
Pololu 3pi Robot User’s Guide

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

https://www.pololu.com/docs/0J21/all Page 1 of 85

1. Introduction . 3

2. Contacting Pololu . 4

3. Important Safety Warning and Handling Precautions . 5

4. Getting Started with Your 3pi Robot . 6

4.a. What You Will Need . 7

4.b. Powering Up Your 3pi . 8

4.c. Using the Preloaded Demo Program . 8

4.d. Included Accessories . 10

5. How Your 3pi Works . 11

5.a. Batteries . 11

5.b. Power management . 13

5.c. Motors and Gearboxes . 15

5.d. Digital inputs and sensors . 20

5.e. 3pi Simplified Schematic Diagram . 23

6. Programming Your 3pi . 26

7. Example Project #1: Line Following . 27

7.a. About Line Following . 27

7.b. A Simple Line-Following Algorithm for 3pi . 27

7.c. Advanced Line Following with 3pi: PID Control . 35

8. Example Project #2: Maze Solving . 37

8.a. Solving a Line Maze . 37

8.b. Working with Multiple C Files in Atmel Studio . 37

8.c. Left Hand on the Wall . 41

8.d. The Main Loop(s) . 42

8.e. Simplifying the Solution . 44

8.f. Improving the Maze-Solving Code . 51

9. Pin Assignment Tables . 54

10. Expansion Information . 61

10.a. Serial slave program . 61

10.b. Serial master program . 75

10.c. Available I/O on the 3pi's ATmegaxx8 . 82

11. Related Resources . 84

12. Revision History and Errata . 85

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

Page 2 of 85

1. Introduction

Note: Starting with serial number 0J5840, 3pi robots are shipping with the newer

ATmega328P microcontroller instead of the ATmega168. The serial number is located

on a white bar code sticker on the bottom of the 3pi PCB. The ATmega328 is essentially

a drop-in replacement for the ATmega168 with twice the memory (32 KB flash, 2 KB

RAM, and 1 KB of EEPROM), so the 3pi code written for the ATmega168 should

work with minimal modification on the ATmega328 (the Pololu AVR Library

[https://www.pololu.com/docs/0J20] now supports the ATmega328P).

The Pololu 3pi robot is a small, high-performance, autonomous robot designed to excel in line-

following and line-maze-solving competitions. Powered by four AAA batteries (not included) and a

unique power system that runs the motors at a regulated 9.25 V, 3pi is capable of speeds up to 100

cm/second while making precise turns and spins that don’t vary with the battery voltage. This results

in highly consistent and repeatable performance of well-tuned code even as the batteries run low.

The robot comes fully assembled with two micro metal gearmotors, five reflectance sensors, an 8×2

character LCD, a buzzer, three user pushbuttons, and more, all connected to a user-programmable

AVR microcontroller. The 3pi measures approximately 3.7 inches (9.5 cm) in diameter and weighs 2.9

oz (83 g) without batteries.

The 3pi is based on an Atmel ATmega168 or ATmega328 microcontroller, henceforth referred to as

the “ATmegaxx8”, running at 20 MHz. ATmega168-based 3pi robots feature 16 KB of flash program

memory and 1 KB RAM, and 512 bytes of persistent EEPROM memory; ATmega328-based 3pi robots

feature 32 KB of flash program memory, 2 KB RAM, and 1 KB of persistent EEPROM memory.

The use of the ATmegaxx8 microcontroller makes the 3pi compatible with the popular Arduino

development platform. Free C and C++ development tools are also available, and an extensive set

of libraries make it a breeze to interface with all of the integrated hardware. Sample programs are

available to show how to use the various 3pi components, as well as how to perform more complex

behaviors such as line following and maze solving.

Please note that an external AVR ISP programmer, such as our USB AVR Programmer v2.1

[https://www.pololu.com/product/3172] is required to program the 3pi robot.

For a Spanish version of this document, please see Pololu 3pi Robot Guia Usuario

[https://www.pololu.com/file/0J137/Pololu3piRobotGuiaDeUsuario.pdf] (3MB pdf) (provided by

customer Jaume B.).

