Synchronicity: A wood gear clock with a unique drive mechanism

Synchronicity is a wood gear clock with a unique drive mechanism — a microcontroller-regulated electromagnetic pendulum drive. This document
contains listings of the microcontroller software. The clock itself is documented in an Instructable at http://www.instructables.com/id/A-wood-gear-

clock-with-a-unique-drive-mechanism/.

This software was developed using Texas instrument's Code Composer Studio Version: 5.1.0.09000. The MSP430 microcontroller was configured
using Grace, TI's Graphical Peripheral Configuration Tool. The first section contains screenshots of the Grace configuration. The second section

contains the source code listing.

Dick Bipes carveshop.com Page 1 1/6/2015

49 Grace - MSP430G2211

Synchronicity: A wood gear clock with a unique drive mechanism

Device Overview | | Systemn Registers

XN XOUT pvee DVSS Pl P2
A | | s A2
v v k. k.
r
ACLK r h
—»
Basic Clock Port P Part P2
Sysh SMCLK
SR Al RAM 8110 2110
[¥] KB Intermipt Intemupt
KB 1286 capakility capahility
MCLK pull upidown pull-upicown
y resistors resistors
]
1EMHZ MAB‘ F r F r . b
CPU
F 9
ind. 16 |« : : d Y
Registers | T woe| 1 1 i
[11 11] h S A A 4 L 2. 4
Emulation |
<BF 14 comp ae | | Watchdog | | Timera_a2
I Brownout P WD T+
JTac | Protection 2ce
Irterface R RIS 15-Bit Registers
Spy-Bi Wire 3) i) &
RSTMMI
Dick Bipes carveshop.com

Page 2

1/6/2015

Synchronicity: A wood gear clock with a unique drive mechanism

&4 BCS+ - Power User Mode

’ Owerview ” Basic User] Power User

Configure Clock Source Select Clock Source

Internal High Speed Clock Source Clock Source Divider Main System Clock (MCLK) ‘

|t DCO 10000 cHe DCOCLK ~ Divide byl ~ 1000 kHz
Pre-calibrated DCO Values

Output MCLK ————— pg MCLK Pins
Disable DCO O
Clock Source Divicler Sub System Clock (SMCLK)
DCOCLE Divide byl ~ 1000 kHz
Output SMCLK ————— SMCLK Output OFF -
[Clock 5 f
Low Speed External Clock Source 1 Qck source from Divider Auxiliary Clock (ATLK)
Low Speed External — 3277 kHz
Select Clack Source™ 32768 kHz ~ Clock Source 1 Divide iyl
- 32.768 | kHz Output ACLK ——{ ACLK Output OFF -]
Int. Load Eff. Capacitance | ~125pl «
External Digital Source D
Systern Start-up Delay'™ 0.0 ms
* This setting requires an extemal crystal Oscillator Fault Interrupt Enable (]

Oscillator Fault Interrupt Handler:

After Interrupt: [Do Mot Change Operating Mode

Hote1: Grace interrupt handlers are names of user-provided functions, Manual mode requires no arguments but requires a return
value, e.g., unsigned short interruptHandler(void). All other modes require no arguments and return value, e.q., void
interruptHandlerfvoid).

Hote 2: Manually configuring the DCO frequency can result in a +/-10% frequency deviation, The Pre-calibrated DCO has a
tolerance of =/-3% frequency deviation. See datasheet for more information.

Hote3: 5et a delay value in miliseconds based on the system rise time to ensure no violation of VCC vs MCLE. It is highly
recommended when setting a non-default system clock frequency to ensure a proper system start-up.

