display the character "0"- "F" successively 

num = 

[0xffc0,0xfff9,0xffa4,0xffb0,0xff99,0xff92,0xff82,0xfff8,0xff80,0xff90,0xff88,0xff83,0xffc6,0x

ffa1,0xff86,0xff8e] 

 

def setup(): 

    GPIO.setmode(GPIO.BOARD)   # use PHYSICAL GPIO Numbering 

    GPIO.setup(dataPin, GPIO.OUT) 

    GPIO.setup(latchPin, GPIO.OUT) 

    GPIO.setup(clockPin, GPIO.OUT) 

     

def shiftOut(dPin,cPin,order,val): 

    for i in range(0,16): 

        GPIO.output(cPin,GPIO.LOW); 

        if(order == LSBFIRST): 

            GPIO.output(dPin,(0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW) 

        elif(order == MSBFIRST): 

            GPIO.output(dPin,(0x8000&(val<<i)==0x8000) and GPIO.HIGH or GPIO.LOW) 

        GPIO.output(cPin,GPIO.HIGH); 

 

def loop(): 

    while True: 

        for i in range(0,len(num)): 

            GPIO.output(latchPin,GPIO.LOW) 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

229 █ www.freenove.com  support@freenove.com 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

            shiftOut(dataPin,clockPin,MSBFIRST,num[i])  # Send serial data to 74HC595 

            GPIO.output(latchPin,GPIO.HIGH) 

            time.sleep(0.5) 

         

        '''for i in range(0,len(num)): 

            GPIO.output(latchPin,GPIO.LOW) 

            shiftOut(dataPin,clockPin,MSBFIRST,num[i]&0x7f) # Use "&0x7f" to display the 

decimal point. 

            GPIO.output(latchPin,GPIO.HIGH) 

            time.sleep(0.5)''' 

         

 

def destroy():   

    GPIO.cleanup() 

 

if __name__ == '__main__': # Program entrance 

    print ('Program is starting...' ) 

    setup()  

    try: 

        loop()   

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy()   

 

First, we need to create encoding for characters “0” to “F” in the array. 

 num=[0xffc0,0xfff9,0xffa4,0xffb0,0xff99,0xff92,0xff82,0xfff8,0xff80,0xff90,0xff88,0xff83,0xffc6,0

xffa1,0xff86,0xff8e] 

 

In the “for” loop of loop() function, use the 74HC595 IC Chip to output contents of array “num” successively. 

SevenSegmentDisplay can then correctly display the corresponding characters.  

 while True: 

        for i in range(0,len(num)): 

            GPIO.output(latchPin,GPIO.LOW) 

            shiftOut(dataPin,clockPin,MSBFIRST,num[i])  # Send serial data to 74HC595 

            GPIO.output(latchPin,GPIO.HIGH) 

            time.sleep(0.5)    

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 230 www.freenove.com █ 

Project 17.2 4-Digit 7-Segment Display 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable 

 

 

4-Digit 7-Segment Display 

 

 

Circuit 

Schematic diagram 

The same as that of 17.1  

 

Hardware connection 

The same as that of 17.1 

 

If you have any concerns, please send an email to: support@freenove.com 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

231 █ www.freenove.com  support@freenove.com 

Code 

In this code, we use the 74HC595 IC Chip to control the 4-Digit 7-Segment Display, and use the dynamic 

scanning method to show the changing number characters. 

C Code 17.2 StopWatch 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 17_2_StopWatch directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/17_2_StopWatch 

2. Use following command to compile "StopWatch.c" and generate executable file "StopWatch".  

gcc StopWatch.c -o StopWatch -lwiringPi 

3. Run the generated file "SteppingMotor". 

sudo ./StopWatch 

After the program runs, the 4-Digit 7-Segment Display starts displaying a four-digit number dynamically, and 

the numeric value of this number will increase by plus 1 each second thereafter. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

#include <wiringPi.h> 

#include <stdio.h> 

#include <wiringShift.h> 

#include <signal.h> 

#include <unistd.h> 

#define     dataPin     3   //DS Pin of 74HC595(Pin14) 

#define     latchPin    2   //ST_CP Pin of 74HC595(Pin12) 

#define     clockPin    0    //CH_CP Pin of 74HC595(Pin11) 

// character 0-9 code of common anode 7-segment display  

unsigned char num[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; 

int counter = 0;    //variable counter,the number will be displayed by 7-segment display 

//Open one of the 7-segment display and close the remaining three, the parameter digit is 

optional for 1,2,4,8 

unsigned long selectDigit(unsigned long digit){   

    if (digit==0x01){ 

        return (0x08<<8); 

        }  

    else if (digit==0x02){ 

        return (0x04<<8); 

        }  

    else if (digit==0x04){ 

        return (0x02<<8); 

        }  

    else if (digit==0x08){ 

        return (0x01<<8); 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 232 www.freenove.com █ 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

        }  

    else{ 

        return (0xf0<<8); 

        } 

 

} 

void _shiftOut(int dPin,int cPin,int order,int val){    

 int i;   

    for(i = 0; i < 16; i++){ 

        digitalWrite(cPin,LOW); 

        if(order == LSBFIRST){ 

            digitalWrite(dPin,((0x01&(val>>i)) == 0x01) ? HIGH : LOW); 

            delayMicroseconds(1); 

  } 

        else {//if(order == MSBFIRST){ 

            digitalWrite(dPin,((0x8000&(val<<i)) == 0x8000) ? HIGH : LOW); 

            delayMicroseconds(1); 

  } 

        digitalWrite(cPin,HIGH); 

        delayMicroseconds(1); 

 } 

} 

void outData(unsigned long data){      //function used to output data for 74HC595 

    digitalWrite(latchPin,LOW); 

    _shiftOut(dataPin,clockPin,MSBFIRST,data); 

    digitalWrite(latchPin,HIGH); 

} 

void display(int dec){  //display function for 7-segment display 

 int delays = 1; 

    unsigned long  digit; 

 outData(0xffff);  

    digit=selectDigit(0x01);      //select the first, and display the single digit 

    outData(num[dec%10]|digit);    

    delay(delays);          //display duration 

     

    outData(0xffff);     

    digit=selectDigit(0x02);      //select the second, and display the tens digit 

    outData(num[dec%100/10]|digit); 

    delay(delays); 

     

    outData(0xffff);     

    digit=selectDigit(0x04);      //select the third, and display the hundreds digit 

    outData(num[dec%1000/100]|digit); 

    delay(delays); 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

233 █ www.freenove.com  support@freenove.com 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

     

    outData(0xffff);     

    digit=selectDigit(0x08);      //select the fourth, and display the thousands digit 

    outData(num[dec%10000/1000]|digit); 

    delay(delays); 

} 

void timer(int  sig){       //Timer function 

    if(sig == SIGALRM){   //If the signal is SIGALRM, the value of counter plus 1, and update 

the number displayed by 7-segment display 

        counter ++;          

        alarm(1);           //set the next timer time 

        printf("counter : %d \n",counter); 

    } 

} 

int main(void) 

{ 

    int i; 

     

    printf("Program is starting ...\n"); 

     

    wiringPiSetup(); 

     

    pinMode(dataPin,OUTPUT);        //set the pin connected to74HC595 for output mode 

    pinMode(latchPin,OUTPUT); 

    pinMode(clockPin,OUTPUT); 

     

    signal(SIGALRM,timer);  //configure the timer 

    alarm(1);               //set the time of timer to 1s 

    while(1){ 

        display(counter);   //display the number counter 

    } 

    return 0; 

} 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 234 www.freenove.com █ 

First, we define the pin of the 74HC595 IC Chip and the 7-Segment Display Common Anode, use character 

encoding and a variable "counter" to enable the counter to be visible on the 7-Segment Display. 

 #define     dataPin     3   //DS Pin of 74HC595(Pin14) 

#define     latchPin    2   //ST_CP Pin of 74HC595(Pin12) 

#define     clockPin    0    //CH_CP Pin of 74HC595(Pin11) 

// character 0-9 code of common anode 7-segment display  

unsigned char num[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; 

int counter = 0;    //variable counter,the number will be displayed by 7-segment display 

 

Subfunction selectDigit (int digit) function is used to open one of the 7-Segment Displays while closing the 

other 7-Segment Displays, where the parameter digit value can be 1,2,4,8. Using "|" can open a number of a 

7-Segment Display. 

 unsigned long selectDigit(unsigned long digit){   

    if (digit==0x01){ 

        return (0x08<<8); 

        }  

    else if (digit==0x02){ 

        return (0x04<<8); 

        }  

    else if (digit==0x04){ 

        return (0x02<<8); 

        }  

    else if (digit==0x08){ 

        return (0x01<<8); 

        }  

    else{ 

        return (0xf0<<8); 

        } 

} 

 

Subfunction outData (int8_t data) is used to make the 74HC595 IC Chip output a 16-bit data immediately. 

 void outData(int8_t data){      // function used to output data for 74HC595  

    digitalWrite(latchPin,LOW); 

    shiftOut(dataPin,clockPin,MSBFIRST,data); 

    digitalWrite(latchPin,HIGH); 

} 

 

Subfunction display (int dec) is used to make a 4-Digit 7-Segment Display a 4-bit integer. First open the 

common end of first 7-Segment Display Digit and turn OFF the other three Digits, now it can be used as 1-

Digit 7-Segment Display. The first Digit is used for displaying single digits of "dec", the second Digit is for tens, 

the third for hundreds and fourth for thousands respectively. Each digit will be displayed for a period by using 

delay (). The time in this code is very brief, so you will see digits all together. If the time is set long enough, 

you will see that every digit is displayed independently. 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

235 █ www.freenove.com  support@freenove.com 

 void display(int dec){  //display function for 7-segment display 

 int delays = 1; 

    unsigned long  digit; 

 outData(0xffff);  

    digit=selectDigit(0x01);      //select the first, and display the single digit 

    outData(num[dec%10]|digit);    

    delay(delays);          //display duration 

     

    outData(0xffff);     

    digit=selectDigit(0x02);      //select the second, and display the tens digit 

    outData(num[dec%100/10]|digit); 

    delay(delays); 

     

    outData(0xffff);     

    digit=selectDigit(0x04);      //select the third, and display the hundreds digit 

    outData(num[dec%1000/100]|digit); 

    delay(delays); 

     

    outData(0xffff);     

    digit=selectDigit(0x08);      //select the fourth, and display the thousands digit 

    outData(num[dec%10000/1000]|digit); 

    delay(delays); 

} 

 

Subfunction timer (int sig) is the timer function, which will set an alarm to signal. This function will be executed 

once at set time intervals. Accompanied by the execution, “1” will be added as the variable counter and then 

reset the time of timer to 1s. 

 void timer(int  sig){       //timer function 

    if(sig == SIGALRM){   //If the signal is SIGALRM, the value of counter plus 1, and 

update the number displayed by 7-segment display 

        counter ++;          

        alarm(1);           //set the next timer time 

    } 

} 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 236 www.freenove.com █ 

Finally, in the main function, configure the GPIO, and set the timer function. 

     pinMode(dataPin,OUTPUT);        //set the pin connected to74HC595 for output mode 

    pinMode(latchPin,OUTPUT); 

    pinMode(clockPin,OUTPUT); 

    //set the pin connected to 7-segment display common end to output mode 

    for(i=0;i<4;i++){        

        pinMode(digitPin[i],OUTPUT); 

        digitalWrite(digitPin[i],LOW); 

    } 

    signal(SIGALRM,timer);  //configure the timer 

    alarm(1);               //set the time of timer to 1s 

 

In the while loop, make the digital display variable counter value “1”. The value will change in function timer 

(), so the content displayed by the 7-Segment Display will change accordingly. 

     while(1){ 

        display(counter);   //display number counter 

    } 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

237 █ www.freenove.com  support@freenove.com 

Python Code 17.2 StopWatch 

If you have any concerns, please send an email to: support@freenove.com 

1. Use cd command to enter 17_2_StopWatch directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/17_2_StopWatch 

2. Use python command to execute code "StopWatch.py". 

python StopWatch.py 

After the program runs, 4-Digit 7-segment start displaying a four-digit number dynamically, and the will plus 

1 in each successive second. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

import RPi.GPIO as GPIO 

import time 

import threading 

 

LSBFIRST = 1 

MSBFIRST = 2 

# define the pins connect to 74HC595 

dataPin   = 15      # DS Pin of 74HC595 

latchPin  = 13      # ST_CP Pin of 74HC595 

clockPin  = 11       # SH_CP Pin of 74HC595 

num = (0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90) 

counter = 0         # Variable counter, the number will be dislayed by 7-segment display 

t = 0               # define the Timer object 

def setup(): 

    GPIO.setmode(GPIO.BOARD)     # use PHYSICAL GPIO Numbering 

    GPIO.setup(dataPin, GPIO.OUT)       # Set pin mode to OUTPUT 

    GPIO.setup(latchPin, GPIO.OUT) 

    GPIO.setup(clockPin, GPIO.OUT) 

     

def shiftOut(dPin,cPin,order,val):       

    for i in range(0,16): 

        GPIO.output(cPin,GPIO.LOW); 

        if(order == LSBFIRST): 

            GPIO.output(dPin,(0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW) 

        elif(order == MSBFIRST): 

            GPIO.output(dPin,(0x8000&(val<<i)==0x8000) and GPIO.HIGH or GPIO.LOW) 

        GPIO.output(cPin,GPIO.HIGH) 

             

def outData(data):      # function used to output data for 74HC595 

    GPIO.output(latchPin,GPIO.LOW) 

    shiftOut(dataPin,clockPin,MSBFIRST,data) 

    GPIO.output(latchPin,GPIO.HIGH) 

     

def selectDigit(digit): # Open one of the 7-segment display and close the remaining three, the 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 238 www.freenove.com █ 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

parameter digit is optional for 1,2,4,8 

    if digit==0x01: 

        return (0x08<<8) 

    elif digit==0x02: 

        return (0x04<<8) 

    elif digit==0x04: 

        return (0x02<<8) 

    elif digit==0x08: 

        return (0x01<<8) 

    else: 

        return (0xf0<<8) 

 

def display(dec):     # display function for 7-segment display 

    outData(0xffff)   # eliminate residual display 

    digit=selectDigit(0x01)   # Select the first, and display the single digit 

    outData(num[dec%10]|digit) 

    time.sleep(0.003)   # display duration 

     

    outData(0xffff) 

    digit=selectDigit(0x02)   # Select the second, and display the tens digit 

    outData(num[dec%100//10]|digit) 

    time.sleep(0.003) 

     

    outData(0xffff) 

    digit=selectDigit(0x04)   # Select the third, and display the hundreds digit 

    outData(num[dec%1000//100]|digit) 

    time.sleep(0.003) 

     

    outData(0xffff) 

    digit=selectDigit(0x08)   # Select the fourth, and display the thousands digit 

    outData(num[dec%10000//1000]|digit) 

    time.sleep(0.003) 

     

def timer():        

    global counter 

    global t 

    t = threading.Timer(1.0,timer)      # reset time of timer to 1s 

    t.start()                           # Start timing 

    counter+=1                           

    print ("counter : %d"%counter) 

     

def loop(): 

    global t 

    global counter 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

239 █ www.freenove.com  support@freenove.com 

79 

80 

81 

82 

83 

84 

85 

86 

87 

89 

90 

91 

92 

93 

94 

95 

96 

    t = threading.Timer(1.0,timer)      # set the timer 

    t.start()                           # Start timing 

    while True: 

        display(counter)                # display the number counter 

         

def destroy():   

    global t 

    GPIO.cleanup()       

    t.cancel()      

 

if __name__ == '__main__': # Program entrance 

    print ('Program is starting...' ) 

    setup()  

    try: 

        loop()   

    except KeyboardInterrupt:   # Press ctrl-c to end the program. 

        destroy() 

 

First, define the pin of 74HC595 and 7-segment display common end, character encoding and a variable 

"counter" to be displayed counter. 

 dataPin   = 15      # DS Pin of 74HC595 

latchPin  = 13      # ST_CP Pin of 74HC595 

clockPin  = 11       # SH_CP Pin of 74HC595 

num = (0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90) 

counter = 0         # Variable counter, the number will be dislayed by 7-segment display 

 

Subfunction selectDigit (digit) function is used to open one of the 7-segment display and close the other 7-

segment display, where the parameter digit value can be 1,2,4,8. 

 def selectDigit(digit): # Open one of the 7-segment display and close the remaining three, the 

parameter digit is optional for 1,2,4,8 

    if digit==0x01: 

        return (0x08<<8) 

    elif digit==0x02: 

        return (0x04<<8) 

    elif digit==0x04: 

        return (0x02<<8) 

    elif digit==0x08: 

        return (0x01<<8) 

    else: 

        return (0xf0<<8) 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 240 www.freenove.com █ 

Subfunction outData (data) is used to make the 74HC595 output an 16-bit data immediately. 

 def outData(data):      # function used to output data for 74HC595 

    GPIO.output(latchPin,GPIO.LOW) 

    shiftOut(dataPin,clockPin,MSBFIRST,data) 

    GPIO.output(latchPin,GPIO.HIGH) 

 

Subfunction display (int dec) is used to make a 4-Digit 7-Segment Display a 4-bit integer. First open the 

common end of first 7-Segment Display Digit and turn OFF the other three Digits, now it can be used as 1-

Digit 7-Segment Display. The first Digit is used for displaying single digits of "dec", the second Digit is for tens, 

the third for hundreds and fourth for thousands respectively. Each digit will be displayed for a period by using 

delay (). The time in this code is very brief, so you will a mess of Digits. If the time is set long enough, you will 

see that every digit is displayed independently. 

 def display(dec):     # display function for 7-segment display 

    outData(0xffff)   # eliminate residual display 

    digit=selectDigit(0x01)   # Select the first, and display the single digit 

    outData(num[dec%10]|digit) 

    time.sleep(0.003)   # display duration 

     

    outData(0xffff) 

    digit=selectDigit(0x02)   # Select the second, and display the tens digit 

    outData(num[dec%100//10]|digit) 

    time.sleep(0.003) 

     

    outData(0xffff) 

    digit=selectDigit(0x04)   # Select the third, and display the hundreds digit 

    outData(num[dec%1000//100]|digit) 

    time.sleep(0.003) 

     

    outData(0xffff) 

    digit=selectDigit(0x08)   # Select the fourth, and display the thousands digit 

    outData(num[dec%10000//1000]|digit) 

    time.sleep(0.003) 

 

Subfunction timer () is the timer callback function. When the time is up, this function will be executed. 

