Smart Parking - IOT Project 		
Abstract :
We successfully implemented an IOT based smart parking system. With the help of individual nodes (proximity sensors) at every parking slot, we can make available the current status of the parking slot – ‘Available’ or ‘Occupied’
Hardware implementation:
We plan to start with a small-scale implementation of the project i.e. simulate a real-life parking lot on a cardboard.

Electronic Components:
1. Raspberry Pi (Main control unit)
2. IR Sensor (Proximity Sensors)
3. RF id Reader
4. RF id Cards

Why Raspberry Pi?
In addition hosting the proximity sensor data to the internet we planned to send out mails regarding the in and out time of the parking lot users, hence we decided to use a Raspberry Pi which allows us to interface the sensors via python. Python is preferred for this because of its easy use as well as ability to write modular and object-oriented programs.
Moreover, after loading the Raspbian OS we were able to control it just like a desktop capable of interface sensors using GPIO pins. 	
Features included:
1. Host slot availability to internet
2. Dedicated RF-ID to each user (with wallet maintained)
3. Mail based communication (for in/out time and wallet balance)
4. Autonomous registration for new user
Software Implementation – Abstract:
The project has two different programs running simultaneously -

1. RF-ID Tagging Module
This program takes care of authentication of the RF-ID cards. Controls the micro servo motor (acts as a gate) and logs in/out time. This is the program that sends out mails based on the total time the user spends in the Parking lot. The customer will have to interact with this program and hence ease of use along with clarity of information was given importance.

2. Proximity Sensors Module
This program reflects the current status of the sensors – ‘high’ or ‘low’. These sensors reflect the slot availability – ‘Available’ or ‘Occupied’. The Output is then dumped onto a text file, which is updated every second using the same python script. Furthermore, a HTML file reads the data from the text file and displays it onto the webpage. We then host the website using a hosting service called ‘ngrok’. Hence the server contains information about the availability status of the respective parking slots.
Software Implementation - Code Snippets:

RF-ID: Accessing name, email-id and wallet amount corresponding to RF-ID number. In case the card hasn’t been resisted, a menu driven program runs to enter values of name, email id and wallet amount to corresponding RF-id cards.
If a registered user scans card:
[image:]
If a non-registered user scans card:
[image:]

Mail Module: Using the SMTP function, we will send out mail to users upon exiting, which contain in-time, out-time and cost corresponding to total time parked. It will also contain the remain balance in the wallet.
[image:]
Servo Motor: This module controls the gate at the entrance of the parking lot. This gate opens only when a registered user scans their card.

[image:]

Initialize Proximity Sensor: Setting up the proximity so that the output from the sensor (high or low) can be read by the python program.

[image:]

Working of Proximity Sensor: The current status of the sensors is written on to a file continuously with the gap of 1 second. The output in the terminal seems dynamic as the output is cleared a reprinted every 1 second (notice the same in the video).

[image:]

HTML File: This html file takes the data from output.txt (contents of this file are written down by the python code running the sensors. There is an addition command to enable auto refresh the webpage. This html file is hosted on the internet using a third-party host: ‘ngrok’.
[image:]
Additional features:

Slot Availability Probability
We had added another feature which would indicate the probability that a slot will be available. This feature is an alternative to slot booking. The probability will allow the user to make a more calculated guess about finding a free space. The probability system might seem obvious in some real-world scenarios like in mall parking lots where slot close to the entrance have a lower probability of being ‘available’. Nevertheless, we believe probabilities will an added advantage.

This feature was implemented after we shot the project video, hence as a reference, I am pasting the code snippet below.

[image:]

IOT Team
Tanmay Pathak – 2018102023
Utkarsh Mishra – 2018102020
[bookmark: _GoBack]

image5.png
import RPi.GPIO as GPIO
import time
import sys

#CURSOR_UP_ONE = "\x1b[1A"
H#ERASE_LINE = "\x1b[2k"

sensor_a = 8
sensor_b = 10
sensor_c = 12
sensor_d = 16
sensor_e = 18

GPI0. setmode (GP10. BOARD)
GPIO. setup(sensor_a, GPI0. IN)
GPIO. setup(sensor_b, GPI0. IN)
GPI0. setup(sensor_c, GPI0. IN)
GPIO. setup(sensor_d, GPI0. IN)
GPIO. setup(sensor_e, GPI0. IN)

print "Slot Availability Status :\n"
#print "IR Sensor Ready....."
#print " "

0 for occupied

image6.png
73 print"slot E: ",

74 file_txt += "Slot E: "
75 if GPIO. input (sensor_ 1

76 print "Available\n”

77 file_txt += "Available\n”

78

79 if GPIO. input(sensor_e) ==

80 print “Occupied\n”

81 file_txt += "Occupied\n”

B —————————————————————————————"
83 fwrite(file_txt)

84 f.close()

85 time. sleep(0.5)

86

87 for i in range(10):

88 sys. stdout.write("\033[F")

89 sys. stdout.write("\033[K")

%

91 except KeyboardInterrupt

image7.png
1 <IDOCTYPE html>

2 <html>
3 <head>

4 <meta http-equiv = "refresh” content = "6.2" >

5 </head>

6 <body>

7 <h1> Slot Availability Status </h1>

8 <object width = "300" height = "300" type = "text/plain” data = "output.txt" border = "0" >