Dick Bipes carveshop.com Page 3

1/6/2015

44 GPIO - Pinout TSSOP/PDIP

Synchronicity: A wood gear clock with a unique drive mechanism

[oveview |[Pinout@fN] Pinout Tssop/POIP
ovee 1 O 14 [T] DVSS
GPIO Qutput P1.0[T] 2 13 [[] P26~ xIN
cal v~ P1A[T]3 i3 Texas 12 [[]P2.7 ~ xoUT
A2 v P1.2[]]4 INSTRUMENTS 14 [T] TEST/SBNTCK
GPIO Output ~ P13 [[15 MSP430G2211 10 [T] RSTMMISEWTDIO
GPIO Input ~ P1.4 [T]6 5 [M P17+ caouT
GPIO Input ¥ P15 [T] 7 g [T] P1.6 = GPIO Output

Dick Bipes

carveshop.com

Page 4

1/6/2015

439 GPIO - Port 1 / Port 2 - Register Controls

J L

Synchronicity: A wood gear clock with a unique drive mechanism

PORT 1 PORT 2
Output Register Output Register
7] 5 4 3 2 1 a 7] 5 4 3 2 1 a
ouTe OuTx
[l [[[[l [l [[l O [l [[[l [l [l [
Direction Reqgister Direction Reqister
7 (] § 4 3 2 1 a 7 [5 4 3 2 1 1]
DHAx DHAx
¥ | [[] [l [l I [[l [l [[l [&l [
Interrupt Flag Register Interrupt Flag Register
7] 5 4 3 2 1 a 7 [5 4 3 2 1 1]
e IFGx
[[[[[l [[[l [[l [[=l [[l [
Interrupt Edge Select Register Interrupt Edge Select Register
7] 5 4 3 2 1 Q 7 L] 5 4 3 2 1 Q
[=l [= [l [[[l [} [[=l [l [[l [
Interrupt Enable Register Interrupt Enable Register
7] 5 4 3 2 1 a 7] 5 4 3 2 1 a
] =l]]]]]]]]]]]]]]
FPort Select Register Fort Select Register
7 [} § 4 3 2 1 a 7 [5 4 3 2 1 1]
¥ [[l [[l [[l [l | Wl [l [[l [l [l [l
Resistor Enable Register Resistor Enable Register
7] 5 4 3 2 1 a 7 [5 4 3 2 1 a
RE RE M
[l =l =l = [l [l [[l [} [l [l =l = [l [l =l
Interrupt Handler: Interrupt Handler:
After Interrupt: |Do Mot Change Operating Mode v] After Interrupt: |Do Mot Change Operating Mode v]

Note: Grace interrupt handlers are names of user-provided functions. Manual mode requires no arguments but requires a return value, e.g., unsigned short
interruptHandler(void). All other modes require no arguments and return value, e.g., void interruptHandlerfvoid).

Dick Bipes

carveshop.com

Page 5

1/6/2015

Synchronicity: A wood gear clock with a unique drive mechanism

&3 Comparator_A+ - Power User Mode

[Overview H Basic User Power Uszer

Inputs Clutput
[PLa/c1 -+ Enable Filter g Timer_A CCILB
[7] short inputs AN | PL.7/CAOUT -

<

[Pl.Z!CA?_ v]——— T~20ns

[] Flip Inputs, Inverse Qutpul Voltage Reference

<+ Channel
~ Channel Reference OFf -

Enable Comparator Interrupt
Interrupt Edge o
Selectp ? @ Rising Edge

) Falling Edge

Interrupt Handler: ComparatorAISRHandler

After Interrupt: Do Mot Change Operating Mode -

Hote: Grace interrupt handlers are names of user-provided functions. Manual mode requires no arguments
but requires a return value, e.g., unsigned short interruptHandler(void). All other modes require no
arguments and return value, e.g., void interruptHandler{void).

Dick Bipes carveshop.com Page 6 1/6/2015

Synchronicity: A wood gear clock with a unique drive mechanism

9 WDT+ - Basic User Mode

Basic User ’ Power User ” Registers

S5top Watchdog Timer

[7] Enable Watchdog Timer Interrupt

Interrupt Handler;

After Interrupt: Do Mot Change Operating Mode -

Note: Grace interrupt handlers are names of user-provided functions. Manual
mode requires no arguments but requires a return value, e.9,, unsigned
shart interruptHandlerfvoid]. All other modes require no arguments and
return value, e.g., void interruptHandler(void).