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

1. Introduction Page 3 of 85

https://www.pololu.com/docs/0J20
https://www.pololu.com/docs/0J20
https://www.pololu.com/product/3172
https://www.pololu.com/product/3172
https://www.pololu.com/file/0J137/Pololu3piRobotGuiaDeUsuario.pdf
https://www.pololu.com/file/0J137/Pololu3piRobotGuiaDeUsuario.pdf

2. Contacting Pololu
You can check the 3pi product page [https://www.pololu.com/product/975] for additional information,

including pictures, videos, example code, and other resources.

We would be delighted to hear from you about any of your projects and about your experience

with the 3pi robot. You can contact us [https://www.pololu.com/contact] directly or post on our forum

[http://forum.pololu.com/]. Tell us what we did well, what we could improve, what you would like to see in

the future, or share your code with other 3pi users.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

2. Contacting Pololu Page 4 of 85

https://www.pololu.com/product/975
https://www.pololu.com/contact
http://forum.pololu.com/
http://forum.pololu.com/

3. Important Safety Warning and Handling Precautions
The 3pi robot is not intended for young children! Younger users should use this product only under

adult supervision. By using this product, you agree not to hold Pololu liable for any injury or damage

related to the use or to the performance of this product. This product is not designed for, and should

not be used in, applications where the malfunction of the product could cause injury or damage. Please

take note of these additional precautions:

• Do not attempt to program your 3pi if its batteries are drained or uncharged. Losing power

during programming could permanently disable your 3pi. If you have purchased

rechargeable batteries for use with the 3pi, do not assume they come fully charged; charge

them before you first use them. The 3pi has the ability to monitor its battery voltage; the

example line-following and maze-solving programs we provide show how to use this feature,

and you should include it in your programs so you can know when its time to recharge or

replace your batteries.

• The 3pi robot is intended for use indoors on relatively flat, smooth surfaces. Avoid running

your 3pi on surfaces that might scrape or damage the underside of your robot’s PCB as it

drives around.

• Avoid placing the robot so that the underside of the PCB makes contact with conductive

materials (e.g. do not place the 3pi in a bin filled with metal parts). This could inadvertently

short out the batteries and damage your robot, even with the 3pi turned off. Shorting various

pads or components together could also damage your 3pi.

• Since the PCB and its components are exposed, take standard precautions to protect your

3pi robot from ESD (electrostatic discharge), which could damage the on-board electronics.

When picking up the 3pi, you should first touch a safe part of the robot such as the wheels,

motors, batteries, or the edges of the PCB. If you first touch components on the PCB, you

risk discharging through them. When handing the 3pi to another person, first touch their hand

with your hand to equalize any charge imbalance between you so that you don’t discharge

through the 3pi as the exchange is made.

• If you remove the LCD, take care to replace it in the right orientation such that it is over the

rear battery back. It is possible to put the LCD in backwards or offset; doing so could damage

the LCD or the 3pi.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

3. Important Safety Warning and Handling Precautions Page 5 of 85

4. Getting Started with Your 3pi Robot
Getting started with your 3pi can be as simple as taking it out of the box, adding batteries, and turning

it on. The 3pi ships with a demo program that will give you a brief tour of its features.

General features of the Pololu 3pi robot, top view.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

4. Getting Started with Your 3pi Robot Page 6 of 85

Labeled bottom view of the Pololu 3pi robot.

The following subsections will give you all the information you need to get your 3pi up and running!

4.a. What You Will Need

The following materials are necessary for getting started with your 3pi:

• 4 AAA batteries. Any AAA cells will work, but we recommend NiMH batteries, which are

rechargeable and can be purchased from Pololu [https://www.pololu.com/product/1002] or at a

local store. If you use rechargeable batteries, you will also need a battery charger. Battery

chargers designed to connect to external series battery packs, such as the iMAX-B6AC

[https://www.pololu.com/product/2588], may be used with the 3pi’s battery charger port.