Accompanied by the execution, the variable counter will be added 1, and then reset the time of timer to 1s. 

1s later, the function will be executed again. 

 def timer():        

    global counter 

    global t 

    t = threading.Timer(1.0,timer)      # reset time of timer to 1s 

    t.start()                           # Start timing 

    counter+=1                           

    print ("counter : %d"%counter) 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

241 █ www.freenove.com  support@freenove.com 

Subfunction setup(), configure all input output modes for the GPIO pin used.  

Finally, in loop function, make the digital tube display variable counter value in the while loop. The value will 

change in function timer (), so the content displayed by 7-segment display will change accordingly. 

 def loop(): 

    global t 

    global counter 

    t = threading.Timer(1.0,timer)      # set the timer 

    t.start()                           # Start timing 

    while True: 

        display(counter)                # display the number counter 

 

After the program runs, press "Ctrl+C", then subfunction destroy() will be executed, and GPIO resources and 

timers will be released in this subfunction. 

 def destroy():   # When 'Ctrl+C' is pressed, the function is executed.  

    global t 

    GPIO.cleanup()       

    t.cancel()      # cancel the timer 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 242 www.freenove.com █ 

Chapter 18 74HC595 & LED Matrix 

Thus far we have learned how to use the 74HC595 IC Chip to control the Bar Graph LED and the 7-Segment 

Display. We will now use 74HC595 IC Chips to control an LED Matrix. 

Project 18.1 LED Matrix 

In this project, we will use two 74HC595 IC chips to control a monochrome (one color) (8X8) LED Matrix to 

make it display both simple graphics and characters. 

Component knowledge 

LED matrix 

An LED Matrix is a rectangular display module that consists of a uniform grid of LEDs. The following is an 8X8 

monochrome (one color) LED Matrix containing 64 LEDs (8 rows by 8 columns). 

 

In order to facilitate the operation and reduce the number of ports required to drive this component, the 

Positive Poles of the LEDs in each row and Negative Poles of the LEDs in each column are respectively 

connected together inside the LED Matrix module, which is called a Common Anode. There is another 

arrangement type. Negative Poles of the LEDs in each row and the Positive Poles of the LEDs in each column 

are respectively connected together, which is called a Common Cathode. 

The LED Matrix that we use in this project is a Common Anode LED Matrix. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

243 █ www.freenove.com  support@freenove.com 

Connection mode of Common Anode          Connection mode of Common Cathode 

                 
  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 244 www.freenove.com █ 

Here is how a Common Anode LED Matrix works. First, choose 16 ports on RPI board to connect to the 16 

ports of LED Matrix. Configure one port in columns for low level, which makes that column the selected port. 

Then configure the eight port in the row to display content in the selected column. Add a delay value and 

then select the next column that outputs the corresponding content. This kind of operation by column is 

called Scan. If you want to display the following image of a smiling face, you can display it in 8 columns, and 

each column is represented by one byte. 

 

 

 

 

 

 

 

 

 

 

 

Column  Binary Hexadecimal 

1 0001 1100 0x1c 

2 0010 0010 0x22 

3 0101 0001 0x51 

4 0100 0101 0x45 

5 0100 0101 0x45 

6 0101 0001 0x51 

7 0010 0010 0x22 

8 0001 1100 0x1c 

 

To begin, display the first column, then turn off the first column and display the second column. (and so on) .... 

turn off the seventh column and display the 8th column, and then start the process over from the first column 

again like the control of LED Bar Graph project. The whole process will be repeated rapidly in a loop. Due to 

the principle of optical afterglow effect and the vision persistence effect in human sight, we will see a picture 

of a smiling face directly rather than individual columns of LEDs turned ON one column at a time (although 

in fact this is the reality we cannot perceive).  

Scanning rows is another option to display on an LED Matrix (dot matrix grid). Whether scanning by row or 

column, 16 GPIO is required. In order to save GPIO ports of control board, two 74HC595 IC Chips are used in 

the circuit. Every 74HC595 IC Chip has eight parallel output ports, so two of these have a combined total of 

16 ports, which is just enough for our project. The control lines and data lines of the two 74HC595 IC Chips 

are not all connected to the RPi, but connect to the Q7 pin of first stage 74HC595 IC Chip and to the data pin 

of second IC Chip. The two 74HC595 IC Chips are connected in series, which is the same as using one 

"74HC595 IC Chip" with 16 parallel output ports. 

 

  

                1 2 3 4 5 6 7 8 

                0 0 0 0 0 0 0 0 

                0 0 1 1 1 1 0 0 

                0 1 0 0 0 0 1 0 

                1 0 1 0 0 1 0 1 

                1 0 0 0 0 0 0 1 

                1 0 0 1 1 0 0 1 

                0 1 0 0 0 0 1 0 

                0 0 1 1 1 1 0 0 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

245 █ www.freenove.com  support@freenove.com 

Component List 

Freenove Projects Board for Raspberry Pi x1 

 

Raspberry Pi 

 

GPIO Ribbon Cable 

 

 

4-Digit 7-Segment Display 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 246 www.freenove.com █ 

Circuit 

Schematic diagram 

 

Hardware connection.  

If it dosen’t work, rotate the LED matrix for 180°. 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

247 █ www.freenove.com  support@freenove.com 

 

If you have any concerns, please send an email to: support@freenove.com 

Code 

Two 74HC595 IC Chips are used in this project, one for controlling the LED Matrix’s columns and the other 

for controlling the rows. According to the circuit connection, row data should be sent first, then column data. 

The following code will make the LED Matrix display a smiling face, and then display characters "0 to F" 

scrolling in a loop on the LED Matrix. 

C Code 18.1 LEDMatrix 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 18_LEDMatrix directory of C language. 

cd ~/Freenove_Kit/Code/C_Code/18_LEDMatrix 

2. Use following command to compile “LEDMatrix.c” and generate executable file “LEDMatrix”. 

gcc LEDMatrix.c -o LEDMatrix -lwiringPi 

3. Then run the generated file “LEDMatrix”. 

sudo ./LEDMatrix 

After the program runs, the LED Matrix displays a smiling face, and then displays characters "0 to F" scrolling 

in a loop on the LED Matrix. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

#include <wiringPi.h> 

#include <stdio.h> 

#include <wiringShift.h> 

 

#define   dataPin   3   //DS Pin of 74HC595(Pin14) 

#define   latchPin  2   //ST_CP Pin of 74HC595(Pin12) 

#define   clockPin  0   //SH_CP Pin of 74HC595(Pin11) 

// data of smile face 

unsigned char pic[]={0x1c,0x22,0x51,0x45,0x45,0x51,0x22,0x1c}; 

unsigned char data[]={  // data of "0-F" 

    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // " " 

    0x00, 0x00, 0x3E, 0x41, 0x41, 0x3E, 0x00, 0x00, // "0" 

    0x00, 0x00, 0x21, 0x7F, 0x01, 0x00, 0x00, 0x00, // "1" 

    0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00, // "2" 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 248 www.freenove.com █ 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

    0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00, // "3" 

    0x00, 0x00, 0x0E, 0x32, 0x7F, 0x02, 0x00, 0x00, // "4" 

    0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00, // "5" 

    0x00, 0x00, 0x3E, 0x49, 0x49, 0x26, 0x00, 0x00, // "6" 

    0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00, // "7" 

    0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00, // "8" 

    0x00, 0x00, 0x32, 0x49, 0x49, 0x3E, 0x00, 0x00, // "9"   

    0x00, 0x00, 0x3F, 0x44, 0x44, 0x3F, 0x00, 0x00, // "A" 

    0x00, 0x00, 0x7F, 0x49, 0x49, 0x36, 0x00, 0x00, // "B" 

    0x00, 0x00, 0x3E, 0x41, 0x41, 0x22, 0x00, 0x00, // "C" 

    0x00, 0x00, 0x7F, 0x41, 0x41, 0x3E, 0x00, 0x00, // "D" 

    0x00, 0x00, 0x7F, 0x49, 0x49, 0x41, 0x00, 0x00, // "E" 

    0x00, 0x00, 0x7F, 0x48, 0x48, 0x40, 0x00, 0x00, // "F" 

    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // " " 

}; 

void _shiftOut(int dPin,int cPin,int order,int val){    

 int i;   

    for(i = 0; i < 8; i++){ 

        digitalWrite(cPin,LOW); 

        if(order == LSBFIRST){ 

            digitalWrite(dPin,((0x01&(val>>i)) == 0x01) ? HIGH : LOW); 

            delayMicroseconds(10); 

  } 

        else {//if(order == MSBFIRST){ 

            digitalWrite(dPin,((0x80&(val<<i)) == 0x80) ? HIGH : LOW); 

            delayMicroseconds(10); 

  } 

        digitalWrite(cPin,HIGH); 

        delayMicroseconds(10); 

 } 

} 

int main(void) 

{ 

    int i,j,k; 

    unsigned char x; 

     

    printf("Program is starting ...\n"); 

     

    wiringPiSetup(); 

     

    pinMode(dataPin,OUTPUT); 

    pinMode(latchPin,OUTPUT); 

    pinMode(clockPin,OUTPUT); 

    while(1){ 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

249 █ www.freenove.com  support@freenove.com 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

        for(j=0;j<500;j++){  //Repeat enough times to display the smiling face a period of 

time 

            x=0x80; 

            for(i=0;i<8;i++){ 

                digitalWrite(latchPin,LOW); 

                _shiftOut(dataPin,clockPin,MSBFIRST,pic[i]);// first shift data of line 

information to the first stage 74HC959 

                _shiftOut(dataPin,clockPin,MSBFIRST,~x);//then shift data of column 

information to the second stage 74HC959 

 

                digitalWrite(latchPin,HIGH);//Output data of two stage 74HC595 at the same 

time 

                x>>=1;   //display the next column 

                delay(1); 

            } 

        } 

        for(k=0;k<sizeof(data)-8;k++){  //sizeof(data) total number of "0-F" columns  

            for(j=0;j<20;j++){  //times of repeated displaying LEDMatrix in every frame, the 

bigger the “j”, the longer the display time  

               x=0x80;          //Set the column information to start from the first column 

                for(i=k;i<8+k;i++){ 

                    digitalWrite(latchPin,LOW); 

                    _shiftOut(dataPin,clockPin,MSBFIRST,data[i]); 

                    _shiftOut(dataPin,clockPin,MSBFIRST,~x); 

                    digitalWrite(latchPin,HIGH); 

                    x>>=1; 

                    delay(1); 

                } 

            } 

        } 

    } 

    return 0; 

} 

 

The first “for” loop in the “while” loop is used to display a static smile. Displaying column information from left 

to right, one column at a time with a total of 8 columns. This repeats 500 times to ensure sufficient display 

time. 

 for(j=0;j<500;j++){  //Repeat enough times to display the smiling face a period of time 

            x=0x80; 

            for(i=0;i<8;i++){ 

                digitalWrite(latchPin,LOW); 

                _shiftOut(dataPin,clockPin,MSBFIRST,pic[i]);// first shift data of line 

information to the first stage 74HC959 

                _shiftOut(dataPin,clockPin,MSBFIRST,~x);//then shift data of column 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 250 www.freenove.com █ 

information to the second stage 74HC959 

 

                digitalWrite(latchPin,HIGH);//Output data of two stage 74HC595 at the same 

time 

                x>>=1;   //display the next column 

                delay(1); 

           

 

The second “for” loop is used to display scrolling characters "0 to F", for a total of 18 X 8 = 144 columns. 

Displaying the 0-8 column, then the 1-9 column, then the 2-10 column...... and so on…138-144 column in 

consecutively to achieve the scrolling effect. The display of each frame is repeated a certain number of times 

and the more repetitions, the longer the single frame display will be and the slower the scrolling movement. 

 for(k=0;k<sizeof(data)-8;k++){  //sizeof(data) total number of "0-F" columns  

            for(j=0;j<20;j++){  //times of repeated displaying LEDMatrix in every frame, the 

bigger the “j”, the longer the display time  

               x=0x80;          //Set the column information to start from the first column 

                for(i=k;i<8+k;i++){ 

                    digitalWrite(latchPin,LOW); 

                    _shiftOut(dataPin,clockPin,MSBFIRST,data[i]); 

                    _shiftOut(dataPin,clockPin,MSBFIRST,~x); 

                    digitalWrite(latchPin,HIGH); 

                    x>>=1; 

                    delay(1); 

                } 

            } 

        } 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

251 █ www.freenove.com  support@freenove.com 

Python Code 18.1 LEDMatrix 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 18_LEDMatrix directory of Python language. 

cd ~/Freenove_Kit/Code/Python_Code/18_LEDMatrix 

2. Use Python command to execute Python code “LEDMatrix.py”.  

python LEDMatrix.py 

After the program runs, the LED Matrix displayss a smiling face, and then displays characters "0 to F" scrolling 

in a loop on the LED Matrix. 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

import RPi.GPIO as GPIO 

import time 

 

LSBFIRST = 1 

MSBFIRST = 2 

# define the pins connect to 74HC595 

dataPin   = 15      # DS Pin of 74HC595(Pin14) 

latchPin  = 13      # ST_CP Pin of 74HC595(Pin12) 

clockPin = 11       # SH_CP Pin of 74HC595(Pin11) 

pic = [0x1c,0x22,0x51,0x45,0x45,0x51,0x22,0x1c]  # data of smiling face 

data = [     # data of "0-F" 

    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, # " " 

    0x00, 0x00, 0x3E, 0x41, 0x41, 0x3E, 0x00, 0x00, # "0" 

    0x00, 0x00, 0x21, 0x7F, 0x01, 0x00, 0x00, 0x00, # "1" 

    0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00, # "2" 

    0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00, # "3" 

    0x00, 0x00, 0x0E, 0x32, 0x7F, 0x02, 0x00, 0x00, # "4" 

    0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00, # "5" 

    0x00, 0x00, 0x3E, 0x49, 0x49, 0x26, 0x00, 0x00, # "6" 

    0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00, # "7" 

    0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00, # "8" 

    0x00, 0x00, 0x32, 0x49, 0x49, 0x3E, 0x00, 0x00, # "9"    

    0x00, 0x00, 0x3F, 0x44, 0x44, 0x3F, 0x00, 0x00, # "A" 

    0x00, 0x00, 0x7F, 0x49, 0x49, 0x36, 0x00, 0x00, # "B" 

    0x00, 0x00, 0x3E, 0x41, 0x41, 0x22, 0x00, 0x00, # "C" 

    0x00, 0x00, 0x7F, 0x41, 0x41, 0x3E, 0x00, 0x00, # "D" 

    0x00, 0x00, 0x7F, 0x49, 0x49, 0x41, 0x00, 0x00, # "E" 

    0x00, 0x00, 0x7F, 0x48, 0x48, 0x40, 0x00, 0x00, # "F" 

    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, # " " 

] 

def setup(): 

    GPIO.setmode(GPIO.BOARD)    # use PHYSICAL GPIO Numbering 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 252 www.freenove.com █ 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

    GPIO.setup(dataPin, GPIO.OUT) 

    GPIO.setup(latchPin, GPIO.OUT) 

    GPIO.setup(clockPin, GPIO.OUT) 

     

def shiftOut(dPin,cPin,order,val): 

    for i in range(0,8): 

        GPIO.output(cPin,GPIO.LOW); 

        if(order == LSBFIRST): 

            GPIO.output(dPin,(0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW) 

        elif(order == MSBFIRST): 

            GPIO.output(dPin,(0x80&(val<<i)==0x80) and GPIO.HIGH or GPIO.LOW) 

        GPIO.output(cPin,GPIO.HIGH); 

 

def loop(): 

    while True: 

        for j in range(0,500): # Repeat enough times to display the smiling face a period of 

time 

            x=0x80 

            for i in range(0,8): 

                GPIO.output(latchPin,GPIO.LOW) 

                shiftOut(dataPin,clockPin,MSBFIRST,pic[i]) #first shift data of line 

information to first stage 74HC959 

 

                shiftOut(dataPin,clockPin,MSBFIRST,~x) #then shift data of column information 

to second stage 74HC959 

                GPIO.output(latchPin,GPIO.HIGH) # Output data of two stage 74HC595 at the same 

time 

                time.sleep(0.001) # display the next column 

                x>>=1 

        for k in range(0,len(data)-8): #len(data) total number of "0-F" columns  

            for j in range(0,20): # times of repeated displaying LEDMatrix in every frame, the 

bigger the "j", the longer the display time. 

                x=0x80      # Set the column information to start from the first column 

                for i in range(k,k+8): 

                    GPIO.output(latchPin,GPIO.LOW) 

                    shiftOut(dataPin,clockPin,MSBFIRST,data[i]) 

                    shiftOut(dataPin,clockPin,MSBFIRST,~x) 

                    GPIO.output(latchPin,GPIO.HIGH) 

                    time.sleep(0.001) 

                    x>>=1 

def destroy():   

    GPIO.cleanup() 

if __name__ == '__main__':  # Program entrance 

    print ('Program is starting...' ) 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

253 █ www.freenove.com  support@freenove.com 

77 

78 

79 

80 

81 

    setup()  

    try: 

        loop()   

    except KeyboardInterrupt:   # Press ctrl-c to end the program. 

        destroy()   

 

The first “for” loop in the “while” loop is used to display a static smile. Displaying column information from left 

to right, one column at a time with a total of 8 columns. This repeats 500 times to ensure sufficient display 

time. 

         for j in range(0,500): # Repeat enough times to display the smiling face a period of 

time 

            x=0x80 

            for i in range(0,8): 

                GPIO.output(latchPin,GPIO.LOW) 

                shiftOut(dataPin,clockPin,MSBFIRST,pic[i]) #first shift data of line 

information to first stage 74HC959 

 

                shiftOut(dataPin,clockPin,MSBFIRST,~x) #then shift data of column information 

to second stage 74HC959 

                GPIO.output(latchPin,GPIO.HIGH) # Output data of two stage 74HC595 at the same 

time 

                time.sleep(0.001) # display the next column 

                x>>=1 

 

The second “for” loop is used to display scrolling characters "0 to F", for a total of 18 X 8 = 144 columns. 