Dick Bipes carveshop.com Page 7 1/6/2015

Synchronicity: A wood gear clock with a unique drive mechanism

24 Timer_A2 - 16-bit Timer - Power User Mode - CCRO

’ Owverview l [Basic User J Power User - CCRO ’Power User - CCR1 l ’ Registers

Clock Source Divider Counting Mode
Stop Mode
Divider - /2 16-bit Timer/Counter %“%Em_
Divider - /4 . ontinuo
32768 |kHz Divider - /8 Clear Up/Down Mode

|£| Enable Timer Overflow Interrupt

Interrupt Handler: TimerAOverflowISRHandler

After Interrupt: Do Mot Change Operating Mo +
Timer Capture/Compare Block #0

Desired Timer Period: 1999.969 ms Time(r) Period 25

Capture Reqgister: 0 Clock Ticks Time(r) Frequency 0.5Hz
Input Selection Capture Mode Mode Cutput Pins

Timer OFF

P11,/ Timer_&2 CCI0A Rising Edge Qutput Compare/Peric P1.1/Timer_A2,TAD

GHND Falling Edge Input Capture P1.5/Timer_&2.TAD

WICC Both Edges

Cutput Mode: PWM output mode: 0 - OUT bit value v] [] Set OUT hit High/Low

[C] Enable Capture/Compare Interrupt

Interrupt Handler: TimerACCROISRHandler

After Interrupt: Do Mot Change Operating Mode -

Hote: Grace interrupt handlers are names of user-provided functions. Manual mode requires no arguments but requires a return

value, e.g., unsigned short interruptHandler(void). All other modes require no arguments and return value, e.g., void
interruptHandlerfvoid).

Dick Bipes carveshop.com Page 8

1/6/2015

Synchronicity: A wood gear clock with a unique drive mechanism

24 Timer_A2 - 16-bit Timer - Power User Mode - CCR1

[Owverview J ’ Baczic Uszer l ’Power User - CCRO | | Power User - CCR1

Timer Capture/Compare Block #1

Desired PVWMW Duty Cycle: o %
Capture Register: 3276 Clock Ticks
Input Selection Capture Mode Mode Cutput Pins
DD DS | Timer OFF TAL Output OFF
P1.2/Timer A2.CCILA Rising Edge PL.2/Timer_A2.TAL
GMD Falling Edge Input Capture PL.&/Timer_A2,TAL
VCC Both Edges P2.6/Timer_42.TA1

Output Mode: | pwi output mode: 0 - OUT bitvalue +| [7] Set OUT it High/Low

OxFFFF
TxCCRO

TxCCRx

Enable Capture/Compare Interrupt

Interrupt Handler: TimeracCrilSRHandler

After Interrupt: Do Not Change Operating Mode -

Hote: Grace interrupt handlers are names of user-provided functions. Manual mode reguires no arguments but reguires a return
value, e.g., unsigned short interruptHandler(void). All other modes require no arguments and return value, e.g., void

interruptHandlerfvaid).

Dick Bipes carveshop.com Page 9

1/6/2015

Version 1.1

Dick Bipes
dick@carveshop.com

(c) Copyright 2014 by

¥ K X X X X X X X X X X X X X ¥ ¥ ¥ %

*/

*/

*/
#define RedLED (BITO)
#define GreenLED (BIT6)

#define CoilDriver (BIT3)

Dick Bipes

Synchronicity: A wood gear clock with a unique drive mechanism

Electromagnetic Pendulum Driver

Dick Bipes All rights reserved

// Red LED on the LaunchPad
// Green LED on the LaunchPad

This software pulses an electromagnetic coil to drive a clock pendulum.