• AVR ISP programmer with 6-pin connector. The 3pi features an ATmega328P

microcontroller, which requires an external programmer such as the Pololu USB AVR

Programmer v2.1 [https://www.pololu.com/product/3172] or Atmel’s AVRISP series. The 3pi has

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

4. Getting Started with Your 3pi Robot Page 7 of 85

https://www.pololu.com/product/1002
https://www.pololu.com/product/2588
https://www.pololu.com/product/2588
https://www.pololu.com/product/3172
https://www.pololu.com/product/3172

a standard 6-pin programming connector, so your programmer will need to have a 6-pin ISP

cable [https://www.pololu.com/product/972] for connecting to the target device. (You will also need

whatever cable your programmer requires to connect to a computer.

• A desktop or laptop computer. You will need a personal computer for developing your

code and loading it onto the 3pi. The 3pi can be programmed on Windows, Mac, and Linux

operating systems, but Pololu support for Macs is limited.

You might find the following materials useful in creating an environment for your robot to explore:

• Several large sheets of white posterboard (available at crafts or office supply stores) or dry-

erase whiteboard stock (commonly available at home/construction supply stores).

• Light-colored masking tape for joining multiple sheets together.

• 3/4" black electrical tape to create lines for your robot to follow.

4.b. Powering Up Your 3pi

The first step in using your new 3pi robot is to insert four

AAA batteries into the battery holders. To do this you will

need to remove the LCD. Pay attention to the LCD’s

orientation as you will want to plug it back in this way

when you are done. With the LCD removed your 3pi

should look like the picture to the right.

Once the batteries are in place, you should return the

LCD to its position over the rear battery holder. Make

sure each male LCD header pin goes into a

corresponding female socket.

Next, push the power button (located on the left side of

the rear battery pack) to turn on your 3pi. You should see

the two blue power LEDs on the underside of the 3pi light, and the 3pi should begin running its

preloaded demo program. You can simply push the power button again to turn the 3pi off, and you can

push the reset button (located just below the power button) to reset the program the robot is running.

4.c. Using the Preloaded Demo Program

Your 3pi comes preloaded with a program that demonstrates most of its features and allows you to

test that it is working correctly. When you first turn on your 3pi, you will hear a beep and see the

words “Pololu 3pi Robot”, then “Demo Program” appear, indicating that you are running the demo

program. If you hear a beep but do not see any text on the LCD, you may need to adjust the contrast

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

4. Getting Started with Your 3pi Robot Page 8 of 85

https://www.pololu.com/product/972
https://www.pololu.com/product/972
https://a.pololu-files.com/picture/0J851.1200.jpg?1046fc1e2453a8d5d920ae485ebfec4f
https://a.pololu-files.com/picture/0J851.1200.jpg?1046fc1e2453a8d5d920ae485ebfec4f

potentiometer on the underside of the board. When the program has started successfully, press the

B button to proceed to the main menu. Press C or A to scroll forward or backward through the menu,

and press B to make a selection or to exit one of the demos. There are seven demos accessible from

the menu:

1. Battery: This demo displays the battery voltage in millivolts, which should be above 5000

(5.0 Volts) for a fully-charged set of batteries. Removing the jumper marked ADC6 will

separate the battery voltage measurement circuit from the analog input, causing the number

displayed to drop to some low value.

2. LEDs: Blinks the red and green user LEDs on the underside of the board. If you have

soldered in the optional user LEDs, they will also blink.

3. Trimpot: Displays the position of the user trimmer potentiometer, which is located on the

underside of the board, as a number between 0 and 1023. While displaying the value, this

demo also blinks the LEDs and plays a note whose frequency is a function of the current

reading. It is easiest to turn the trimpot using a 2mm flat-head screwdriver.

4. Sensors: Show the current readings of the IR sensors using a bar graph. Bigger bars mean

lower reflectance. Placing a reflective object such as your finger under one of the sensors will

cause the corresponding reading to drop visibly on the graph. This demo also displays “C” to

indicate that button C has an effect—press C and the IR emitters will be turned off. In indoor

lighting conditions away from bright incandescent or halogen lights, all of the sensors should

return entirely black readings with IR off. Removing the jumper marked PC5 disables control

of the emitters, causing them to always be on.

5. Motors: Hold down A or C to run the motor on the corresponding side, or hold down both

buttons to run both motors simultaneously. The motors will gradually ramp up to speed; in

your own programs, you can switch them on much more suddenly. Tap A or C to switch the

corresponding motor to reverse (the button letter becomes lowercase if pressing it will drive

the corresponding motor in reverse).