Displaying the 0-8 column, then the 1-9 column, then the 2-10 column...... and so on…138-144 column in 

consecutively to achieve the scrolling effect. The display of each frame is repeated a certain number of times 

and the more repetitions, the longer the single frame display will be and the slower the scrolling movement. 

         for k in range(0,len(data)-8): #len(data) total number of "0-F" columns  

            for j in range(0,20): # times of repeated displaying LEDMatrix in every frame, the 

bigger the "j", the longer the display time. 

                x=0x80      # Set the column information to start from the first column 

                for i in range(k,k+8): 

                    GPIO.output(latchPin,GPIO.LOW) 

                    shiftOut(dataPin,clockPin,MSBFIRST,data[i]) 

                    shiftOut(dataPin,clockPin,MSBFIRST,~x) 

                    GPIO.output(latchPin,GPIO.HIGH) 

                    time.sleep(0.001) 

                    x>>=1 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 254 www.freenove.com █ 

Chapter 19 LCD1602 

In this chapter, we will learn about the LCD1602 Display Screen, 

Project 19.1 I2C LCD1602 

There are LCD1602 display screen and the I2C LCD. We will introduce both of them in this chapter. But what 

we use in this project is an I2C LCD1602 display screen. The LCD1602 Display Screen can display 2 lines of 

characters in 16 columns. It is capable of displaying numbers, letters, symbols, ASCII code and so on. As shown 

below is a monochrome LCD1602 Display Screen along with its circuit pin diagram 

  
I2C LCD1602 Display Screen integrates a I2C interface, which connects the serial-input & parallel-output 

module to the LCD1602 Display Screen. This allows us to only use 4 lines to operate the LCD1602. 

                      

The serial-to-parallel IC chip used in this module is PCF8574T (PCF8574AT), and its default I2C address is 

0x27(0x3F). You can also view the RPI bus on your I2C device address through command "i2cdetect -y 1" 

(refer to the "configuration I2C" section below).  

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

255 █ www.freenove.com  support@freenove.com 

Below is the PCF8574 chip pin diagram and its module pin diagram: 

PCF8574 chip pin diagram: 

 

PCF8574 module pin diagram  

 

PCF8574 module pins and LCD1602 pins correspond to each other and are connected to each other: 

 

Because of this, as stated earlier, we only need 4 pins to control the 16 pins of the LCD1602 Display Screen 

through the I2C interface. 

In this project, we will use the I2C LCD1602 to display some static characters and dynamic variables. 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 256 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable 

 

Jumper Wire 

 

 

 

I2C LCD1602 Module 

 
 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

257 █ www.freenove.com  support@freenove.com 

Circuit 

Note that the power supply for I2C LCD1602 in this circuit is 5V. 

Schematic diagram 

 

Hardware connection. 

 

If you have any concerns, please send an email to: support@freenove.com 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 258 www.freenove.com █ 

Code 

This code will have your RPi’s CPU temperature and System Time Displayed on the LCD1602. 

C Code 19.1 I2CLCD1602 

If you haven’t configured I2C and install Smbus, please refer to Chapter 7. If you’ve done it, please continue. 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 19_I2CLCD1602 directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/19_I2CLCD1602 

2. Use following command to compile “I2CLCD1602.c” and generate executable file “I2CLCD1602”. 

gcc I2CLCD1602.c -o I2CLCD1602 -lwiringPi -lwiringPiDev 

3. Then run the generated file “I2CLCD1602”. 

sudo ./I2CLCD1602 

After the program runs, the LCD1602 Screen will display your RPi’s CPU Temperature and System Time.  

NOTE: After the program runs, if you nothing displays or the display is not clear, you can try to rotate 

the white knob on back of LCD1602 slowly, which adjusts the contrast, until the screen can display the 

Time and Temperature clearly. 

 
 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

#include <stdlib.h> 

#include <stdio.h> 

#include <wiringPi.h> 

#include <wiringPiI2C.h> 

#include <pcf8574.h> 

#include <lcd.h> 

#include <time.h> 

 

int pcf8574_address = 0x27;        // PCF8574T:0x27, PCF8574AT:0x3F 

#define BASE 64         // BASE any number above 64 

//Define the output pins of the PCF8574, which are directly connected to the LCD1602 pin. 

#define RS      BASE+0 

#define RW      BASE+1 

#define EN      BASE+2 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

259 █ www.freenove.com  support@freenove.com 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

#define LED     BASE+3 

#define D4      BASE+4 

#define D5      BASE+5 

#define D6      BASE+6 

#define D7      BASE+7 

 

int lcdhd;// used to handle LCD 

void printCPUTemperature(){// sub function used to print CPU temperature 

    FILE *fp; 

    char str_temp[15]; 

    float CPU_temp; 

    // CPU temperature data is stored in this directory. 

    fp=fopen("/sys/class/thermal/thermal_zone0/temp","r"); 

    fgets(str_temp,15,fp);      // read file temp 

    CPU_temp = atof(str_temp)/1000.0;   // convert to Celsius degrees 

    printf("CPU's temperature : %.2f \n",CPU_temp); 

    lcdPosition(lcdhd,0,0);     // set the LCD cursor position to (0,0)  

    lcdPrintf(lcdhd,"CPU:%.2fC",CPU_temp);// Display CPU temperature on LCD 

    fclose(fp); 

} 

void printDataTime(){//used to print system time  

    time_t rawtime; 

    struct tm *timeinfo; 

    time(&rawtime);// get system time 

    timeinfo = localtime(&rawtime);//convert to local time 

    printf("%s \n",asctime(timeinfo)); 

    lcdPosition(lcdhd,0,1);// set the LCD cursor position to (0,1)  

    

lcdPrintf(lcdhd,"Time:%02d:%02d:%02d",timeinfo->tm_hour,timeinfo->tm_min,timeinfo->tm_sec); 

//Display system time on LCD 

} 

int detectI2C(int addr){ 

    int _fd = wiringPiI2CSetup (addr);    

    if (_fd < 0){   

        printf("Error address : 0x%x \n",addr); 

        return 0 ; 

    }  

    else{  

        if(wiringPiI2CWrite(_fd,0) < 0){ 

            printf("Not found device in address 0x%x \n",addr); 

            return 0; 

        } 

        else{ 

            printf("Found device in address 0x%x \n",addr); 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 260 www.freenove.com █ 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

            return 1 ; 

        } 

    } 

} 

int main(void){ 

    int i; 

 

    printf("Program is starting ...\n"); 

 

    wiringPiSetup();   

    if(detectI2C(0x27)){ 

        pcf8574_address = 0x27; 

    }else if(detectI2C(0x3F)){ 

        pcf8574_address = 0x3F; 

    }else{ 

        printf("No correct I2C address found, \n" 

        "Please use command 'i2cdetect -y 1' to check the I2C address! \n" 

        "Program Exit. \n"); 

        return -1; 

    } 

    pcf8574Setup(BASE,pcf8574_address);//initialize PCF8574 

    for(i=0;i<8;i++){ 

        pinMode(BASE+i,OUTPUT);     //set PCF8574 port to output mode 

    }  

    digitalWrite(LED,HIGH);     //turn on LCD backlight 

    digitalWrite(RW,LOW);       //allow writing to LCD 

 lcdhd = lcdInit(2,16,4,RS,EN,D4,D5,D6,D7,0,0,0,0);// initialize LCD and return “handle” 

used to handle LCD 

    if(lcdhd == -1){ 

        printf("lcdInit failed !"); 

        return 1; 

    } 

    while(1){ 

        printCPUTemperature();//print CPU temperature 

        printDataTime();        // print system time 

        delay(1000); 

    } 

    return 0; 

} 

 

From the code, we can see that the PCF8591 and the PCF8574 have many similarities in using the I2C interface 

to expand the GPIO RPI.  

First, define the I2C address of the PCF8574 and the Extension of the GPIO pin, which is connected to the 

GPIO pin of the LCD1602. LCD1602 has two different i2c addresses. Set 0x27 as default. 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

261 █ www.freenove.com  support@freenove.com 

 int pcf8574_address = 0x27;        // PCF8574T:0x27, PCF8574AT:0x3F 

#define BASE 64         // BASE any number above 64 

//Define the output pins of the PCF8574, which are directly connected to the LCD1602 pin. 

#define RS      BASE+0 

#define RW      BASE+1 

#define EN      BASE+2 

#define LED     BASE+3 

#define D4      BASE+4 

#define D5      BASE+5 

#define D6      BASE+6 

#define D7      BASE+7 

 

Then, in main function, initialize the PCF8574, set all the pins to output mode, and turn ON the LCD1602 

backlight (without the backlight the Display is difficult to read).  

     pcf8574Setup(BASE,pcf8574_address);// initialize PCF8574 

    for(i=0;i<8;i++){ 

        pinMode(BASE+i,OUTPUT);     // set PCF8574 port to output mode 

    }  

    digitalWrite(LED,HIGH);     // turn on LCD backlight 

 

Then use lcdInit() to initialize LCD1602 and set the RW pin of LCD1602 to 0 (can be written) according to 

requirements of this function. The return value of the function called "Handle" is used to handle LCD1602". 

     lcdhd = lcdInit(2,16,4,RS,EN,D4,D5,D6,D7,0,0,0,0);// initialize LCD and return 

“handle” used to handle LCD 

 

Details about lcdInit()： 

int lcdInit (int rows, int cols, int bits, int rs, int strb, 

        int d0, int d1, int d2, int d3, int d4, int d5, int d6, int d7) ; 

 

This is the main initialization function and must be executd first before you use any other LCD functions. 

Rows and cols are the rows and columns of the Display (e.g. 2, 16 or 4, 20). Bits is the number of how wide 

the number of bits is on the interface (4 or 8). The rs and strb represent the pin numbers of the Display’s 

RS pin and Strobe (E) pin. The parameters d0 to d7 are the pin numbers of the 8 data pins connected from 

the RPi to the display. Only the first 4 are used if you are running the display in 4-bit mode. 

The return value is the ‘handle’ to be used for all subsequent calls to the lcd library when dealing with that 

LCD, or -1 to indicate a fault (usually incorrect parameter) 

For more details about LCD Library, please refer to: https://projects.drogon.net/raspberry-pi/wiringpi/lcd-

library/  

 

In the next “while”, two subfunctions are called to display the RPi’s CPU Temperature and the SystemTime. 

First look at subfunction printCPUTemperature(). The CPU temperature data is stored in the 

"/sys/class/thermal/thermal_zone0/temp" file. We need to read the contents of this file, which converts it to 

temperature value stored in variable CPU_temp and uses lcdPrintf() to display it on LCD. 

 void printCPUTemperature(){//subfunction used to print CPU temperature 

 

mailto:support@freenove.com
http://www.freenove.com/
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/


 

 █ support@freenove.com 

 support@freenove.com 262 www.freenove.com █ 

    FILE *fp; 

    char str_temp[15]; 

    float CPU_temp; 

    // CPU temperature data is stored in this directory. 

    fp=fopen("/sys/class/thermal/thermal_zone0/temp","r"); 

    fgets(str_temp,15,fp);      // read file temp 

    CPU_temp = atof(str_temp)/1000.0;   // convert to Celsius degrees 

    printf("CPU's temperature : %.2f \n",CPU_temp); 

    lcdPosition(lcdhd,0,0);     // set the LCD cursor position to (0,0)  

    lcdPrintf(lcdhd,"CPU:%.2fC",CPU_temp);// Display CPU temperature on LCD 

    fclose(fp); 

} 

 

Details about lcdPosition() and lcdPrintf(): 

lcdPosition (int handle, int x, int y);  

 Set the position of the cursor for subsequent text entry. 

lcdPutchar (int handle, uint8_t data) 

lcdPuts (int handle, char *string) 

lcdPrintf (int handle, char *message, …) 

 

These output a single ASCII character, a string or a formatted string using the usual print formatting 

commands to display individual characters (it is how you are able to see characters on your computer 

monitor). 

 

Next is subfunction printDataTime() used to display System Time. First, it gets the Standard Time and stores 

it into variable Rawtime, and then converts it to the Local Time and stores it into timeinfo, and finally displays 

the Time information on the LCD1602 Display. 

 void printDataTime(){//used to print system time  

    time_t rawtime; 

    struct tm *timeinfo; 

    time(&rawtime);// get system time 

    timeinfo = localtime(&rawtime);// convert to local time 

    printf("%s \n",asctime(timeinfo)); 

    lcdPosition(lcdhd,0,1);// set the LCD cursor position to (0,1)  

    lcdPrintf(lcdhd,"Time:%d:%d:%d",timeinfo->tm_hour,timeinfo->tm_min,timeinfo->tm_sec); 

//Display system time on LCD 

} 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

263 █ www.freenove.com  support@freenove.com 

Python Code 19.1 I2CLCD1602 

If you haven’t configured I2C and install Smbus, please refer to Chapter 7. If you’ve done it, please continue. 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 19_I2CLCD1602 directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/19_I2CLCD1602 

2. Use Python command to execute Python code “I2CLCD1602.py”. 

python I2CLCD1602.py 

After the program runs, the LCD1602 Screen will display your RPi’s CPU Temperature and System Time.  

NOTE: After the program runs, if nothing displays or the display is not clear, try rotating the white knob 

on back of LCD1602 slowly, which adjusts the contrast, until the screen can display the Time and 

Temperature clearly. 

 
 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

from PCF8574 import PCF8574_GPIO 

from Adafruit_LCD1602 import Adafruit_CharLCD 

 

from time import sleep, strftime 

from datetime import datetime 

  

def get_cpu_temp():     # get CPU temperature and store it into file 

"/sys/class/thermal/thermal_zone0/temp" 

    tmp = open('/sys/class/thermal/thermal_zone0/temp') 

    cpu = tmp.read() 

    tmp.close() 

    return '{:.2f}'.format( float(cpu)/1000 ) + ' C' 

  

def get_time_now():     # get system time 

    return datetime.now().strftime('    %H:%M:%S') 

     

def loop(): 

    mcp.output(3,1)     # turn on LCD backlight 

    lcd.begin(16,2)     # set number of LCD lines and columns 

    while(True):          

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 264 www.freenove.com █ 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

        #lcd.clear() 

        lcd.setCursor(0,0)  # set cursor position 

        lcd.message( 'CPU: ' + get_cpu_temp()+'\n' )# display CPU temperature 

        lcd.message( get_time_now() )   # display the time 

        sleep(1) 

         

def destroy(): 

    lcd.clear() 

     

PCF8574_address = 0x27  # I2C address of the PCF8574 chip. 

PCF8574A_address = 0x3F  # I2C address of the PCF8574A chip. 

# Create PCF8574 GPIO adapter. 

try: 

    mcp = PCF8574_GPIO(PCF8574_address) 

except: 

    try: 

        mcp = PCF8574_GPIO(PCF8574A_address) 

    except: 

        print ('I2C Address Error !') 

        exit(1) 

# Create LCD, passing in MCP GPIO adapter. 

lcd = Adafruit_CharLCD(pin_rs=0, pin_e=2, pins_db=[4,5,6,7], GPIO=mcp) 

 

if __name__ == '__main__': 

    print ('Program is starting ... ') 

    try: 

        loop() 

    except KeyboardInterrupt: 

        destroy() 

 

Two modules are used in the code, PCF8574.py and Adafruit_LCD1602.py. These two documents and the 

code files are stored in the same directory, and neither of them is dispensable. Please DO NOT DELETE THEM! 