The software precisely measures the period of each and every swing of the pendulum, and

uses a modified PID (proportional - integral - differential) control algorithm to adjust the swing angle
of a clock pendulum to speed up or slow down the pendulum and therefore the clock.

// For the clock, a red/green bi-directional LED is connected to these two port pins

// Base to driver transistor

carveshop.com

Page 10

1/6/2015

Synchronicity: A wood gear clock with a unique drive mechanism

#define Datalog (BIT5) // Datalog output pin
#tdefine CrystalFreq 32768 // timer counts per second, based on the external watch crystal
#define _600uS 20
#define _2mS 66
#define _5mS 164
#define _7mS 229
#tdefine _10mS 328
#define _12mS 393
#define _15mS 492
#tdefine _18mS 589
#define _20mS 655
#define _22mS 721
#define _23mS 753
#tdefine _25mS 819
#define _30mS 983
#define _35mS 1147
#define _100mS 3277
#define NominalPulseDelay _1@6mS // Delay time after voltage compare interrupt (magnet passes by coil) to coil on
#define NominalPulse _15mS // Nominal coil pulse width
#define MinPulse _1emS // Minimum pulse width to make sure the pendulum keeps moving
#define MaxPulse _35mS // Maximum pulse width to limit current draw
#define QuiescePeriod _100mS // Quiesce time after magnet pass with interrupt disabled
#define GraceTicks 50 // Number of timer ticks fast or slow that's OK (no warning LED)
// Experiments show that we can change the pendulum speed about 0.5% or about 150 ticks in 32768

#tdefine LEDTime 600 // Time to keep the LEDs enabled, in seconds
#define ControlLimit 300 // Maximum time in seconds to allow the pulse width at a limit before lighting an LED
#define ControlError 5 // Minimum error required to flash a long-term pendulum speed LED, in seconds
#define Kp 20 // Proportional constant, empirically derived
#define Ki .1 // Integral constant, empirically derived
/*

* ======== Variables ========

*/
int stage = 0; // state machine stage
unsigned int timer_capture; // current value of TAR (timer counter)

Dick Bipes carveshop.com Page 11 1/6/2015

Synchronicity: A wood gear clock with a unique drive mechanism

unsigned int last_capture = 0; // previous value of TAR

unsigned int crystal _secs = 0; // elapsed seconds based upon the crystal oscillator (reference)

unsigned int pendulum_secs = ©; // elapsed seconds based upon the pendulum

int timer_overflow = 0; // timer overflow counter (generally >0, but may go to -1 in a race condition)
int error_ticks; // difference between crystal ticks and pendulum ticks (1 tick = 1/32768 second)
unsigned int pendulum_passes = 0; // pendulum pass counter, incremented when the pendulum passes the coil (twice per period)
int error = 0; // error, the difference between reference time base and the pendulum (clock)
float i_error = 0; // integral of the error

int pulse = NominalPulse; // coil pulse width

int pulse_delay = NominalPulseDelay; // delay time from detecting magnet to turning coil on

unsigned int control_count = ©; // number of consecutive seconds the pulse is set to its limit

unsigned int LEDs = 0; // port bit mask to turn on or off either LED

unsigned int enable_short_LEDs = 1; // flag to enable/disable the LEDs

* Timer A is regulated by a 32.768 kHz watch crystal. The timer is always running, and overflows exactly every two seconds.

// Timer_A Overflow Interrupt Handler
void TimerAOverflowISRHandler(void)

/*
*/
{
}
/*
*

// Count seconds based on the watch crystal reference. This count is compared against the pendulum swings
// to yield an error signal, which allows the pendulum period to be accurately controlled.
crystal_secs += 2; // count the number of seconds that have passed based upon the crystal

// Count of timer overflows. We expect the timer to overflow during normal operation.

// If the pendulum is stopped for any length of time, the timer will overflow repeatedly.