9 </object>
10 </body>

il

12 </html>

image8.png
18
19
120
121
122
123
124
125
126
127
128
129
130
B
132
133
134

print’slot E:
file_txt += “slot £: *
if GPI0. input (sensor._e)
if total_toggle >
File_txt += "Available\t"+str((100.0-((toggle_e/total _toggle)100.0)))+"%\n"
print "Available\t"+str((100.0-((toggle_e/total_toggle)*100.0)))+"\n"
else:
print "Available\n”
File_txt += "Available\n”

if GPI0. input(sensor_e
total. togele - totaltoggle + 1
toggle_e = togglee + 1
print “Occupied\t”+str((100.0 - ((toggle_e/total_toggle)=100.0)))+"\n"
file_txt += "Occupied\t"+str((100.0 - ((toggle_e/total_toggle)*100.0)))+"%\n"

image1.png
268 else:

269
270 if entry[(uid(e] + uid[1] + uid[2] + uid[31)]

an print 40 *

272 print “Welcome to Parking Lot : "+name[(uid[0] + uid[1] + uid[2] + uid[31)

273 entry[(uidl@] + uid[1] + uid[2] + uid[(3])] =

274 time_e_in = datetime.datetine.now().replace(microsecond = 0

275 print “Your in time is : ", time_e_in

276 print 40 * "-"

217 servo()

278 else:

279 email_e = emaill (uid(0] + uid[1] + uid[2] + uid[3])]

280 time_e_out = datetine.datetime.now().replace(microsecond = 0

281 time_e = time_e_out - time_e_in

282 print 40 * "~

283 print “Thank You for using our service.\nTotal Time Parked: ", time_e,"\nPlease check your mail for total bill"
284 print 40 * "-"

285 entry[(uidf@] + uid[1] + uid[2] + uid(3])] = @

286 name_n = namel (uid[0] + uid[1] + uid[2] + uid[3])]

287 mail(nane_m, time_e_in, time_e_out, time_e, email e, (uid[0] + uid[1] + uid[2] + uid(3])

288 servo()

image2.png
236 else :

237 if card [(uid[0] + uid[1] + uid [2] + uid(3])] =0 :

238

239 print “NOT A REGISTERED USER - Pls complete the registration process below\n”
240 choice = 0

241 while (choice != 5):

242 RNt "kt REGISTRATION MENUkksxk ks

243 print “1. Enter Name: "

244 print “2. Enter Email-id: *

25 print “3. Initial Amoount in Wallet:

246 print "4. REGISTER"

247 print "\nS. Don't want to register”

248 T ——————————————

249

250 choice = input(“Enter your choice: ")

251

252 if choice == 1

253 enter_name = raw_input("Enter your name: ")

254 name [(uid(0] + uid{1] + uid[2] +uid[3])] = enter_name
255

256 if choice = 2 :

257 enter_email = raw_input("Enter your E-mail id: ")

258 emaill (uid(0] + uid(1] + uid [2] + uid[3])] = enter_email
259

260 if choice == 3:

261 enter_wallet = input("Enter initial value on wallet: ")
262 wallet[(uid[0] + uid[1] + uid[2] + uid[3])] = enter_wallet
263 if choice = 4:

264 card [(uid(@] + uid[1] + uid[2] + uid(3]) 1 =1

265 print "REGISTRATION COMPLETE"

266 print 40 * "x"

267 break

image3.png
50 def mail(naame, time_in, time_out, time_total, eemail,loc):

51

52 ¢ = str(time_total)

53 cost_time = ((360@xint(c[@])) + (((int(c[2])*1@) + int(c[3]))*60) + ((int(c[51)*10) + int(c[6])))

54 cost = cost_time x 0.0

55

56 wallet[loc] = wallet[loc] - cost

57

58 #print "Cost is = ",cost

59

60 msg = MIMEMultipart(

61 msg['Fron’] = 'smartparkingiiiteoutlook.con’

62 msgl'To'] = eemail

63 msg[’Subject'] = 'Smart Parking Bill'

64 bill = "Dear "+naame+",\n\nThis is your bill for the parking services.\n\nIn-time : "+str(time_in)+".\nOut-time : "+str(time_out)+".\n\nBased on your parked t
ime and charges price as 36 Rupees/hour,your total bill is: Rs."+str(cost)+"\n\nRemaining balance in Wallet: Rs."+str(wallet[loc])+"\n\nThank You."

65 message = bill

66 msg. attach(MIMEText (message)

67

68 server = smtplib. SMTP('smtp.outlook.con’,587) #Connects to SMIP sever at timeout 587sec

69 server.ehlo()

70 server.starttls() #Puts SMIP in TLS (transport layer security) mode for encryption

7 server.ehlo()

72 server. login(’smartparkingiiit@outlook.con’, 'Utkarsh@2001’) #Username and Password mentioned

73 server.sendmail("smar tparkingiiit@outlook.con”,eemail, msg.as_string()

74 server.quit()

75

image4.png
25
2
27
28
29
30
31
32
33
34
E
36
37
38
39
40
4

42
43
44
45
46
47
48

import RPi.GPIO as GPIO
import MFRC522

import signal

import time

import datetime

import smtplib
continue_reading = True

from email.MIMEMultipart import MIMEMultipart
from email.MIMEText import MIMEText

def servo():
GPI0. setmode (GP10. BOARD)
GPI0. setup(11,GPI0.0UT)
servol = GPIO.PHM(11,50)
servol.start(6)
servol.ChangeDutyCycle(2)
time. sleep(3)
servol.ChangeDutyCycle(7)
time. sleep(3)
servol.ChangeDutyCycle(2)
servol.ChangeDutyCycle(6)
servol.stop()
GPIO. cleanup()