6. Music: Plays an adaptation of J. S. Bach’s Fugue in D Minor for microcontroller and piezo,

while scrolling a text display. This demonstrates the ability of the 3pi to play music in the

background.

7. Timer: A simple stopwatch. Press C to start or stop the stopwatch and A to reset. The

stopwatch continues to count while you are exploring the other demos.

Note: If the 3pi receives any serial data while the demo program is waiting for a button

press from the user, it will switch into serial slave mode. See Section 10.a for more

information.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

4. Getting Started with Your 3pi Robot Page 9 of 85

The source code for the demo program is included with the Pololu AVR C/C++ Library described in

Section 6, in the folder examples\atmega328p\3pi-demo-program .

4.d. Included Accessories

The 3pi robot ships with two through-hole red LEDs and

two through-hole green LEDs. There are connection

points for three optional LEDs on your 3pi: one next to

the power button to indicate when the 3pi is on and two

user-controllable LED ports near the front edge of the

robot. Using these LEDs is completely optional as the 3pi

will function just fine without them. You can customize

your 3pi by choosing your desired combination of red and

green LEDs, or you can even use your own LEDs

[https://www.pololu.com/category/20/leds] if you want more

color/brightness options.

Note that you should only add LEDs if you are comfortable soldering, and you should take care to

avoid desoldering any of the components near the through-hole LED pads. LEDs are polarized, so be

sure to solder them such that the longer lead connects to the pad marked with the +. Before you solder

them in you can press-fit them in place and check to make sure they light as expected. Once soldered

in place, carefully trim off the excess portion of the LED leads.

Your 3pi also ships with three shorting blocks of each color: blue, red, yellow, black. This means you

can customize your 3pi by selecting the shorting block color you most prefer, or you can use a mixture

of colors!

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

4. Getting Started with Your 3pi Robot Page 10 of 85

https://a.pololu-files.com/picture/0J853.1200.jpg?0fa6abaacd224f58ba05415fa3372111
https://a.pololu-files.com/picture/0J853.1200.jpg?0fa6abaacd224f58ba05415fa3372111
https://www.pololu.com/category/20/leds
https://www.pololu.com/category/20/leds

Two rechargeable AAA Ni-MH
batteries.

5. How Your 3pi Works

5.a. Batteries

Introduction to Batteries

The power system on the 3pi begins with the batteries, so it is

important to understand how your batteries work. A battery

contains a carefully controlled chemical reaction that pulls

electrons in from the positive (+) terminal and pushes them out of

the negative (-) terminal. The most common type is the alkaline

battery, which is based on a reaction between zinc and

manganese through a potassium hydroxide solution. Once

alkaline batteries are completely discharged, they cannot be

reused. For the 3pi, we recommend rechargeable nickel-metal-

hydride (NiMH) batteries, which can be recharged over and over.

NiMH batteries are based on a different chemical reaction from

alkaline batteries, but you don’t need to know anything about the

chemical details to use a battery: everything you need to know about it is measured with a few simple

numbers. The first is the strength with which the electrons are pushed, which we measure in volts (V),

the units of electric potential. An NiMH battery has a voltage of about 1.2 V. To understand how much

power you can get out of a battery, you also need to know how many electrons the battery can push

per second – this is the electric current, measured in amps (A). A current of 1 A corresponds to about

6×1018 electrons flowing out one side and in to the other each second, which is such a huge number

that it’s easier to talk about it just in terms of amps. 1 A is also a typical current that a medium-sized

motor might use, and it’s a current that will put a significant strain on small (AAA) batteries.

For any battery, if you attempt to draw more and more current, the voltage produced by the battery will

drop, eventually dropping all the way to zero at the short circuit current: the current that flows if you

connect one side directly to the other with a thick wire. (Don’t try this! The wire might overheat and

melt, and the battery could explode.) The following graph shows a good model of how the voltage on

a typical battery drops as the current goes up:

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 11 of 85

https://a.pololu-files.com/picture/0J752.1200.jpg?e39fa36e2a3d9648f0873f80ee8d9c87
https://a.pololu-files.com/picture/0J752.1200.jpg?e39fa36e2a3d9648f0873f80ee8d9c87

Battery voltage vs. current.