// A large overflow count in fact tells us that the pendulum has stopped, and we need to reset our software

// and restart.

if (timer_overflow < 1000)// increment the number of times the timer overflows, up to an arbitrary maximum
timer_overflow++;

Sequencer for running the coil.

The first state or stage is a delay, from the time induced current is detected in the coil, to when we turn
* on current to the coil.

Dick Bipes carveshop.com Page 12 1/6/2015

ES
*/

Synchronicity: A wood gear clock with a unique drive mechanism

The second stage is coil on time.
The third stage is a delay to let the coil quiesce and avoid triggering a second, undesired pulse.

// Timer_A Capture/Compare @ Interrupt Handler
void TimerACCROISRHandler(void)

{

switch(stage)

case 1: // turn on the coil

P10UT |= CoilDriver + LEDs; // turn on the coil driver (active high) and LEDs
TACCRO +=pulse; // set the coil on time
break;

case 2: // turn off the coil
P1OUT &= ~(CoilDriver + RedLED + GreenLED); // turn off the coil driver (active high) and LEDs
TACCRO += QuiescePeriod; // wait for the coil to settle down
break;

case 3: // enable the next cycle
TACCTLO &= ~CCIE; // disable timer interrupts
CACTL1 &= ~CAIFG; // clear any spurious compare interrupt that may have occurred
CACTL1 |= CAIE; // enable comparator interrupts for the next swing

// The control loop calculation uses floating point math and can take some time to process.
// The calculation is placed here, just after the coil is turned off, where we have sufficient time to do it
// as nothing critical is happening.

pulse = NominalPulse - (Kp*error + Ki*i_error); // standard PID algorithm, but with no differential term
//pulse = _25mS; // set a fixed pulse width for tuning - normally commented out
if (pulse > MaxPulse) // limit the max pulse to conserve battery
{
pulse = MaxPulse;
control_count++; // this counter can tell us if we are out of control
}
else if (pulse < MinPulse)// limit the minimum pulse, to ensure that the pendulum does not stop
{

pulse = MinPulse;
control_count++;
}
else
control_count = 0;
if (pulse < _15mS)

Dick Bipes carveshop.com Page 13 1/6/2015

Synchronicity: A wood gear clock with a unique drive mechanism

{
pulse delay = _10mS; // for short pulses, wait until the magnet is away from the coil a bit
}
else if (pulse > _23mS)
{
pulse_delay = _2mS; // for long pulses, trigger the coil right away
}
else
{
pulse_delay = _25mS - pulse; // for intermediate pulses, delay an intermediate amount
}
break;
}
stage++; // advance to the next state
}
/*
* PWM output for logging purposes.
*/
// Timer_A Capture/Compare 1 Interrupt Handler
void TimerACCR1ISRHandler(void)
{ // This routine sends a PWM output in proportion to the pulse width or error for data logging
static int sw = 9;
if (sw++ & 0x01)
{
P1OUT |= Datalog; // set the port pin high
// TACCR1 += 50 + (MaxPulse - pulse);
TACCR1 += 100 + (5*error);
}
else
{
P10UT &= ~Datalog; // set the port pin low
TACCR1 += 100 - (5*error);
}
}
/*

* Pendulum magnet has induced a current in the coil and triggered the comparator

Dick Bipes carveshop.com Page 14 1/6/2015

*/

Synchronicity: A wood gear clock with a unique drive mechanism

// Comparator_A+ Interrupt Handler
void ComparatorAISRHandler(void)

{

timer_capture = TAR;

CACTL1 &= ~CAIE;

stage = 1;

TACCRO = timer_capture + pulse_delay;
TACCTLO |= CCIE;

if (pendulum_passes & 0x01)
{
pendulum_secs ++;
if (pendulum_secs > LEDTime)
enable_short_LEDs = 0;

// Check for more than one timer overflow, which means the pendulum had stopped.
if (timer_capture < last_capture)

timer_overflow-- ;

