
The code for the Stylobit is complex, as it handles a lot of different things, but we’ll break down each section and explain what it all does.

Stylobit Code

For more fun projects and educational guides visit us at BrownDogGadgets.com

Let’s start with the on start section.

Typically this section deals with setting up things that only need
to happen once at the beginning of the program. We turn off the
built-in LED matrix, we turn on the built-in speaker, as well as set
the volume, and then we set our pins and a few variables.

Pins 1 through 8 are for our notes and are set as “up” pins, which
means they are normally off (or high) and when a pin is
connected to ground (GND) they will get pulled down, and set to
low.

We’ve also got Pin 11 which will be used to turn on and off the
vibrato effect, and Pin 12, 13, and 14 which will be used for
setting the octave low, middle, or high.

Pin 11 uses the built-in Button B on the front of the micro:bit
(though you can also connect your own button if you prefer.)

Pins 12, 13, and 14 will each have a pushbutton connected, and
our code will check for one of them to be pressed and then keep
that setting for as long as the program is running, changing only
when you press a different button.

Finally we set the variables vbuttonPushCounter, vbuttonState,
and vlastButtonState. These will be used to track buttons
presses for Pin 11 and then toggle the vibrato mode on or off.

The last variable is octaveMultiplier, which gets set to 1 but will
change based on buttons 12, 13, or 14 being pressed. (Each time
you turn on the Stylobit it will default to the middle octave.)

Stylobit Code

For more fun projects and educational guides visit us at BrownDogGadgets.com

Next up is the first forever loop. (We’ve created a few
forever loops to keep the code a bit more readable.)

The important part of this section is that it checks for
each of the Pins (1 through 8) being touched/pressed,
and then does something.

Since we set our pins to up (which equals 1) we need to
check if they get pulled down to ground (which equals
0).

We use a large if/else statement, which checks each
button, and if a Pin is triggered it does the appropriate
thing (which in this case, is call the playSound function.)

If none of the Pins are triggered it does the last else step,
and plays a tone with 0, which means it really plays
nothing, and we’ll just get silence from the speaker.

Since only one note can be played at a time our Stylobit
is referred to as monophonic. An instrument that can
play multiple notes at the same time is known as
polyphonic. (Remember, mono means single and poly
means many.)

You’ll notice we don’t just call the playSound function
with the frequency of the note, but we multiply the note
by the octaveMultiplier.

If the octaveMultiplier is set to 1, the frequency will not
change. If the octaveMultiplier is set to 0.5 (because you
pressed the button on Pin 12) the frequency value will be
half. If the octaveMultiplier is set to 2 (because you
pressed the button on Pin 12) the frequency value will be
double.

Why does this work? Because when you double the
frequency you move up one octave. That also means
that when you halve a frequency you move down one
octave!

Stylobit Code

For more fun projects and educational guides visit us at BrownDogGadgets.com

Where do those numbers come from?
They are the frequencies of the notes
we’ve assigned to our eight keys. If you
look at the ring tone function in Microsoft
MakeCode you’ll see how the notes
translate to numbers.

You can change the notes we chose by
changing the numbers in the code if you
want to use different notes.

In our playSound function the most important (or at least
the simplest) part is the else section. It contains the ring
tone command that plays the note.

When we call the playSound function fron our first
forever we pass it a parameter, which is the frequency
of the note. We capture that in the function and place it
in the variable named num. Then we play that frequency
with the ring tone command. Simple, right?

What about the if section of this code block? Well, the if
section deals with the vibrato function of the Stylobit, so
it’s a bit more complex.

If the vactivatedState is equal to 1 that means we’re
playing the note with vibrato. (If you’re not familiar with
vibrato it is a pulsating change of pitch that gives sound
some depth, or a warbling effect.)

When our vibrato is activated we don’t just play the note
like we do in the else section, we create two loops and
we play the note 10 times for each loop, and during
those first 10 notes we increase the frequency by 1 during
each step of the loop, and for the next 10 notes we
decrease thefrequency by 1 during each step of the loop.
We also pause 1 millisecond between each step to give
the note some time to play and be heard. This gives the
effect of playing the note at the correct frequency, then
quickly playing the note 10 steps up, then 10 steps down,
and repeating that cycle.

There are a number of ways to do vibrato with code, but
we found this to be one of the simpler ones to
understand. Like any other parts of the code you can
adjust the numbers to see how they change the way the
Stylobit makes sound. Experimentation is half the fun!

Stylobit Code

For more fun projects and educational guides visit us at BrownDogGadgets.com

Our second forever loop is pretty simple. It check which
of the three octave buttons has been pressed and then
assigns octaveMultiplier to a number.

Remember when we set the octaveMultiplier to 1 in the
start section? This is where we can change that.

If the button connected to Pin 12 is pressed, we set the
octaveMultiplier multplier to 0.5 which has the effect of
cutting the frequency of a note in half, thus lowering it
one octave.

If the button connected to Pin 14 is pressed, we set the
octaveMultiplier multplier to 2 which has the effect of
doubling the frequency of a note, thus raising it one
octave.

Finally, if the button connected to Pin 13 is pressed, we
set our octaveMultiplier to 1 and it takes the frequency
as is without halving it our doubling it.

If no button is pressed our else section is triggered and
we just set the octaveMultiplier to itself.

For our Stylobit we chose to use three buttons to move
between three octaves (just the like Stylophone does) but
you could modify the code so that pressing the low or
high button moves down or up a full octave for each
press.

With any code, you should feel free to experiment and
take it further by adding new features. It can be a fun
challenge and it’s how you learn to write code.

Stylobit Code

For more fun projects and educational guides visit us at BrownDogGadgets.com

The final forever loop is a bit more complex. Rather than just checking if a
button is pressed (in this case, the button connected to Pin 11, which on
the micro:bit is also Button B) we are checking if the state of the button
has change (meaning, was it not pressed, and then was it pressed.

We do this by saving the state of the button and by keeping track of the
last state of the button.

Basically, we start our vbuttonPushCounter at 1 and when we press the
button the vbuttonPushCounter goes to 2. We press it again and it goes to
3, etc. Increasing by 1 for each button press.

From there we do some maths, diving the vbuttonPushCounter by the
vbuttonPushCounter divided by 2 and rounded down with the floor
command.

2 / (2 / 2) = 2 so our statement is true, and we set vactivatedState to 1

If the count is 2 and we divide by 1 we get 2, so the statement evaluates to
true and our vactivatedState is set to 1.

If the count is 3 and we divide by 1 we get 1, so the statement evaluates to
false and our vactivatedState is set to 0.

This continues on, and all even numbers can be divided by half their value
and will equal 2 while the odd numbers get divided by half their value
and then rounded down (thanks to our floor command) and do not equal
2.

4 / (4 / 2) = 2 TRUE
5 / (5 / 2) = 2.5 FALSE
6 / (6 / 2) = 2 TRUE
7 / (7 / 2) = 2.33 FALSE
etc...

 If you want to learn more about this method look up the
 “Modulo operation” for a more in-depth explanation.

Stylobit Code

For more fun projects and educational guides visit us at BrownDogGadgets.com

1*!