PCF8574.py is used to provide I2C communication mode and operation method of some of the ports for the 

RPi and PCF8574 IC Chip. Adafruit module Adafruit_LCD1602.py is used to provide some functional operation 

methods for the LCD1602 Display. 

In the code, first get the object used to operate the PCF8574’s port, then get the object used to operate the 

LCD1602. 

 address = 0x27  # I2C address of the PCF8574 chip. 

# Create PCF8574 GPIO adapter. 

mcp = PCF8574_GPIO(address) 

# Create LCD, passing in MCP GPIO adapter. 

lcd = Adafruit_CharLCD(pin_rs=0, pin_e=2, pins_db=[4,5,6,7], GPIO=mcp) 

 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

265 █ www.freenove.com  support@freenove.com 

According to the circuit connection, port 3 of PCF8574 is connected to the positive pole of the LCD1602 

Display’s backlight. Then in the loop () function, use of mcp.output (3,1) to turn the LCD1602 Display’s 

backlight ON and then set the number of LCD lines and columns. 

 def loop(): 

    mcp.output(3,1)     # turn on LCD backlight 

    lcd.begin(16,2)     # set number of LCD lines and columns 

 

In the next while loop, set the cursor position, and display the CPU temperature and time. 

     while(True):          

        #lcd.clear() 

        lcd.setCursor(0,0)  # set cursor position 

        lcd.message( 'CPU: ' + get_cpu_temp()+'\n' )# display CPU temperature 

        lcd.message( get_time_now() )   # display the time 

        sleep(1) 

 

CPU temperature is stored in file “/sys/class/thermal/thermal_zone0/temp”. Open the file and read content of 

the file, and then convert it to Celsius degrees and return. Subfunction used to get CPU temperature is shown 

below: 

 def get_cpu_temp():     # get CPU temperature and store it into file 

"/sys/class/thermal/thermal_zone0/temp" 

    tmp = open('/sys/class/thermal/thermal_zone0/temp') 

    cpu = tmp.read() 

    tmp.close() 

    return '{:.2f}'.format( float(cpu)/1000 ) + ' C' 

 

Subfunction used to get time: 

 def get_time_now():     # get system time 

    return datetime.now().strftime('    %H:%M:%S') 

 

Details about PCF8574.py and Adafruit_LCD1602.py: 

Module PCF8574  

 This module provides two classes PCF8574_I2C and PCF8574_GPIO. 

Class PCF8574_I2C：provides reading and writing method for PCF8574. 

Class PCF8574_GPIO：provides a standardized set of GPIO functions. 

More information can be viewed through opening PCF8574.py. 

Adafruit_LCD1602 Module 

Module Adafruit_LCD1602  

This module provides the basic operation method of LCD1602, including class Adafruit_CharLCD. Some 

member functions are described as follows: 

def begin(self, cols, lines): set the number of lines and columns of the screen. 

def clear(self): clear the screen 

def setCursor(self, col, row): set the cursor position 

def message(self, text): display contents 

More information can be viewed through opening Adafruit_CharLCD.py. 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 266 www.freenove.com █ 

Chapter 20 Hygrothermograph DHT11 

In this chapter, we will learn about a commonly used sensor called a Hygrothermograph DHT11. 

Project 20.1 Hygrothermograph 

Hygrothermograph is an important tool in our lives to give us data on the temperature and humidity in our 

environment. In this project, we will use the RPi to read Temperature and Humidity data of the DHT11 Module. 

Component knowledge 

The Temperature & Humidity Sensor DHT11 is a compound temperature & humidity sensor, and the output 

digital signal has been calibrated by its manufacturer. 

           

After being powered up, it will initialize in 1 second. Its operating voltage is within the range of 3.3V-5.5V. 

The SDA pin is a data pin, which is used to communicate with other devices.  

The NC pin (Not Connected Pin) is a type of pin found on various integrated circuit packages. Such pin has 

no functional purpose to the outside circuit (but may have an unknown functionality during manufacture 

and test). It should not be connected to any of the circuit connections. 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

267 █ www.freenove.com  support@freenove.com 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi  

 

GPIO Ribbon Cable 

 

Jumper Wire 

 

 

 

DHT11 Module 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 268 www.freenove.com █ 

Circuit 

Schematic diagram 

 
Hardware connection. 

 

If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

269 █ www.freenove.com  support@freenove.com 

Code 

The code is used to read the temperature and humidity data of DHT11, and display them. 

C Code 20.1 DHT11 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 20_DHT11 directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/20_DHT11 

2. The code used in this project contains a custom header file. Use the following command to compile the 

code DHT11.cpp and DHT.cpp and generate executable file DHT11. The custom header file will be 

compiled at the same time. 

gcc DHT.cpp DHT11.cpp -o DHT11 -lwiringPi 

3. Run the generated file "DHT11". 

sudo ./DHT11 

 

After the program runs, the Terminal window will display the current total number of read times, the read 

state, as well as temperature and humidity values as is shown below: 

 
 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

#include <wiringPi.h> 

#include <stdio.h> 

#include <stdint.h> 

#include "DHT.hpp" 

 

#define DHT11_Pin  4    //define the pin of sensor  

 

int main(){ 

    DHT dht;        //create a DHT class object 

    int chk,sumCnt;//chk:read the return value of sensor; sumCnt:times of reading sensor 

     

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 270 www.freenove.com █ 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

    printf("Program is starting ...\n"); 

     

    wiringPiSetup(); 

     

    while(1){ 

        chk = dht.readDHT11(DHT11_Pin); //read DHT11 and get a return value. Then determine 

whether data read is normal according to the return value. 

        sumCnt++;       //counting number of reading times 

        printf("The sumCnt is : %d \n",sumCnt); 

        switch(chk){ 

            case DHTLIB_OK:     //if the return value is DHTLIB_OK, the data is normal. 

                printf("DHT11,OK! \n");  

                break; 

            case DHTLIB_ERROR_CHECKSUM:     //data check has errors 

                printf("DHTLIB_ERROR_CHECKSUM! \n"); 

                break; 

            case DHTLIB_ERROR_TIMEOUT:      //reading DHT times out 

                printf("DHTLIB_ERROR_TIMEOUT! \n"); 

                break; 

            case DHTLIB_INVALID_VALUE:      //other errors 

                printf("DHTLIB_INVALID_VALUE! \n"); 

                break; 

        } 

        printf("Humidity is %.2f %%, \t Temperature is %.2f 

*C\n\n",dht.humidity,dht.temperature); 

        delay(3000); 

    }    

    return 1; 

} 

 

In this project code, we use a custom library file "DHT.hpp". It is located in the same directory with the program 

files "DHT11.cpp" and "DHT.cpp", and methods for reading DHT sensor are provided in the library file. By 

using this library, we can easily read the DHT Sensor. First, we create a DHT class object in the code. 

 DHT dht; 

 

In the "while" loop, the value of DHT11 is read every 3 seconds through the dht.readdht11 () function. 

 while(1){ 

        chk = dht.readDHT11(DHT11_Pin); //read DHT11 and get a return value. Then determine 

whether data read is normal according to the return value. 

        sumCnt++;       //counting number of reading times 

        printf("The sumCnt is : %d \n",sumCnt); 

        switch(chk){ 

            case DHTLIB_OK:     //if the return value is DHTLIB_OK, the data is normal. 

                printf("DHT11,OK! \n");  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

271 █ www.freenove.com  support@freenove.com 

                break; 

            case DHTLIB_ERROR_CHECKSUM:     //data check has errors 

                printf("DHTLIB_ERROR_CHECKSUM! \n"); 

                break; 

            case DHTLIB_ERROR_TIMEOUT:      //reading DHT times out 

                printf("DHTLIB_ERROR_TIMEOUT! \n"); 

                break; 

            case DHTLIB_INVALID_VALUE:      //other errors 

                printf("DHTLIB_INVALID_VALUE! \n"); 

                break; 

        } 

        printf("Humidity is %.2f %%, \t Temperature is %.2f 

*C\n\n",dht.humidity,dht.temperature); 

        delay(3000); 

    }    

Finally display the results: 

 printf("Humidity is %.2f %%, \t Temperature is %.2f *C\n\n",dht.humidity,dht.temperature); 

Library file "DHT.hpp" contains a DHT class and this public member function int readDHT11 (int pin) is used 

to read sensor DHT11 and store the temperature and humidity data read to member variables double 

humidity and temperature. The implementation method of the function is included in the file "DHT.cpp". 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

#define _DHT_H_ 

 

#include <wiringPi.h> 

#include <stdio.h> 

#include <stdint.h> 

 

////read return flag of sensor 

#define DHTLIB_OK               0 

#define DHTLIB_ERROR_CHECKSUM   -1 

#define DHTLIB_ERROR_TIMEOUT    -2 

#define DHTLIB_INVALID_VALUE    -999 

 

#define DHTLIB_DHT11_WAKEUP     18 

#define DHTLIB_DHT_WAKEUP       1 

 

#define DHTLIB_TIMEOUT          100 

 

class DHT{       

    public: 

        double humidity,temperature;    //use to store temperature and humidity data read 

        int readDHT11(int pin);     //read DHT11 

    private: 

        uint8_t bits[5];    //Buffer to receiver data 

        int readSensor(int pin,int wakeupDelay);    // 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 272 www.freenove.com █ 

25 

26 

         

}; 

Python Code 20.1 DHT11 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 20_DHT11 directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/20_DHT11 

2. Use Python command to execute code "DHT11.py". 

python DHT11.py 

After the program runs, the Terminal window will display the current total number of read times, the read 

state, as well as temperature and humidity values as is shown below: 

 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

import RPi.GPIO as GPIO 

import time 

import Freenove_DHT as DHT 

DHTPin = 16     #define the pin of DHT11 

 

def loop(): 

    dht = DHT.DHT(DHTPin)   #create a DHT class object 

    counts = 0 # Measurement counts 

    while(True): 

        t=time.time() 

        counts += 1 

        print("Measurement counts: ", counts) 

        for i in range(0,15):             

            chk = dht.readDHT11()     #read DHT11 and get a return value. Then determine 

whether data read is normal according to the return value. 

            if (chk is dht.DHTLIB_OK):      #read DHT11 and get a return value. Then determine 

whether data read is normal according to the return value. 

                print("DHT11,OK!") 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

273 █ www.freenove.com  support@freenove.com 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

                break 

            time.sleep(0.1) 

        print("Humidity : %.2f, \t Temperature : %.2f 

\n"%(dht.humidity,dht.temperature),time.time()-t) 

        time.sleep(2)        

         

if __name__ == '__main__': 

    print ('Program is starting ... ') 

    try: 

        loop() 

    except KeyboardInterrupt: 

        GPIO.cleanup() 

        exit()   

 

In this project code, we use a module "Freenove_DHT.py", which provides the method of reading the DHT 

Sensor. It is located in the same directory with program files "DHT11.py". By using this library, we can easily 

read the DHT Sensor. First, we create a DHT class object in the code. 

     dht = DHT.DHT(DHTPin)   #create a DHT class object 

 

Then in the "while" loop, use chk = dht.readDHT11 (DHT11Pin) to read the DHT11, and determine whether 

the data read is normal according to the return value "chk". 

     while(True): 

        t=time.time() 

        counts += 1 

        print("Measurement counts: ", counts) 

        for i in range(0,15):             

            chk = dht.readDHT11()     #read DHT11 and get a return value. Then determine 

whether data read is normal according to the return value. 

            if (chk is dht.DHTLIB_OK):      #read DHT11 and get a return value. Then determine 

whether data read is normal according to the return value. 

                print("DHT11,OK!") 

                break 

            time.sleep(0.1) 

        print("Humidity : %.2f, \t Temperature : %.2f 

\n"%(dht.humidity,dht.temperature),time.time()-t) 

        time.sleep(2)   

 

Module "Freenove_DHT.py" contains a DHT class. The class function of the def readDHT11 (pin) is used to 

read the DHT11 Sensor and store the temperature and humidity data read to member variables humidity 

and temperature.  

Freenove_DHT Module  

This is a Python module for reading the temperature and humidity data of the DHT Sensor. Partial 

functions and variables are described as follows: 

Variable humidity: store humidity data read from sensor 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 274 www.freenove.com █ 

Variable temperature: store temperature data read from sensor 

def readDHT11 (pin): read the temperature and humidity of sensor DHT11, and return values used to 

determine whether the data is normal. 

Chapter 21 Matrix Keypad 

Earlier we learned about a single Push Button Switch. In this chapter, we will learn about Matrix Keyboards, 

which integrates a number of Push Button Switches as Keys for the purposes of Input. 

 

Project 21 Matrix Keypad 

In this project, we will attempt to get every key code on the Matrix Keypad to work. 

 

Component knowledge 

4x4 Matrix Keypad 

A Keypad Matrix is a device that integrates a number of keys in one package. As is shown below, a 4x4 Keypad 

Matrix integrates 16 keys (think of this as 16 Push Button Switches in one module): 

                 

Similar to the integration of an LED Matrix, the 4x4 Keypad Matrix has each row of keys connected with one 

pin and this is the same for the columns. Such efficient connections reduce the number of processor ports 

required. The internal circuit of the Keypad Matrix is shown below. 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

275 █ www.freenove.com  support@freenove.com 

 
The method of usage is similar to the Matrix LED, by using a row or column scanning method to detect the 

state of each key’s position by column and row. Take column scanning method as an example, send low level 

to the first 1 column (Pin1), detect level state of rows 5, 6, 7, 8 to judge whether the keys A, B, C, D are pressed. 

Then send low level to columns 2, 3, 4 in turn to detect whether other keys are pressed. Therefore, you can 

get the state of all of the keys. 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 276 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable 

 

4x4 Matrix Keypad 

 
  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

277 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

All the rows are held high until a switch is pressed. 

Hardware connection. 

 
If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 278 www.freenove.com █ 

Code 

This code is used to obtain all key codes of the 4x4 Matrix Keypad, when one of the keys is pressed, the key 

code will be displayed in the terminal window. 

C Code 21.1 MatrixKeypad 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 21_MatrixKeypad directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/21_MatrixKeypad 

2. Code of this project contains a custom header file. Use the following command to compile the code 

MatrixKeypad.cpp, Keypad.cpp and Key.cpp generate executable file MatrixKeypad. The custom header 

file will be compiled at the same time. 

gcc MatrixKeypad.cpp Keypad.cpp Key.cpp -o MatrixKeypad -lwiringPi 

3. Run the generated file "MatrixKeypad". 

sudo ./MatrixKeypad 

After the program runs, pressing any key on the MatrixKeypad, will display the corresponding key code on 

the Terminal. As is shown below: 

 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

#include "Keypad.hpp" 

#include <stdio.h> 

const byte ROWS = 4; //four rows 

const byte COLS = 4; //four columns 

char keys[ROWS][COLS] = {  //key code 

  {'1','2','3','A'}, 

  {'4','5','6','B'}, 

  {'7','8','9','C'}, 

  {'*','0','#','D'} 

}; 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

279 █ www.freenove.com  support@freenove.com 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

byte rowPins[ROWS] = {27,28,29,25 }; //define the row pins for the keypad 

byte colPins[COLS] = {24,23,22,21}; //define the column pins for the keypad 

//create Keypad object 

Keypad keypad = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS ); 

 

int main(){ 

    printf("Program is starting ... \n"); 

     

    wiringPiSetup(); 

     

 char key = 0; 

 keypad.setDebounceTime(50); 

    while(1){ 

        key = keypad.getKey();  //get the state of keys 

        if (key){       //if a key is pressed, print out its key code 

            printf("You Pressed key :  %c \n",key); 

        } 

    } 

    return 1; 

} 

 

In this project code, we use two custom library file "Keypad.hpp" and "Key.hpp". They are located in the same 

directory with program files "MatrixKeypad.cpp", "Keypad.cpp" and "Key.cpp". The Library Keypad is 

“transplanted” from the Arduino Library Keypad. This library file provides a method to read the Matrix 

Keyboard’s input. By using this library, we can easily read the pressed keys of the Matrix Keyboard. 

First, we define the information of the Matrix Keyboard used in this project: the number of rows and columns, 

code designation of each key and GPIO pin connected to each column and row. It is necessary to include the 

header file "Keypad.hpp". 

 #include "Keypad.hpp" 

#include <stdio.h> 

const byte ROWS = 4; //four rows 

const byte COLS = 4; //four columns 

char keys[ROWS][COLS] = {  //key code 

  {'1','2','3','A'}, 

  {'4','5','6','B'}, 

  {'7','8','9','C'}, 

  {'*','0','#','D'} 

}; 

byte rowPins[ROWS] = {1, 4, 5, 6 }; //connect to the row pinouts of the keypad 

byte colPins[COLS] = {12,3, 2, 0 }; //connect to the column pinouts of the keypad 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 280 www.freenove.com █ 

Then, based on the above information, initiates a Keypad class object to operate the Matrix Keyboard. 