//
//
/7
/7
/7

//

/7
//

capture the timer value

disable comparator interrupts to prevent a second trigger
set the sequencer to initial state

set the delay time from detecting the magnet to coil on
enable timer interrupts

every other pendulum pass (e.g. a full swing)
keep track of the elapsed time based on the pendulum

disable the LEDs after a period of time

In that case, restart.
// OK if the timer has rolled over once
// expected, so decrement the overflow count

// Note that rarely the timer may overflow while in this interrupt service routine, and timer_overflow goes

// negative
if (timer_overflow > 0)

{

// any other overflow means the pendulum was stopped

// Reset after the pendulum was stopped and restarted

timer_overflow = 0;
pendulum_passes = 9;
crystal _secs = 0;
pendulum_secs = 0;
error = 0;

i_error = 0;
enable_short_LEDs = 1;
//P10OUT ~= RedLED;

}
if (pendulum_secs & ©x01)

{

// Warn of either short-term or long-term pendulum speed problems.

LEDs = 0;

// If within the short-term window after start-up, blink an LED if the pendulum is too fast or too slow

if (enable_short_LEDs)

Dick Bipes carveshop.com

//
//

/7
//

debug - toggle red LED
every other full pendulum swing (same frequency as timer overflow)

Short term has priority.
assume neither LED should be 1lit

only turn on LEDs for the first few minutes

Page 15 1/6/2015

Synchronicity: A wood gear clock with a unique drive mechanism

{
error_ticks = CrystalFreq - (timer_capture - last_capture); // compute the short-term error
if (error_ticks > GraceTicks) // if the pendulum is significantly faster than the reference,
//enable the green LED
LEDs |= GreenlLED;
if (error_ticks < -GraceTicks) // if the pendulum is significantly slower than the reference,
// enable the red LED
LEDs |= RedLED;
}

// If the pulse width has been at its limit for an extended period of time,
// and were more than a few seconds fast or slow, we're probably out of control
else if (control _count > ControlLimit) // if it hasn't been too long at the limit, don't turn the LED on

{
if (error > ControlError) // if we're more than a few seconds off, a positive error means
// too few pendulum ticks -
LEDs |= RedLED; // too slow
if (error < -ControlError) // a negative error means too many pendulum ticks -
LEDs |= GreenlLED; // too fast
¥

// Capture values for the control loop
error = crystal secs - pendulum_secs; // error term

i_error += error; // integral of the error
}
last_capture = timer_capture; // remember the timer count
}
pendulum_passes++; // count swings of the pendulum past the coil (we act on every other one only)
}
/*
* Wait about a second and optionally light an LED or activate the coil
*/
void WaitABit(unsigned int LED)
{
unsigned int i;
for (i=0; i<50000; i++) // wait a while
P10UT |= LED; // turn the LED on while waiting
P10UT &= ~LED; // turn the LED off
}

Dick Bipes carveshop.com Page 16 1/6/2015

/*

*

* X X X X

int

Synchronicity: A wood gear clock with a unique drive mechanism

—======= main —=======
Set up the microcontroller using Grace-generated configuration.
Blink the LED and pulse the coil.
Then go to sleep and wait for interrupts.
main(int argc, char *argv[])
CSL_init(); // Activate Grace-generated configuration
P10UT = 0; // make sure the port pins, particularly the coil driver, is off
// (not sure why Grace is not doing this)
TACCTLO &= ~CCIE; // disable timer interrupts while we play with the LEDs
WaitABit(RedLED); // turn the red LED on for a while
WaitABit(9); // no LED
WaitABit(GreenLED); // likewise with the green LED
WaitABit(9); // no LED

WaitABit(CoilDriver); // activate the coil for a second so that the clock builder can determine if the
// magnet polarity is correct

CACTL1 |= CAIE; // enable comparator interrupts for the pendulum swing

// Enter Low Power Mode with global interrupt enabled
__bis_SR_register(LPMO_bits + GIE);

return (0);

Dick Bipes carveshop.com Page 17

1/6/2015