The power put out by a battery is measured by multiplying the volts by the amps, giving a

measurement in watts (W). For example, at the point marked in the graph, we have a voltage of

0.9 V and a current of 0.6 A, this means that the power output is 0.54 W. If you want more power,

you need to add more batteries, and there are two ways to do it: parallel and series configurations.

When batteries are connected in parallel, with all of their positive terminals tied together and all of

their negative terminals tied together, the voltage stays the same, but the maximum current output is

multiplied by the number of batteries. When they are connected in series, with the positive terminal

of one connected to the negative terminal of the next, the maximum current stays the same while the

voltage multiplies. Either way, the maximum power output will be multiplied by the number of batteries.

Think about two people using two buckets to lift water from a lake to higher ground. If they stand next

to each other (working in parallel), they will be able to lift the water to the same height as before, while

delivering twice the amount of water. If one of them stands uphill from the other, they can work together

(in series) to lift the water twice as high, but at the same rate as a single person.

In practice, we only connect batteries in series. This is because different batteries will always have

slightly different voltages, and if they are connected in parallel, the stronger battery will deliver current

to the weaker battery, wasting power even when there is nothing else in the circuit. If we want more

current, we can use bigger batteries: AAA, AA, C, and D batteries of the same type all have the same

voltage, but they can put out very different amounts of current.

The total amount of energy in any battery is limited by the chemical reaction: once the chemicals are

exhausted, the battery will stop producing power. This happens gradually: the voltage and current

produced by a battery will steadily drop until the energy runs out, as shown in the graph below:

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 12 of 85

Battery voltage vs. time.

A rough measure of the amount of energy stored in a battery is given by its milliamp-hour (mAH)

rating, which specifies how long the battery will last at a given discharge rate. The mAH rating is the

discharge rate multiplied by how long the battery lasts: if you draw current at a rate of 200 mA (0.2 A),

and the battery lasts for 3 hours, you would call it a 600 mAH battery. If you discharge the same battery

at 600 mA, you would get about an hour of operation (however, battery capacity tends to decline with

faster discharge rates, so you might only get 50 minutes).

Note: If you have purchased rechargeable batteries for the 3pi, you should fully charge

them before you first use them. You should never attempt to program your 3pi if

its batteries are drained or uncharged. Losing power during programming could

permanently disable your 3pi.

5.b. Power management

Battery voltage drops as the batteries are used up, but many electrical components require a specific

voltage. A special kind of component called a voltage regulator helps out by converting the battery

voltage to a constant, specified voltage. For a long time, 5 V has been the most common regulated

voltage used in digital electronics; this is also called TTL level. The microcontroller and most of the

circuitry in the 3pi operate at 5 V, so voltage regulation is essential. There are two basic types of

voltage regulators:

• Linear regulators use a simple feedback circuit to vary how much energy is passed through

and how much is discarded. The regulator produces a lower output voltage by dumping

unneeded energy. This wasteful, inefficient approach makes linear regulators poor choices

for applications that have a large difference between the input and output voltages, or for

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 13 of 85

applications that require a lot of current. For example, 15 V batteries regulated down to 5 V

with a linear regulator will lose two-thirds of their energy in the linear regulator. This energy

becomes heat, so linear regulators often need large heat sinks, and they generally don’t work

well with high-power applications.

• Switching regulators turn power on and off at a high frequency, filtering the output to

produce a stable supply at the desired voltage. By carefully redirecting the flow of electricity,

switching regulators can be much more efficient than linear regulators, especially for high-

current applications and large changes in voltage. Also, switching regulators can convert low

voltages into higher voltages! A key component of a switching regulator is the inductor, which

stores energy and smooths out current; on the 3pi, the inductor is the gray block near the ball

caster labeled “100”. A desktop computer power supply also uses switching regulators: peek

through the vent in the back of your computer and look for a donut-shaped piece with a coil

of thick copper wire wrapped around it – that’s the inductor.