 Keypad keypad = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS ); 

 

Set the debounce time to 50ms, and this value can be set based on the actual characteristics of the keyboard’s 

flexibly, with a default time of 10ms. 

 keypad.setDebounceTime(50); 

 

In the "while" loop, use the function key= keypad.getKey () to read the keyboard constantly. If there is a key 

pressed, its key code will be stored in the variable "key", then be displayed. 

     while(1){ 

        key = keypad.getKey();  //get the state of keys 

        if (key){       // if a key is pressed, print out its key code 

            printf("You Pressed key :  %c \n",key); 

        } 

    } 

The Keypad Library used for the RPi is transplanted from the Arduino Keypad Library. And the source files can 

be obtained by visiting http://playground.arduino.cc/Code/Keypad. As for transplanted function library, the 

function and method of all classes, functions, variables, etc. are the same as the original library. Partial contents 

of the Keypad library are described below: 

class Keypad  

Keypad(char *userKeymap, byte *row, byte *col, byte numRows, byte numCols); 
Constructor, the parameters are: key code of keyboard, row pin, column pin, the number of rows, the 

number of columns. 

char getKey(); 
Get the key code of the pressed key. If no key is pressed, the return value is NULL. 

void setDebounceTime(uint); 
Set the debounce time. And the default time is 10ms. 

void setHoldTime(uint); 
Set the time when the key holds stable state after pressed. 

bool isPressed(char keyChar); 
Judge whether the key with code "keyChar" is pressed. 

char waitForKey(); 
Wait for a key to be pressed, and return key code of the pressed key. 

KeyState getState(); 

Get state of the keys. 

bool keyStateChanged(); 
Judge whether there is a change of key state, then return True or False. 

For More information about Keypad, please visit: http://playground.arduino.cc/Code/Keypad or through the 

opening file "Keypad.hpp". 

  

mailto:support@freenove.com
http://www.freenove.com/
http://playground.arduino.cc/Code/Keypad
http://playground.arduino.cc/Code/Keypad


 

 support@freenove.com █ 

281 █ www.freenove.com  support@freenove.com 

Python Code 21.1 MatrixKeypad 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 21_MatrixKeypad directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/21_MatrixKeypad 

2. Use Python command to execute code "MatrixKeypad.py". 

python MatrixKeypad.py 

After the program runs, pressing any key on the MatrixKeypad, will display the corresponding key code on 

the Terminal. As is shown below: 

 

 

The following is the program code： 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

import RPi.GPIO as GPIO 

import Keypad       #import module Keypad 

ROWS = 4        # number of rows of the Keypad 

COLS = 4        #number of columns of the Keypad 

keys =  [   '1','2','3','A',    #key code 

            '4','5','6','B', 

            '7','8','9','C', 

            '*','0','#','D'     ] 

#rowsPins = [12,16,18,22]        #connect to the row pinouts of the keypad 

#colsPins = [19,15,13,11]        #connect to the column pinouts of the keypad 

rowsPins = [36,38,40,37]        #connect to the row pinouts of the keypad 

colsPins = [35,33,31,29]         #connect to the column pinouts of the keypad 

def loop(): 

    keypad = Keypad.Keypad(keys,rowsPins,colsPins,ROWS,COLS)    #creat Keypad object 

    keypad.setDebounceTime(100)      #set the debounce time 

    while(True): 

        key = keypad.getKey()       #obtain the state of keys 

        if(key != keypad.NULL):     #if there is key pressed, print its key code. 

            print ("You Pressed Key : %c "%(key)) 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 282 www.freenove.com █ 

20 

21 

22 

23 

24 

25 

26 

             

if __name__ == '__main__':     #Program start from here 

    print ("Program is starting ... ") 

    try: 

        loop() 

    except KeyboardInterrupt:  #When 'Ctrl+C' is pressed, exit the program.  

        GPIO.cleanup() 

 

Import Keypad. Define row and column. Define key value variable. Define row pins and column pins. 

 import Keypad       #import module Keypad 

ROWS = 4        # number of rows of the Keypad 

COLS = 4        #number of columns of the Keypad 

keys =  [   '1','2','3','A',    #key code 

            '4','5','6','B', 

            '7','8','9','C', 

            '*','0','#','D'     ] 

rowsPins = [36,38,40,37]        #connect to the row pinouts of the keypad 

colsPins = [35,33,31,29]         #connect to the column pinouts of the keypad 

 

Then, based on the above information, initiates a Keypad class object to operate the Matrix Keyboard. 

 keypad = Keypad.Keypad(keys,rowsPins,colsPins,ROWS,COLS)    #creat Keypad object 

 

Set the debounce time to 100ms, and this value can be set based on the actual characteristics of the 

keyboard’s flexibly, with a default time of 10ms. 

 keypad.setDebounceTime(100)      #set the debounce time 

 

In the "while" loop, use the function key= keypad.getKey () to read the keyboard constantly. If there is a key 

pressed, its key code will be stored in the variable "key", and then be displayed. 

     while(True): 

        key = keypad.getKey()       #obtain the state of keys 

        if(key != keypad.NULL):     #if there is key pressed, print its key code. 

            print ("You Pressed Key : %c "%(key)) 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

283 █ www.freenove.com  support@freenove.com 

class Keypad  

def __init__(self,usrKeyMap,row_Pins,col_Pins,num_Rows,num_Cols): 
Constructed function, the parameters are: key code of keyboard, row pin, column pin, the number of rows, 

the number of columns. 

def getKey(self): 
Get a pressed key. If no key is pressed, the return value is keypad NULL. 

def setDebounceTime(self,ms): 
Set the debounce time. And the default time is 10ms. 

def setHoldTime(self,ms): 
Set the time when the key holds stable state after pressed. 

def isPressed(keyChar): 
Judge whether the key with code "keyChar" is pressed. 

def waitForKey(): 
Wait for a key to be pressed, and return key code of the pressed key. 

def getState(): 

Get state of the keys. 

def keyStateChanged(): 
Judge whether there is a change of key state, then return True or False. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 284 www.freenove.com █ 

Chapter 22 Infrared Motion Sensor 

In this chapter, we will learn a widely used sensor, Infrared Motion Sensor.  

 

Project 22.1 PIR Infrared Motion Detector with LED Indicator 

In this project, we will make a Motion Detector, with the human body infrared pyroelectric sensors. 

When someone is in close proximity to the Motion Detector, it will automatically light up and when there is 

no one close by, it will be out. 

This Infrared Motion Sensor can detect the infrared spectrum (heat signatures) emitted by living humans and 

animals. 

Component Knowledge 

The following is the diagram of the Infrared Motion Sensor（HC SR-501）a PIR Sensor: 

Top 

 

 Bottom  

 

Schematic 

 

Description:  

1. Working voltage: 5v-20v(DC） Static current: 65uA. 

2. Automatic Trigger. When a living body enters into the active area of sensor, the module will output high 

level (3.3V). When the body leaves the sensor’s active detection area, it will output high level lasting for 

time period T, then output low level(0V). Delay time T can be adjusted by the potentiometer R1. 

3. According to the position of Fresnel lenses dome, you can choose non-repeatable trigger modes or 

repeatable modes. 

L: non-repeatable trigger mode. The module outputs high level after sensing a body, then when the 

delay time is over, the module will output low level. During high level time, the sensor no longer actively 

senses bodies.   

H: repeatable trigger mode. The distinction from the L mode is that it can sense a body until that body 

leaves during the period of high level output. After this, it starts to time and output low level after delaying 

T time. 

4. Induction block time: the induction will stay in block condition and does not induce external signal at 

lesser time intervals (less than delay time) after outputting high level or low level  

5. Initialization time: the module needs about 1 minute to initialize after being powered ON. During this 

period, it will alternately output high or low level.  

6. One characteristic of this sensor is when a body moves close to or moves away from the sensor’s dome 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

285 █ www.freenove.com  support@freenove.com 

edge, the sensor will work at high sensitively. When a body moves close to or moves away from the 

sensor’s dome in a vertical direction (perpendicular to the dome), the sensor cannot detect well (please 

take note of this deficiency). Actually this makes sense when you consider that this sensor is usually placed 

on a celling as part of a security product. Note: The Sensing Range (distance before a body is detected) 

is adjusted by the potentiometer. 

We can regard this sensor as a simple inductive switch when in use. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 286 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable 

 

Jumper Wire 

 

 

 

HC SR501 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

287 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection.  

 

How to use this sensor? 

Top 

 

 Bottom  

 

Description:  

1. You can choose non-repeatable trigger modes or repeatable modes. 

L: non-repeatable trigger mode. The module outputs high level after sensing a body, then when the 

delay time is over, the module will output low level. During high level time, the sensor no longer actively 

senses bodies.   

H: repeatable trigger mode. The distinction from the L mode is that it can sense a body until that body 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 288 www.freenove.com █ 

leaves. After this, it starts to time and output low level after delaying T time. 

2. R1 is used to adjust HIGH level lasting time when sensor detects human motion, 1.2s-320s. 

3. R2 is used to adjust the maxmum distance the sensor can detect, 3~5m. 

 

Here we connect L and adjust R1 and R2 like below to do this project. 

 

Put you hand close and away from the sensor slowly. Obsever the LED in previous circuit. 

 

It need some time between two detections. 

 
 

If you have any concerns, please send an email to: support@freenove.com 

Code 

In this project, we will use the Infrared Motion Sensor to trigger an LED, essentially making the Infrared Motion 

sensor act as a Motion Switch. Therefore, the code is very similar to the earlier project "Push Button Switch 

and LED”. The difference is that, when Infrared Motion Sensor detects change, it will output high level; when 

button is pressed, it will output low level. When the sensor output high level, the LED turns ON, or it will turn 

OFF. 

 

C Code 22.1 SenseLED 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

289 █ www.freenove.com  support@freenove.com 

1. Use cd command to enter 22_1_InfraredSensor directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/22_1_InfraredSensor 

2. Use following command to compile "SenseLED.c" and generate executable file "SenseLED". 

gcc SenseLED.c -o SenseLED -lwiringPi 

3. Run the generated file "SenseLED". 

sudo ./SenseLED 

After the program runs, wait 1 minute for initialization. Then move away from or move closer to the Infrared 

Motion Sensor and observe whether the LED turns ON or OFF. The Terminal window will continuously display 

the state of LED. As is shown below: 

 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

#include <wiringPi.h> 

#include <stdio.h> 

 

#define ledPin    0   //define the ledPin 

#define sensorPin 5  //define the sensorPin 

 

int main(void) 

{  

 printf("Program is starting ... \n"); 

  

 wiringPiSetup(); 

  

 pinMode(ledPin, OUTPUT);  

 pinMode(sensorPin, INPUT); 

 

 while(1){ 

   

  if(digitalRead(sensorPin) == HIGH){ //if read value of sensor is HIGH level 

   digitalWrite(ledPin, HIGH);   //make led on 

   printf("led turned on >>> \n"); 

  } 

  else {     

   digitalWrite(ledPin, LOW);   //make led off 

   printf("led turned off <<< \n"); 

  } 

 } 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 290 www.freenove.com █ 

28 

29 

 return 0; 

} 

 

Python Code 22.1 SenseLED 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 22_InfraredSensor directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/22_InfraredSensor 

2. Use Python command to execute code "SenseLED.py". 

python SenseLED.py 

 

After the program runs, wait 1 minute for initialization. Then move away from or move closer to the Infrared 

Motion Sensor and observe whether the LED turns ON or OFF. The Terminal window will continuously display 

the state of LED. As is shown below: 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

291 █ www.freenove.com  support@freenove.com 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

import RPi.GPIO as GPIO 

 

ledPin = 11       # define ledPin 

sensorPin = 18    # define sensorPin 

 

def setup(): 

    GPIO.setmode(GPIO.BOARD)        # use PHYSICAL GPIO Numbering 

    GPIO.setup(ledPin, GPIO.OUT)    # set ledPin to OUTPUT mode 

    GPIO.setup(sensorPin, GPIO.IN)  # set sensorPin to INPUT mode 

 

def loop(): 

    while True: 

        if GPIO.input(sensorPin)==GPIO.HIGH: 

            GPIO.output(ledPin,GPIO.LOW) # turn off led 

            print ('led turned off >>>') 

        else : 

            GPIO.output(ledPin,GPIO.HIGH) # turn on led 

            print ('led turned on <<<') 

 

def destroy(): 

    GPIO.cleanup()                     # Release GPIO resource 

 

if __name__ == '__main__':     # Program entrance 

    print ('Program is starting...') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        destroy() 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 292 www.freenove.com █ 

Chapter 23 Ultrasonic Ranging 

In this chapter, we learn a module which use ultrasonic to measure distance, HC SR04. 

Project 23.1 Ultrasonic Ranging 

In this project, we use ultrasonic ranging module to measure distance, and print out the data in the terminal. 

Component Knowledge 

The Ultrasonic Ranging Module uses the principle that ultrasonic waves will be reflected when they encounter 

any obstacles. This is possible by counting the time interval between when the ultrasonic wave is transmitted 

to when the ultrasonic wave reflects back after encountering an obstacle. Time interval counting will end after 

an ultrasonic wave is received, and the time difference (delta) is the total time of the ultrasonic wave’s journey 

from being transmitted to being received. Because the speed of sound in air is a constant, and is about 

v=340m/s, we can calculate the distance between the Ultrasonic Ranging Module and the obstacle: s=vt/2. 

   2S=V·t. 

The HC-SR04 Ultrasonic Ranging Module integrates both an ultrasonic transmitter and a receiver. The 

transmitter is used to convert electrical signals (electrical energy) into high frequency (beyond human hearing) 

sound waves (mechanical energy) and the function of the receiver is opposite of this. The picture and the 

diagram of the HC SR04 Ultrasonic Ranging Module are shown below: 

  
Pin description: 

VCC power supply pin 

Trig trigger pin 

Echo Echo pin 

GND GND 

 

Technical specs: 

Working voltage: 5V                      Working current: 12mA 

Minimum measured distance: 2cm          Maximum measured distance: 200cm 

Instructions for Use: output a high-level pulse in Trig pin lasting for least 10uS, the module begins to transmit 

ultrasonic waves. At the same time, the Echo pin is pulled up. When the module receives the returned 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

293 █ www.freenove.com  support@freenove.com 

ultrasonic waves from encountering an obstacle, the Echo pin will be pulled down. The duration of high level 

in the Echo pin is the total time of the ultrasonic wave from transmitting to receiving, s=vt/2. This is done 

constantly. 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 294 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi  

 

GPIO Ribbon Cable 

 

Jumper Wire 

 

 

HC SR04 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

295 █ www.freenove.com  support@freenove.com 

Circuit 

 

Schematic diagram 

 
Hardware connection. 

 

After running the program, hold an object in front of the sensor and change their distance. 

 
 

If you have any concerns, please send an email to: support@freenove.com 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 296 www.freenove.com █ 

Code 

C Code 23.1 UltrasonicRanging 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 23_UltrasonicRanging directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/23_UltrasonicRanging 

2. Use following command to compile "UltrasonicRanging.c" and generate executable file 

"UltrasonicRanging".  

gcc UltrasonicRanging.c -o UltrasonicRanging -lwiringPi 

3. Then run the generated file "UltrasonicRanging". 

sudo ./UltrasonicRanging 

After the program runs, aim the Ultrasonic Ranging Module’s detectors (“eyes”) perpendicular to the surface 

of an object (try using your hand). The distance between the ultrasonic module and the object will be displayed 

in the terminal. As is shown below: 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

#include <wiringPi.h> 

#include <stdio.h> 

#include <sys/time.h> 

 

#define trigPin 15        

#define echoPin 16 

#define MAX_DISTANCE 220        // define the maximum measured distance 

#define timeOut MAX_DISTANCE*60 // calculate timeout according to the maximum measured 

distance 

//function pulseIn: obtain pulse time of a pin 

int pulseIn(int pin, int level, int timeout); 

float getSonar(){   //get the measurement result of ultrasonic module with unit: cm 

    long pingTime; 

    float distance; 

    digitalWrite(trigPin,HIGH); //send 10us high level to trigPin  

    delayMicroseconds(10); 

    digitalWrite(trigPin,LOW); 

    pingTime = pulseIn(echoPin,HIGH,timeOut);   //read plus time of echoPin 

    distance = (float)pingTime * 340.0 / 2.0 / 10000.0; //calculate distance with sound speed 

340m/s 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

297 █ www.freenove.com  support@freenove.com 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

    return distance; 

} 

 

int main(){ 

    printf("Program is starting ... \n"); 

     

    wiringPiSetup(); 

     

    float distance = 0; 

    pinMode(trigPin,OUTPUT); 

    pinMode(echoPin,INPUT); 

    while(1){ 

        distance = getSonar(); 

        printf("The distance is : %.2f cm\n",distance); 

        delay(1000); 

    }    

    return 1; 

} 

 

int pulseIn(int pin, int level, int timeout) 

{ 

   struct timeval tn, t0, t1; 

   long micros; 

   gettimeofday(&t0, NULL); 

   micros = 0; 

   while (digitalRead(pin) != level) 

   { 

      gettimeofday(&tn, NULL); 

      if (tn.tv_sec > t0.tv_sec) micros = 1000000L; else micros = 0; 

      micros += (tn.tv_usec - t0.tv_usec); 

      if (micros > timeout) return 0; 

   } 

   gettimeofday(&t1, NULL); 

   while (digitalRead(pin) == level) 

   { 

      gettimeofday(&tn, NULL); 

      if (tn.tv_sec > t0.tv_sec) micros = 1000000L; else micros = 0; 

      micros = micros + (tn.tv_usec - t0.tv_usec); 

      if (micros > timeout) return 0; 

   } 

   if (tn.tv_sec > t1.tv_sec) micros = 1000000L; else micros = 0; 

   micros = micros + (tn.tv_usec - t1.tv_usec); 

   return micros; 

} 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 298 www.freenove.com █ 

 

First, define the pins and the maximum measurement distance. 

 #define trigPin 15        

#define echoPin 16 

#define MAX_DISTANCE 220        // define the maximum measured distance 

 

If the module does not return high level, we cannot wait for this forever, so we need to calculate the time 

period for the maximum distance, that is, time Out. timeOut= 2*MAX_DISTANCE/100/340*1000000. This 

formula is (not approximately) 58.8 and 60 is used as an approximation. 

 #define timeOut MAX_DISTANCE*60 // calculate timeout according to the maximum measured distance 

 

Subfunction getSonar () function is used to start the Ultrasonic Module to begin measurements and return 

the measured distance in cm units. In this function, first let trigPin send 10us high level to start the Ultrasonic 

Module. Then use pulseIn () to read the Ultrasonic Module and return the duration time of high level. Finally, 

the measured distance according to the time is calculated. 

 float getSonar(){   //get the measurement result of ultrasonic module with unit: cm 

    long pingTime; 

    float distance; 

    digitalWrite(trigPin,HIGH); //send 10us high level to trigPin  

    delayMicroseconds(10); 

    digitalWrite(trigPin,LOW); 

    pingTime = pulseIn(echoPin,HIGH,timeOut);   //read plus time of echoPin 

    distance = (float)pingTime * 340.0 / 2.0 / 10000.0; //calculate distance with sound speed 

340m/s 

    return distance; 

} 

 

Lastly, in the while loop of main function, get the measurement distance and display it continually. 

 while(1){ 

        distance = getSonar(); 

        printf("The distance is : %.2f cm\n",distance); 

        delay(1000); 

    }   

 

About function pulseIn(): 

int pulseIn(int pin, int level, int timeout);  

Return the length of the pulse (in microseconds) or 0 if no pulse is completed before the timeout (unsigned 

long). 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

299 █ www.freenove.com  support@freenove.com 

Python Code 23.1 UltrasonicRanging 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

1. Use cd command to enter 23_UltrasonicRanging directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/23_UltrasonicRanging 

2. Use Python command to execute code "UltrasonicRanging.py". 

python UltrasonicRanging.py 

After the program runs, aim the Ultrasonic Ranging Module’s detectors (“eyes”) perpendicular to the surface 

of an object (try using your hand). The distance between the ultrasonic module and the object will be displayed 

in the terminal. As is shown below: 

 

 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

import RPi.GPIO as GPIO 

import time 

 

trigPin = 8 

echoPin = 10 

MAX_DISTANCE = 220          # define the maximum measuring distance, unit: cm 

timeOut = MAX_DISTANCE*60   # calculate timeout according to the maximum measuring distance 

 

def pulseIn(pin,level,timeOut): # obtain pulse time of a pin under timeOut 

    t0 = time.time() 

    while(GPIO.input(pin) != level): 

        if((time.time() - t0) > timeOut*0.000001): 

            return 0; 

    t0 = time.time() 

    while(GPIO.input(pin) == level): 

        if((time.time() - t0) > timeOut*0.000001): 

            return 0; 

    pulseTime = (time.time() - t0)*1000000 

    return pulseTime 

     

def getSonar():     # get the measurement results of ultrasonic module,with unit: cm 

    GPIO.output(trigPin,GPIO.HIGH)      # make trigPin output 10us HIGH level  

    time.sleep(0.00001)     # 10us 

    GPIO.output(trigPin,GPIO.LOW) # make trigPin output LOW level  

    pingTime = pulseIn(echoPin,GPIO.HIGH,timeOut)   # read plus time of echoPin 

    distance = pingTime * 340.0 / 2.0 / 10000.0     # calculate distance with sound speed 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 300 www.freenove.com █ 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

340m/s  

    return distance 

     

def setup(): 

    GPIO.setmode(GPIO.BOARD)      # use PHYSICAL GPIO Numbering 

    GPIO.setup(trigPin, GPIO.OUT)   # set trigPin to OUTPUT mode 

    GPIO.setup(echoPin, GPIO.IN)    # set echoPin to INPUT mode 

 

def loop(): 

    while(True): 

        distance = getSonar() # get distance 

        print ("The distance is : %.2f cm"%(distance)) 

        time.sleep(1) 

         

if __name__ == '__main__':     # Program entrance 

    print ('Program is starting...') 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        GPIO.cleanup()         # release GPIO resource 

 

First, define the pins and the maximum measurement distance. 

 trigPin = 8 

echoPin = 10 

MAX_DISTANCE = 220          # define the maximum measuring distance, unit: cm 

 

If the module does not return high level, we cannot wait for this forever, so we need to calculate the time 

period for the maximum distance (200cm). Then timOut= 2*MAX_DISTANCE/100/340*1000000. The result 

of the constant part in this formula is approximately 58.8. 

 timeOut = MAX_DISTANCE*60 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

301 █ www.freenove.com  support@freenove.com 

Subfunction getSonar () function is used to start the Ultrasonic Module to begin measurements, and return 

the measured distance in cm units. In this function, first let trigPin send 10us high level to start the Ultrasonic 

Module. Then use pulseIn () to read the Ultrasonic Module and return the duration time of high level. Finally, 

the measured distance according to the time is calculated. 

 def getSonar():     # get the measurement results of ultrasonic module,with unit: cm 

    GPIO.output(trigPin,GPIO.HIGH)      # make trigPin output 10us HIGH level  

    time.sleep(0.00001)     # 10us 

    GPIO.output(trigPin,GPIO.LOW) # make trigPin output LOW level  

    pingTime = pulseIn(echoPin,GPIO.HIGH,timeOut)   # read plus time of echoPin 

    distance = pingTime * 340.0 / 2.0 / 10000.0     # calculate distance with sound speed 

340m/s  

    return distance 

 

Finally, in the while loop of main function, get the measurement distance and display it continually. 

     while(True): 

        distance = getSonar() 

        print ("The distance is : %.2f cm"%(distance)) 

        time.sleep(1) 

 

About function def pulseIn(pin,level,timeOut)： 

def pulseIn(pin,level,timeOut):  

Return the length of the pulse (in microseconds) or 0 if no pulse is completed before the timeout (unsigned 

long). 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 302 www.freenove.com █ 

Chapter 24 Attitude Sensor MPU6050 

In this chapter, we will learn about a MPU6050 Attitude sensor, which integrates an Accelerometer and 

Gyroscope. 

Project 24.1 Read an MPU6050 Sensor Module 

In this project, we will read Acceleration and Gyroscope Data of the MPU6050 Sensor. 

Component knowledge 

MPU6050 

MPU6050 Sensor Module is a complete 6-axis Motion Tracking Device. It combines a 3-axis Gyroscope, a 3-

axis Accelerometer and a DMP (Digital Motion Processor) all in a small package. The settings of the 

Accelerometer and Gyroscope of MPU6050 can be changed. A precision wide range digital temperature 

sensor is also integrated to compensate data readings for changes in temperature, and temperature values 

can also be read. The MPU6050 Module follows the I2C communication protocol and the default address is 

0x68. 

 

The port description of the MPU6050 Module is as follows: 

Pin name Pin number Description 

VCC 1 Positive pole of power supply with voltage 5V 

GND 2 Negative pole of power supply 

SCL 3 I2C communication clock pin 

SDA 4 I2C communication data pin 

XDA 5 I2C host data pin which can be connected to other devices. 

XCL 6 I2C host clock pin which can be connected to other devices. 

AD0 7 I2C address bit control pin. 

Low level: the device address is 0x68 

High level: the device address is 0x69 

INT 8 Output interrupt pin 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

303 █ www.freenove.com  support@freenove.com 

For more detail, please refer to the MPU6050 datasheet. 

 

MPU6050 is widely used to assist with balancing vehicles, robots and aircraft, mobile phones and other 

products which require stability to control stability and attitude or which need to sense same. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 304 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi

 

GPIO Ribbon Cable 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

305 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection. 

After running the program, hold the board and turn it over to observe the changes in the running results. 

 

 
 

If you have any concerns, please send an email to: support@freenove.com 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 306 www.freenove.com █ 

Code 

In this project, we will read the acceleration data and gyroscope data of MPU6050, and print them out. 

C Code 24.1 MPU6050RAW 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 24_MPU6050 directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/24_MPU6050 

2. Use following command to compile "MPU6050RAW.c", "MPU6050.cpp" and "I2Cdev.cpp", and generate 

executable file "MPU6050RAW". 

gcc MPU6050RAW.cpp MPU6050.cpp I2Cdev.cpp -o MPU6050RAW 

3. Then run the generated file "MPU6050RAW". 

sudo ./MPU6050RAW 

 

After the program runs, the Terminal will display active accelerometer and gyroscope data of the MPU6050, 

as well as the conversion to gravity acceleration and angular velocity as units of data. As shown in the following 

figure: 

 
 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

#include <stdio.h> 

#include <stdint.h> 

#include <unistd.h> 

#include "I2Cdev.h" 

#include "MPU6050.h" 

 

MPU6050 accelgyro;      //creat MPU6050 class object 

 

int16_t ax, ay, az;     //store acceleration data 

int16_t gx, gy, gz;     //store gyroscope data 

 

void setup() { 

    // initialize device 

    printf("Initializing I2C devices...\n"); 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

307 █ www.freenove.com  support@freenove.com 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

    accelgyro.initialize();     //initialize MPU6050 

 

    // verify connection 

    printf("Testing device connections...\n"); 

    printf(accelgyro.testConnection() ? "MPU6050 connection successful\n" : "MPU6050 

connection failed\n"); 

} 

 

void loop() { 

    // read accel/gyro values of MPU6050 

    accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); 

    // display accel/gyro x/y/z values 

    printf("a/g: %6hd %6hd %6hd   %6hd %6hd %6hd\n",ax,ay,az,gx,gy,gz); 

    printf("a/g: %.2f g %.2f g %.2f g   %.2f d/s %.2f d/s %.2f d/s 

\n",(float)ax/16384,(float)ay/16384,(float)az/16384, 

        (float)gx/131,(float)gy/131,(float)gz/131); 

} 

 

int main() 

{ 

    setup(); 

    while(1){ 

        loop(); 

    } 

    return 0; 

} 

 

Two library files "MPU6050.h" and "I2Cdev.h" are used in the code and will be compiled with others. Class 

MPU6050 is used to operate the MPU6050 Sensor. When used, first it initiates an object. 

 MPU6050 accelgyro;      //creat MPU6050 class object 

 

In the setup function, the MPU6050 is initialized and the result of the initialization will be tested. 

 void setup() { 

    // initialize device 

    printf("Initializing I2C devices...\n"); 

    accelgyro.initialize();     //initialize MPU6050 

 

    // verify connection 

    printf("Testing device connections...\n"); 

    printf(accelgyro.testConnection() ? "MPU6050 connection successful\n" : "MPU6050 

connection failed\n"); 

} 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 308 www.freenove.com █ 

In the loop function, read the original data of MPU6050, display them and then convert the original data into 

the corresponding acceleration and angular velocity values, then display the converted data out. 

 void loop() { 

    // read accel/gyro values of MPU6050 

    accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); 

    // display accel/gyro x/y/z values 

    printf("a/g: %6hd %6hd %6hd   %6hd %6hd %6hd\n",ax,ay,az,gx,gy,gz); 

    printf("a/g: %.2f g %.2f g %.2f g   %.2f d/s %.2f d/s %.2f d/s 

\n",(float)ax/16384,(float)ay/16384,(float)az/16384, 

        (float)gx/131,(float)gy/131,(float)gz/131); 

} 

 

Finally, the main functions, called setup function and loop function respectively. 

 int main() 

{ 

    setup(); 

    while(1){ 

        loop(); 

    } 

    return 0; 

} 

 

About class MPU6050： 

Class MPU6050  

This is a class library used to operate the MPU6050, which can directly read and set the MPU6050. Here are 

its functions:  

MPU6050()/MPU6050(uint8_t address)： 

Constructor. The parameter is I2C address, and the default I2C address is 0x68. 

void initialize(); 

Initialization function, used to wake up MPU6050. Range of accelerometer is ±2g and range of gyroscope 

is ±250 degrees/sec. 

void getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz); 

Get the original data of accelerometer and gyroscope. 

int16_t getTemperature(); 

Get the original temperature data of MPU6050. 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

309 █ www.freenove.com  support@freenove.com 

Python Code 24.1 MPU6050RAW 

First, observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 24_MPU6050 directory of Python code. 

cd ~/Freenove_Kit/Code/Python_Code/24_MPU6050 

2. Use Python command to execute code "MPU6050RAW.py". 

python MPU6050RAW.py 

After the program runs, the Terminal will display active accelerometer and gyroscope data of the MPU6050, 

as well as the conversion to gravity acceleration and angular velocity as units of data. As shown in the following 

figure: 

 
 

The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

import MPU6050  

import time 

 

mpu = MPU6050.MPU6050()     # instantiate a MPU6050 class object 

accel = [0]*3               # define an arry to store accelerometer data 

gyro = [0]*3                # define an arry to store gyroscope data 

def setup(): 

    mpu.dmp_initialize()    # initialize MPU6050 

     

def loop(): 

    while(True): 

        accel = mpu.get_acceleration()      # get accelerometer data 

        gyro = mpu.get_rotation()           # get gyroscope data 

        print("a/g:%d\t%d\t%d\t%d\t%d\t%d 

"%(accel[0],accel[1],accel[2],gyro[0],gyro[1],gyro[2])) 

        print("a/g:%.2f g\t%.2f g\t%.2f g\t%.2f d/s\t%.2f d/s\t%.2f 

d/s"%(accel[0]/16384.0,accel[1]/16384.0, 

            accel[2]/16384.0,gyro[0]/131.0,gyro[1]/131.0,gyro[2]/131.0)) 

        time.sleep(0.1) 

         

if __name__ == '__main__':     # Program entrance 

    print("Program is starting ... ") 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 310 www.freenove.com █ 

23 

24 

25 

26 

27 

    setup() 

    try: 

        loop() 

    except KeyboardInterrupt:  # Press ctrl-c to end the program. 

        pass 

 

A module "MPU6050.py" is used in the code. The module includes a class used to operate MPU6050. When 

using it, first initiate an object. 

 mpu = MPU6050.MPU6050()     # instantiate a MPU6050 class object 

 

In the setup function, the MPU6050 is initialized. 

 def setup(): 

    mpu.dmp_initialize() 

 

In the loop function, read the original data of MPU6050, display them and then convert the original data into 

the corresponding acceleration and angular velocity values, then display the converted data out. 

 def loop(): 

    while(True): 

        accel = mpu.get_acceleration()      #get accelerometer data 

        gyro = mpu.get_rotation()           #get gyroscope data 

        print("a/g:%d\t%d\t%d\t%d\t%d\t%d 

"%(accel[0],accel[1],accel[2],gyro[0],gyro[1],gyro[2])) 

        print("a/g:%.2f g\t%.2f g\t%.2f g\t%.2f d/s\t%.2f d/s\t%.2f 

d/s"%(accel[0]/16384.0,accel[1]/16384.0, 

            accel[2]/16384.0,gyro[0]/131.0,gyro[1]/131.0,gyro[2]/131.0)) 

        time.sleep(0.1) 

 

 

Class MPU6050  

This is a class library used to operate MPU6050, which can directly read and set MPU6050. Here are some 

member functions: 

def __init__(self, a_bus=1, a_address=C.MPU6050_DEFAULT_ADDRESS, 

                 a_xAOff=None, a_yAOff=None, a_zAOff=None, a_xGOff=None, 

                 a_yGOff=None, a_zGOff=None, a_debug=False): 
Constructor 

def dmp_initialize(self): 
Initialization function, used to wake up MPU6050. Range of accelerometer is ±2g and range of gyroscope 

is ±250 degrees/sec. 

def get_acceleration(self):   &   def get_rotation(self): 
Get the original data of accelerometer and gyroscope. 

For details of more relevant member functions, please refer to MPU6050.py in the code folder. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

311 █ www.freenove.com  support@freenove.com 

Chapter 25 RFID 

In this chapter, we will learn how to use RFID. 

Project 25.1 RFID 

In this project, we will use RC522 RFID card reader to read and write the M1-S50 card. 

Component Knowledge 

RFID 

RFID（Radio Frequency Identification）is a form of wireless communication technology. A complete RFID 

system is generally composed of a transponder and a reader. Generally, the transponder may be known as a 

tag, and each tag has a unique code, which is attached to an object to identify the target object. The reader 

is a device that reads (or writes) information in the tag. 

Products derived from RFID technology can be divided into three categories: passive RFID products, active 

RFID products and semi active RFID products, among which, Passive RFID products are the earliest, the most 

mature and most widely used products in the market. It can be seen everywhere in our daily life such as, the 

bus card, dining card, bank card, hotel access cards, etc., and all of them are classified as close-range contact 

recognition. The main operating frequency of Passive RFID products are: 125KHZ (low frequency), 13.56MHZ 

(high frequency), 433MHZ (ultrahigh frequency), 915MHZ (ultrahigh frequency). Active and semi active RFID 

products work at higher frequencies. 

The RFID module we use is a passive RFID product with the operating frequency of 13.56MHz. 

MFRC522 

The MFRC522 is a highly integrated reader/writer IC for contactless communication at 13.56MHz. 

The MFRC522’s internal transmitter is able to drive a reader/writer antenna designed to communicate with 

ISO/IEC 14443 A/MIFARE cards and transponders without additional active circuitry. The receiver module 

provides a robust and efficient implementation for demodulating and decoding signals from ISO/IEC 14443 

A/MIFARE compatible cards and transponders. The digital module manages the complete ISO/IEC 14443A 

framing and error detection (parity and CRC) functionality 

This RFID Module uses MFRC522 as the control chip, and SPI (Peripheral Interface Serial) as the reserved 

interface. 

Technical specs: 

Operating Voltage 13-26mA(DC)\3.3V 

Idle current 10-13mA(DC)\3.3V 

Sleep current in the <80uA 

Peak current <30mA 

Operating frequency 13.56MHz 

Supported card type 
Mifare1 S50、Mifare1 S70、Mifare 

Ultralight、Mifare Pro、Mifare Desfire 

Size 40mmX60mm 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 312 www.freenove.com █ 

Operation temperature 20-80 degrees(Celsius) 

Storage temperature  40-85 degrees (Celsius) 

Operation humidity 5%-95%(Relative humidity) 

Mifare1 S50 Card 

Mifare S50 is often called Mifare Standard with the capacity of 1K bytes. And each card has a 4-bytes global 

unique identifier number (USN/UID), which can be rewritten 100 thousand times and read infinite times. Its 

storage period can last for 10 years.  

The Mifare S50 capacity (1K byte) is divided into 16 sectors (Sector0-Sector15). Each sector contains 4 data 

block (Block0-Block3. 64 blocks of 16 sectors will be numbered according absolute address, from 0 to 63).  

 

And each block contains 16 bytes (Byte0-Byte15), 64*16=1024. As is shown in the following table: 

Sector No.  Block No. Storage area Block type Absolute 

block No. 

sector 0 block 0 vendor code vendor block 0 

 block 1  data block 1 

 block 2  data block 2 

 block 3 Password A-access control-password B control block 3 

sector 1 block 0  data block 4 

 block 1  data block 5 

 block 2  data block 6 

 block 3 Password A-access control-password B control block 7 

…… …… …… ……  

sector 15 block 0  data block 60 

 block 1  data block 61 

 block 2  data block 62 

 block 3 Password A-access control-password B control block 63 

 

Each sector has a set of independent password and access control put in its last block, that is, Block 3, which 

is also known as sector trailer. Sector 0, block 0 (namely absolute address 0) of S50 is used to store the card 

serial number and vendor code, which has been solidified and can’t be changed. Except the manufacturer 

and the control block, the rest of the cards are data blocks, which can be used to store data. Data block can 

be used for two kinds of applications: 

(1) used as general data storage and can be operated for reading and writing data. 

(2) used as data value, and can be operated for initializing, adding, subtracting and reading the value. 

The sector trailer block in each sector is the control block, including a 6-byte password A, a 4-byte access 

control and a 6-byte password B. For example, the control block of a brand new card is as follows: 

A0 A1 A2 A3 A4 A5 FF 07 80 69 B0 B1 B2 B3 B4 B5 

password A access control password B 

 

The default password of a brand new card is generally 0A1A2A3A4A5 for password A and B0B1B2B3B4B5 for 

password B, or both the password A and password B are 6 FF. Access control is used to set the access 

conditions for each block (including the control block itself) in a sector. 

Blocks of S50 are divided into data blocks and control blocks. There are four operations, "read", "write", "add 

value", "subtract value (including transmission and storage)" for data blocks, and there are two operations, 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

313 █ www.freenove.com  support@freenove.com 

"read" and "write" for control blocks. 

For more details about how to set data blocks and control blocks, please refer to Datasheet. 

By default, after verifying password A or password B, we can do reading or writing operation to data blocks. 

And after verifying password A, we can do reading or writing operation to control blocks. But password A can 

never be read, so if you choose to verify password A but forget the password A, the block will never be able 

to read again. It is highly recommended that beginners should not try to change the contents of control 

blocks. 

For Mifare1 S50 card equipped in Freenove RFID Kit, the default password A and B are both FFFFFFFFFFFF.  

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 314 www.freenove.com █ 

Component List 

Freenove Projects Board for Raspberry Pi 

 

Raspberry Pi 

 

GPIO Ribbon Cable 

 

Mifare1 S50 Standard card 

 

Mifare1 S50 Non-standard card 

 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

315 █ www.freenove.com  support@freenove.com 

Circuit 

Schematic diagram 

 

Hardware connection.  

Put RFID card down on here. When the program is running, don’t move it away. 

 
 

 

If you have any concerns, please send an email to: support@freenove.com 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 316 www.freenove.com █ 

Configure SPI 

Enable SPI 

The SPI interface of raspberry pi is closed by default. You need to open it manually. You can enable the SPI 

interface in the following way. 

 

Type the following command in the terminal: 

sudo raspi-config 

 

Then open the following dialog box: 

 

Choose “5 Interfacing Options”“P4 SPI”“Yes”“Finish” in order and then restart your RPi. Then the SPI 

module is started. 

 

Type the following command to check whether the module SPI is loaded successfully: 

ls /dev/sp* 

 

The following result indicates that the module SPI has been loaded successfully: 

 

 

Install Python module SPI-Py 

If you use Python language to write the code, please follow the steps below to install the module SPI-Py. If 

you use C/C++ language, you can skip this step. 

Open the terminal and type the following command to install: 

git clone https://github.com/Freenove/SPI-Py  

cd SPI-Py 

sudo python3 setup.py install 

sudo python2 setup.py install 

  

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/Freenove/SPI-Py


 

 support@freenove.com █ 

317 █ www.freenove.com  support@freenove.com 

Code 

The project code uses human-computer interaction command line mode to read and write the M1-S50 card. 

C Code 25.1 RFID 

First observe the running result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter 25_RFID directory of C code. 

cd ~/Freenove_Kit/Code/C_Code/25_RFID 

2. Use the following command to compile and generate executable file "RFID".  

sudo sh ./build.sh 

3. Then run the generated file "RFID". 

sudo ./RFID 

 

After the program runs, the following contents will be displayed in the terminal: 

 
 

Here, type the command “quit” to exit the program. 

Type command "scan", and then the program begins to detect whether there is a card close to the sensing 

area of MFRC522 reader. Place a M1-S50 card in the sensing area. The following results indicate that the M1-

S50 card has been detected, the UID of which is E6CF5C8EFB (HEX). 

 
 

When the Card is placed in the sensing area, you can read and write the card with the following command. 

 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 318 www.freenove.com █ 

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range 

is 0-63. This command is used to display all the data from blockstart address to the end of the sector. For 

example, sector 0 contains data block 0,1,2,3. Using the command “read 0” can display all contents of data 

block 0,1,2,3. Using the command “read 1” can display all contents of data block 1,2,3. As is shown below:    

 

 

Command “dump” is used to display the content of all data blocks in all sectors. 

Command <address> <data> is used to write “data" to data block with address “address”, where the address 

range is 0-63 and the data length is 0-16. For example, if you want to write the string "Freenove" to the data 

block with address “1”, you can type the following command. 

write 1 Freenove 

 
 

Read the contents of this sector and check the data just written. 

read 0 

The following results indicate that the string "Freenove" has been written successfully into the data block 1. 

 

Command “clean <address>” is used to remove the contents of the data block with address "address". For 

example, if you want to clear the contents of the data block 1 that has just been written, you can type the 

following command. 

clean 1 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

319 █ www.freenove.com  support@freenove.com 

Read the contents of data blocks in this sector again to check whether the data is erased. The following 

results indicate that the contents of data block 1 have been erased. 

 
 

Command “halt” is used to quit the selection state of the card. 

 
The following is the program code: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

#include <stdio.h> 

#include <stdint.h> 

#include <unistd.h> 

#include <string.h> 

#include <getopt.h> 

#include <stdlib.h> 

#include "mfrc522.h" 

#define DISP_COMMANDLINE() printf("RC522>") 

 

int scan_loop(uint8_t *CardID); 

int tag_select(uint8_t *CardID); 

 

int main(int argc, char **argv) { 

 MFRC522_Status_t ret; 

 //Recognized card ID 

 uint8_t CardID[5] = { 0x00, }; 

 uint8_t tagType[16] = {0x00,}; 

 static char command_buffer[1024]; 

 

 ret = MFRC522_Init('B'); 

 if (ret < 0) { 

  printf("Failed to initialize.\r\nProgram exit.\r\n"); 

  exit(-1); 

 } 

 

 printf("User Space RC522 Application\r\n"); 

 

 while (1) { 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 320 www.freenove.com █ 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

  /*Main Loop Start*/ 

  DISP_COMMANDLINE(); 

 

  scanf("%s", command_buffer); 

  if (strcmp(command_buffer, "scan") == 0) { 

   puts("Scanning ... "); 

   while (1) { 

    ret = MFRC522_Request(PICC_REQIDL, tagType); 

    if (ret == MI_OK) { 

     printf("Card detected!\r\n");  

     ret = MFRC522_Anticoll(CardID);  

     if(ret == MI_OK){ 

      ret = tag_select(CardID); 

      if (ret == MI_OK) { 

       ret = scan_loop(CardID); 

       if (ret < 0) { 

        printf("Card error...\r\n"); 

        break; 

       } else if (ret == 1) { 

        puts("Halt...\r\n"); 

        break; 

       } 

      } 

     } 

     else{ 

      printf("Get Card ID failed!\r\n"); 

     }         

    } 

    MFRC522_Halt(); 

   } 

   MFRC522_Halt(); 

   MFRC522_Init('B'); 

  } else if (strcmp(command_buffer, "quit") == 0 

    || strcmp(command_buffer, "exit") == 0) { 

   return 0; 

  } else { 

   puts("Unknown command"); 

   puts("scan:scan card and dump"); 

   puts("quit:exit program"); 

  } 

  /*Main Loop End*/ 

 } 

} 

int scan_loop(uint8_t *CardID) { 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

321 █ www.freenove.com  support@freenove.com 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

 

 while (1) { 

 

  char input[32]; 

  int block_start; 

  DISP_COMMANDLINE(); 

  printf("%02X%02X%02X%02X>", CardID[0], CardID[1], CardID[2], CardID[3]); 

  scanf("%s", input); 

  puts((char*)input); 

  if (strcmp(input, "halt") == 0) { 

   MFRC522_Halt(); 

   return 1; 

  } else if (strcmp(input, "dump") == 0) { 

   if (MFRC522_Debug_CardDump(CardID) < 0) 

    return -1; 

  } else if (strcmp(input, "read") == 0) { 

   scanf("%d", &block_start); 

   if (MFRC522_Debug_DumpSector(CardID, block_start) < 0) { 

    return -1; 

   } 

  } else if(strcmp(input, "clean") == 0){ 

   char c; 

   scanf("%d", &block_start); 

   while ((c = getchar()) != '\n' && c != EOF) 

    ; 

   if (MFRC522_Debug_Clean(CardID, block_start)) { 

    return -1; 

   } 

    

  } else if (strcmp(input, "write") == 0) { 

   char write_buffer[256]; 

   size_t len = 0; 

   scanf("%d", &block_start); 

   scanf("%s",write_buffer); 

   if (len >= 0) { 

    if (MFRC522_Debug_Write(CardID, block_start, write_buffer, 

      strlen(write_buffer)) < 0) { 

     return -1; 

    } 

   } 

  } else { 

 

   printf( 

     "Usage:\r\n" "\tread <blockstart>\r\n" "\tdump\r\n" "\thalt\r\n"  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 322 www.freenove.com █ 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

140 

      "\tclean <blockaddr>\r\n" "\twrite <blockaddr> <data>\r\n"); 

   //return 0; 

  } 

 } 

 return 0; 

 

} 

int tag_select(uint8_t *CardID) { 

 int ret_int; 

 printf( 

   "Card UID: 0x%02X 0x%02X 0x%02X 0x%02X, Check Sum = 0x%02X\r\n", 

   CardID[0], CardID[1], CardID[2], CardID[3], CardID[4]); 

 ret_int = MFRC522_SelectTag(CardID); 

 if (ret_int == 0) { 

  printf("Card Select Failed\r\n"); 

  return -1; 

 } else { 

  printf("Card Selected, Type:%s\r\n", 

    MFRC522_TypeToString(MFRC522_ParseType(ret_int))); 

 } 

 ret_int = 0; 

 return ret_int; 

} 

 

In the code, first initialize the MFRC522. If the initialization fails, the program will exit. 

  ret = MFRC522_Init('B'); 

 if (ret < 0) { 

  printf("Failed to initialize.\r\nProgram exit.\r\n"); 

  exit(-1); 

 } 

 

In the main function, wait for the command input. If command "scan" is received, the function will begin to 

detect whether there is a card close to the sensing area. If a card is detected, the card will be selected and 

card UID will be acquired. Then enter the function scan_loop (). If command "quit" or "exit" is received, the 

program will exit. 

   scanf("%s", command_buffer); 

  if (strcmp(command_buffer, "scan") == 0) { 

   puts("Scanning ... "); 

   while (1) { 

    ret = MFRC522_Request(PICC_REQIDL, tagType); 

    if (ret == MI_OK) { 

     printf("Card detected!\r\n");  

     ret = MFRC522_Anticoll(CardID);  

     if(ret == MI_OK){ 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

323 █ www.freenove.com  support@freenove.com 

      ret = tag_select(CardID); 

      if (ret == MI_OK) { 

       ret = scan_loop(CardID); 

       if (ret < 0) { 

        printf("Card error...\r\n"); 

        break; 

       } else if (ret == 1) { 

        puts("Halt...\r\n"); 

        break; 

       } 

      } 

     } 

     else{ 

      printf("Get Card ID failed!\r\n"); 

     }         

    } 

    MFRC522_Halt(); 

   } 

   MFRC522_Halt(); 

   MFRC522_Init('B'); 

  } else if (strcmp(command_buffer, "quit") == 0 

    || strcmp(command_buffer, "exit") == 0) { 

   return 0; 

  } else { 

   puts("Unknown command"); 

   puts("scan:scan card and dump"); 

   puts("quit:exit program"); 

  } 

  /*Main Loop End*/ 

 

The function scan_loop() will detect command read, write, clean, halt, dump and do the corresponding 

processing to each command. The functions of each command and the method have been introduced before. 

 int scan_loop(uint8_t *CardID) { 

 

 while (1) { 

 

  char input[32]; 

  int block_start; 

  DISP_COMMANDLINE(); 

  printf("%02X%02X%02X%02X>", CardID[0], CardID[1], CardID[2], CardID[3]); 

  scanf("%s", input); 

  puts((char*)input); 

  if (strcmp(input, "halt") == 0) { 

   MFRC522_Halt(); 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 324 www.freenove.com █ 

   return 1; 

  } else if (strcmp(input, "dump") == 0) { 

   if (MFRC522_Debug_CardDump(CardID) < 0) 

    return -1; 

  } else if (strcmp(input, "read") == 0) { 

   scanf("%d", &block_start); 

   if (MFRC522_Debug_DumpSector(CardID, block_start) < 0) { 

    return -1; 

   } 

  } else if(strcmp(input, "clean") == 0){ 

   char c; 

   scanf("%d", &block_start); 

   while ((c = getchar()) != '\n' && c != EOF) 

    ; 

   if (MFRC522_Debug_Clean(CardID, block_start)) { 

    return -1; 

   } 

    

  } else if (strcmp(input, "write") == 0) { 

   char write_buffer[256]; 

   size_t len = 0; 

   scanf("%d", &block_start); 

   scanf("%s",write_buffer); 

   if (len >= 0) { 

    if (MFRC522_Debug_Write(CardID, block_start, write_buffer, 

      strlen(write_buffer)) < 0) { 

     return -1; 

    } 

   } 

  } else { 

 

   printf( 

     "Usage:\r\n" "\tread <blockstart>\r\n" "\tdump\r\n" "\thalt\r\n"  

      "\tclean <blockaddr>\r\n" "\twrite <blockaddr> <data>\r\n"); 

   //return 0; 

  } 

 } 

 return 0; 

 

} 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

325 █ www.freenove.com  support@freenove.com 

Python Code 25.1 RFID 

There are two code files for this project. They are respectively under Python2 folder and Python3 folder. Their 

functions are the same, but they are not compatible. Code under Python2 folder can only run on Python2. 

And code under Python3 folder can only run on Python3. 

First observe the project result, and then learn about the code in detail. 

If you have any concerns, please send an email to: support@freenove.com 

 

1. Use cd command to enter RFID directory of Python code. 

If you use Python2, it is needed to enter Python2 code folder. 

cd ~/Freenove_Kit/Code/Python_Code/25_RFID/Python2 

If you use Python3, it is needed to enter Python3 code folder. 

cd ~/Freenove_Kit/Code/Python_Code/25_RFID/Python3 

2. Use python command to execute code "RFID.py". 

python RFID.py 

After the program runs, the following contents will be displayed in the terminal: 

 
Here, if you need to exit the program, you type the command quit. 

Type command "scan", then the program begins to detect whether there is a card close to the sensing area 

of MFRC522 reader. Place a M1-S50 card in the sensing area. The following results indicate that the M1-S50 

card has been detected, the UID of which is E6CF5C8EFB (HEX). 

 

When the Card is placed in the sensing area, you can read and write the card with the following command. 

 

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range 

is 0-63. As is shown below:    

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range 

is 0-63. This command is used to read the data of data block with address “blockstart”. For example, using 

command “read 0” can display the content of data block 0. Using the command “read 1” can display the 

content of data block 1. As is shown below:    

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 326 www.freenove.com █ 

 

Command “dump” is used to display the content of all data blocks in all sectors. 

Command <address> <data> is used to write “data" to data block with address “address”, where the address 

range is 0-63 and the data length is 0-16. In the process of writing data to the data block, both the contents 

of data block before written and after written will be displayed. For example, if you want to write the string 

"Freenove" to the data block with address “1”, you can type the following command. 

write 1 Freenove 

 
Command “clean <address>” is used remove the contents of the data block with address "address". For 

example, if you want to clear the contents of the data block 1 that has just been written, you can type the 

following command. 

clean 1 

 
Command “halt” is used to quit the selection state of the card. 

 

The following is the program code (python2 code): 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

import RPi.GPIO as GPIO 

import MFRC522 

import sys 

import os 

 

# Create an object of the class MFRC522 

mfrc = MFRC522.MFRC522() 

 

def dis_ConmandLine(): 

 print ("RC522>",end="") 

def dis_CardID(cardID): 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

327 █ www.freenove.com  support@freenove.com 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

 print ("%2X%2X%2X%2X%2X>"%(cardID[0],cardID[1],cardID[2],cardID[3],cardID[4]),end="") 

def setup(): 

 print ("Program is starting ... " ) 

 print ("Press Ctrl-C to exit.") 

 pass 

  

def loop(): 

 global mfrc3s 

 while(True): 

  dis_ConmandLine() 

  inCmd = input() 

  print (inCmd) 

  if (inCmd == "scan"): 

   print ("Scanning ... ") 

   mfrc = MFRC522.MFRC522() 

   isScan = True 

   while isScan: 

    # Scan for cards     

    (status,TagType) = mfrc.MFRC522_Request(mfrc.PICC_REQIDL) 

    # If a card is found 

    if status == mfrc.MI_OK: 

     print ("Card detected") 

    # Get the UID of the card 

    (status,uid) = mfrc.MFRC522_Anticoll()     

    # If we have the UID, continue 

    if status == mfrc.MI_OK: 

     print ("Card UID: "+ str(map(hex,uid))) 

     # Select the scanned tag 

     if mfrc.MFRC522_SelectTag(uid) == 0: 

      print ("MFRC522_SelectTag Failed!") 

     if cmdloop(uid) < 1 : 

      isScan = False 

    

  elif inCmd == "quit": 

   destroy() 

   exit(0) 

  else : 

   print ("\tUnknown command\n"+"\tscan:scan card and dump\n"+"\tquit:exit 

program\n") 

     

def cmdloop(cardID): 

 pass 

 while(True): 

  dis_ConmandLine() 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 328 www.freenove.com █ 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

  dis_CardID(cardID) 

  inCmd = input() 

  cmd = inCmd.split(" ") 

  print (cmd) 

  if(cmd[0] == "read"): 

   blockAddr = int(cmd[1]) 

   if((blockAddr<0) or (blockAddr>63)): 

    print ("Invalid Address!") 

   # This is the default key for authentication 

   key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]    

   # Authenticate 

   status = mfrc.MFRC522_Auth(mfrc.PICC_AUTHENT1A, blockAddr, key, cardID) 

   # Check if authenticated 

   if status == mfrc.MI_OK: 

    mfrc.MFRC522_Readstr(blockAddr) 

   else: 

    print ("Authentication error") 

    return 0 

     

  elif cmd[0] == "dump": 

   # This is the default key for authentication 

   key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF] 

   mfrc.MFRC522_Dump_Str(key,cardID) 

    

  elif cmd[0] == "write": 

   blockAddr = int(cmd[1]) 

   if((blockAddr<0) or (blockAddr>63)): 

    print ("Invalid Address!") 

   data = [0]*16 

   if(len(cmd)<2): 

    data = [0]*16 

   else:  

    data = cmd[2][0:17] 

    data = map(ord,data) 

    data = list(data) 

    lenData = len(list(data)) 

    if lenData<16: 

     data+=[0]*(16-lenData) 

   # This is the default key for authentication 

   key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]    

   # Authenticate 

   status = mfrc.MFRC522_Auth(mfrc.PICC_AUTHENT1A, blockAddr, key, cardID) 

   # Check if authenticated 

   if status == mfrc.MI_OK: 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

329 █ www.freenove.com  support@freenove.com 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

    print ("Before writing , The data in block %d  is: "%(blockAddr)) 

    mfrc.MFRC522_Readstr(blockAddr) 

    mfrc.MFRC522_Write(blockAddr, data) 

    print ("After written , The data in block %d  is: "%(blockAddr)) 

    mfrc.MFRC522_Readstr(blockAddr) 

   else: 

    print ("Authentication error") 

    return 0 

    

  elif cmd[0] == "clean": 

   blockAddr = int(cmd[1]) 

   if((blockAddr<0) or (blockAddr>63)): 

    print ("Invalid Address!") 

   data = [0]*16 

   # This is the default key for authentication 

   key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]    

   # Authenticate 

   status = mfrc.MFRC522_Auth(mfrc.PICC_AUTHENT1A, blockAddr, key, cardID) 

   # Check if authenticated 

   if status == mfrc.MI_OK: 

    print ("Before cleaning , The data in block %d  is: "%(blockAddr)) 

    mfrc.MFRC522_Readstr(blockAddr) 

    mfrc.MFRC522_Write(blockAddr, data) 

    print ("After cleaned , The data in block %d  is: "%(blockAddr)) 

    mfrc.MFRC522_Readstr(blockAddr) 

   else: 

    print ("Authentication error") 

    return 0 

  elif cmd[0] == "halt": 

   return 0 

  else : 

   print ("Usage:\r\n" "\tread <blockstart>\r\n" "\tdump\r\n" "\thalt\r\n" "\tclean 

<blockaddr>\r\n" "\twrite <blockaddr> <data>\r\n") 

     

def destroy(): 

 GPIO.cleanup() 

 

if __name__ == "__main__": 

 setup() 

 try: 

  loop() 

 except KeyboardInterrupt:  # Ctrl+C captured, exit 

  destroy() 

 

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 330 www.freenove.com █ 

In the code, first create an MFRC522 class object. 

 mfrc = MFRC522.MFRC522() 

 

In the function loop, wait for the command input. If command "scan" is received, the function will begin to 

detect whether there is a card close to the sensing area. If a card is detected, the card will be selected and 

card UID will be acquired. Then enter the function scan_loop (). If command "quit" or "exit" is received, the 

program will exit. 

         if (inCmd == "scan"): 

            print "Scanning ... " 

            isScan = True 

            while isScan: 

                ………… 

                    if cmdloop(uid) < 1 : 

                        isScan = False 

        elif inCmd == "quit": 

            destroy() 

            exit(0) 

        else : 

            print "\tUnknown command\n"+"\tscan:scan card and dump\n"+"\tquit:exit 

program\n" 

 

 

The function cmdloop() will detect command read, write, clean, halt, dump and do the corresponding 

processing to each command. The functions of each command and the method have been introduced before. 

 def cmdloop(cardID): 

    pass 

    while(True): 

        dis_ConmandLine() 

        dis_CardID(cardID) 

        inCmd = raw_input() 

        cmd = inCmd.split(" ") 

        print cmd 

        if(cmd[0] == "read"): 

            ………… 

        elif cmd[0] == "dump": 

            …………             

        elif cmd[0] == "write": 

            …………             

        elif cmd[0] == "clean": 

            ………… 

        elif cmd[0] == "halt": 

            return 0 

        else : 

mailto:support@freenove.com
http://www.freenove.com/


 

 support@freenove.com █ 

331 █ www.freenove.com  support@freenove.com 

            print "Usage:\r\n" "\tread <blockstart>\r\n" "\tdump\r\n" "\thalt\r\n" 

"\tclean <blockaddr>\r\n" "\twrite <blockaddr> <data>\r\n"                 

The file "MFRC522.py" contains the associated operation method for the MFRC522. You can open the file to 

view all the definitions and functions. 

  

mailto:support@freenove.com
http://www.freenove.com/


 

 █ support@freenove.com 

 support@freenove.com 332 www.freenove.com █ 

What's Next? 

THANK YOU for participating in this learning experience! If you have completed all of the projects successfully 

you can consider yourself a Raspberry Pi Master. 

 

We have reached the end of this Tutorial. If you find errors, omissions or you have suggestions and/or 

questions about the Tutorial or component contents of this Kit, please feel free to contact us: 

support@freenove.com  

We will make every effort to make changes and correct errors as soon as feasibly possible and publish a 

revised version. 

 

If you are interested in processing, you can study the Processing.pdf in the unzipped folder. 

 

If you want to learn more about Arduino, Raspberry Pi, Smart Cars, Robotics and other interesting products 

in science and technology, please continue to visit our website. We will continue to launch fun, cost-effective, 

innovative and exciting products. 

http://www.freenove.com/ 

 

Thank you again for choosing Freenove products. 

 

mailto:support@freenove.com
http://www.freenove.com/
http://www.freenove.com/

	Getting Started
	Safety and Precautions
	Car and Robot for Raspberry Pi
	About Freenove
	Copyright

	Contents
	Preface
	Raspberry Pi
	Installing an Operating System
	Component List
	Required Components

	Optional Components
	Required Accessories for Monitor
	Required Accessories for Remote Desktop

	Raspberry Pi OS
	Automatically
	Manually
	Write System to Micro SD Card

	Enable ssh

	Getting Started with Raspberry Pi
	Monitor desktop
	Remote desktop & VNC
	MAC OS Remote Desktop
	Windows OS Remote Desktop
	VNC Viewer & VNC



	Chapter 0 Preparation
	Linux Command
	Shortcut Key

	Install WiringPi
	WiringPi Installation Steps

	Obtain the Project Code
	Python2 & Python3
	Projects Board for Raspberry Pi
	Assembly

	Chapter 1 LED
	Project 1.1 Blink
	GPIO
	BCM GPIO Numbering
	PHYSICAL Numbering
	WiringPi GPIO Numbering

	Component List
	Circuit
	Component knowledge
	LED
	Resistor

	Code
	C Code 1.1 Blink
	Python Code 1.1 Blink



	Chapter 2 FlowingLight
	Project 2.1 Flowing Water Light
	Component List
	Circuit
	Code
	C Code 2.1 LightWater
	Python Code 2.1 LightWater



	Chapter 3 Buttons & LEDs
	Project 3.1 Push Button Switch & LED
	Component knowledge
	Push Button Switch

	Component List
	Circuit
	Code
	C Code 3.1 ButtonLED
	Python Code 3.1 ButtonLED



	Chapter 4 Analog & PWM
	Project 4.1 Breathing LED
	Component Knowledge
	Analog & Digital
	PWM

	Component List
	Circuit
	Code
	C Code 4.1 BreathingLED
	Python Code 4.1 BreathingLED



	Chapter 5 RGB LED
	Project 5.1 RainbowLED
	Component List
	Circuit
	Code
	C Code 5.1 RainbowLED
	Python Code 5.1 RainbowLED



	Chapter 6 Buzzer
	Project 6.1 Doorbell
	Component knowledge
	Buzzer
	Transistors

	Component List
	Circuit
	Code
	C Code 6.1 Doorbell
	Python Code 6.1 Doorbell


	Project 6.2 Alertor
	Component List
	Circuit
	Code
	C Code 6.2 Alertor
	Python Code 6.2 Alertor



	(Important) Chapter 7 ADC
	Project 7.1 Read the Voltage of Potentiometer
	Circuit knowledge
	ADC
	DAC

	Component knowledge
	Potentiometer
	Rotary potentiometer
	ADS7830
	I2C communication

	Component List
	Circuit
	Configure I2C and Install Smbus
	Enable I2C
	Install I2C-Tools
	Install Smbus Module

	Code
	C Code 7.1 ADC
	Python Code 7.1 ADC
	Reference


	Project 7.2 Soft Light
	Component List
	Circuit
	Code
	C Code 7.2 Softlight
	Python Code 7.2 Softlight


	Project 7.3 Colorful Light
	Component List
	Circuit
	Code
	C Code 7.3 Colorful Softlight
	Python Code 7.3 ColorfulSoftlight



	Chapter 8 Photoresistor & LED
	Project 8.1 NightLamp
	Component List
	Circuit
	Code
	C Code 8.1 Nightlamp
	Python Code 8.1 Nightlamp



	Chapter 9 Thermistor
	Project 9.1 Thermometer
	Component knowledge
	Thermistor

	Component List
	Circuit
	Code
	C Code 9.1 Thermometer
	Python Code 9.1 Thermometer



	Chapter 10 Joystick
	Project 10.1 Joystick
	Component knowledge
	Joystick

	Component List
	Circuit
	Code
	C Code 10.1 Joystick
	Python Code 10.1 Joystick



	Chapter 11 Motor & Driver
	Project 11.1 Control a DC Motor with a Potentiometer
	Component knowledge
	DC Motor
	L293D

	Component List
	Circuit
	Code
	C Code 11.1 Motor
	Python Code 11.1 Motor



	Chapter 12 Relay & LED
	Project 12.1 Relay & LED
	Component knowledge
	Relay
	Inductor

	Component List
	Circuit
	Code
	C Code 12.1 Relay
	Python Code 12.1 Relay



	Chapter 13 Servo
	Project 13.1 Sweep
	Component knowledge
	Servo

	Component List
	Circuit
	Code
	C Code 13.1 Sweep
	Python Code 13.1 Sweep


	Project 13.2 Knob
	Component List
	Circuit
	Code
	C Code 13.2 Knob
	Python Code 13.2 Knob



	Chapter 14 Stepper Motor
	Project 14.1 Stepper Motor
	Component knowledge
	Stepper Motor
	ULN2003 Stepper Motor driver

	Component List
	Circuit
	Code
	C Code 14.1 SteppingMotor
	Python Code 14.1 SteppingMotor



	Chapter 15 LEDpixel
	Project 15.1 LEDpixel
	Component knowledge
	Freenove 8 RGB LED Module

	Component List
	Circuit
	Code
	C Code 15.1 Ledpixel
	Python Code 15.1 Ledpixel


	Project 15.2 Rainbow Light
	Component List
	Circuit
	Code
	C Code 15.2 Rainbow Light
	Python Code 15.2 Rainbow Light



	Chapter 16 74HC595 & Bar Graph LED
	Project 16.1 Flowing Water Light
	Component knowledge
	Bar Graph LED
	74HC595

	Component List
	Circuit
	Code
	C Code 16.1 LightWater02
	Python Code 16.1 LightWater02



	Chapter 17 74HC595 & 4-Digit 7-Segment Display
	Project 17.1 4-Digit 7-Segment Display
	Component List
	Circuit
	Component knowledge
	4 Digit 7-Segment Display

	Code
	C Code 17.1 SevenSegmentDisplay
	Python Code 17.1 SevenSegmentDisplay


	Project 17.2 4-Digit 7-Segment Display
	Component List
	Circuit
	Code
	C Code 17.2 StopWatch
	Python Code 17.2 StopWatch



	Chapter 18 74HC595 & LED Matrix
	Project 18.1 LED Matrix
	Component knowledge
	LED matrix

	Component List
	Circuit
	Code
	C Code 18.1 LEDMatrix
	Python Code 18.1 LEDMatrix



	Chapter 19 LCD1602
	Project 19.1 I2C LCD1602
	Component List
	Circuit
	Code
	C Code 19.1 I2CLCD1602
	Python Code 19.1 I2CLCD1602



	Chapter 20 Hygrothermograph DHT11
	Project 20.1 Hygrothermograph
	Component knowledge
	Component List
	Circuit
	Code
	C Code 20.1 DHT11
	Python Code 20.1 DHT11



	Chapter 21 Matrix Keypad
	Project 21 Matrix Keypad
	Component knowledge
	4x4 Matrix Keypad

	Component List
	Circuit
	Code
	C Code 21.1 MatrixKeypad
	Python Code 21.1 MatrixKeypad



	Chapter 22 Infrared Motion Sensor
	Project 22.1 PIR Infrared Motion Detector with LED Indicator
	Component Knowledge
	Component List
	Circuit
	Code
	C Code 22.1 SenseLED
	Python Code 22.1 SenseLED



	Chapter 23 Ultrasonic Ranging
	Project 23.1 Ultrasonic Ranging
	Component Knowledge
	Component List
	Circuit
	Code
	C Code 23.1 UltrasonicRanging
	Python Code 23.1 UltrasonicRanging



	Chapter 24 Attitude Sensor MPU6050
	Project 24.1 Read an MPU6050 Sensor Module
	Component knowledge
	MPU6050

	Component List
	Circuit
	Code
	C Code 24.1 MPU6050RAW
	Python Code 24.1 MPU6050RAW



	Chapter 25 RFID
	Project 25.1 RFID
	Component Knowledge
	RFID
	MFRC522
	Mifare1 S50 Card

	Component List
	Circuit
	Configure SPI
	Enable SPI
	Install Python module SPI-Py

	Code
	C Code 25.1 RFID
	Python Code 25.1 RFID



	What's Next?