The power management subsystem built into the 3pi is shown in this block diagram:

The voltage of 4 x AAA cells can vary between 3.5 – 5.5 V (and even to 6 V if alkalines are used).

This means it’s not possible simply to regulate the voltage up or down to get 5 V. Instead, in the

3pi, a switching regulator first boosts the battery voltage up to 9.25 V (Vboost), and a linear regulator

regulates Vboost back down to 5 V (VCC). Vboost powers the motors and the IR LEDs in the line

sensors, while VCC is used for the microcontroller and all digital signals.

Using Vboost for the motors and sensors gives the 3pi three unique performance advantages over

typical robots, which use battery power directly:

• First, a higher voltage means more power for the motors, without requiring more current and

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 14 of 85

a larger motor driver.

• Second, since the voltage is regulated, the motors will run the same speed as the batteries

drop from 5.5 down to 3.5 V. You can take advantage of this when programming your 3pi, for

example by calibrating a 90° turn based on the amount of time that it takes.

• Third, at 9.25 V, all five of the IR LEDs can be powered in series so that they consume the

lowest possible amount of power. (Note that you can switch the LEDs on and off to save even

more power.)

One other interesting thing about this power system is that instead of gradually running out of power

like most robots, the 3pi will operate at maximum performance until it suddenly shuts off. This can take

you by surprise, so you might want your 3pi to monitor its battery voltage.

A simple circuit for monitoring battery voltage is built in to the 3pi.

Three resistors, shown in the circuit at right, comprise a voltage

divider that outputs a voltage equal to two-thirds of the battery

voltage, which will always be safely below the main microcontroller’s

maximum analog input voltage of 5 V. For example, at a battery

voltage of 4.8 V, the battery voltage monitor port ADC6 will be at a

level of 3.2 V. Using 10-bit analog-to-digital conversion, where 5 V is

read as a value of 1023, 3.2 V is read as a value of 655. To convert

it back to the actual battery voltage, multiply this number by

5000 mV×3/2 and divide by 1023. This is handled conveniently by

the read_battery_millivolts_3pi() function (provided in the Pololu

AVR Library; see Section 6 for more information), which averages ten samples and returns the battery

voltage in mV:

5.c. Motors and Gearboxes

1
2
3
4

unsigned int read_battery_millivolts_3pi()
{

return readAverage(6,10)*5000L*3/2/1023;
}

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 15 of 85

A typical small brushed DC
motor, with no gearbox.

A motor is a machine that converts electrical energy to motion.

There are many different kinds of motors, but the most important

for low-cost robotics is the brushed DC motor, which is the type

used on the 3pi. A brushed DC motor typically has permanent

magnets on the outside and several electromagnetic coils

mounted on the motor shaft (armature). The “brushes” are sliding

pieces of metal that switch the power from one coil to the next as

the shaft turns so that magnetic attraction between the coil and

the magnets continuously pulls the motor in the same direction.

The primary values that describe a running motor are its speed,

measured in rpm, and its torque, measured in kg·cm or oz·in

(pronounced “ounce-inches”). The units for torque show the dependence on both force and distance;

for example, a motor that produces 6 oz·in of torque can product a force of 6 oz. with a 1-inch lever

arm, 3 oz. with a 2-inch lever, and so on. Multiplying the torque and speed (measured at the same

time) give us the power delivered by a motor. We see, therefore, that a motor with twice the speed and

half the torque as another has the same power output.

Every motor has a maximum speed (when no force is applied) and a maximum torque (when the motor

is completely stopped). We call these the free-running speed and the stall torque. Naturally, a motor

uses the least current when no force is applied to it, and the current drawn from the batteries goes up

until it stalls, so the free-running current and stall current are also important parameters characterizing

the motor. The stall current is usually much higher than the free-running current, as shown in the graph

below:

Motor operation: current and speed vs. torque.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 16 of 85

The 30:1 gearmotor used on the
3pi.

The free-running speed of a small DC motor is usually many

thousands of rotations per minute (rpm), much higher than the

speed we want the wheels of a robot to turn. A gearbox is a

system of gears that converts the high-speed, low-torque output

of the motor into a lower-speed, higher-torque output that is a

much better suited for driving a robot. The gear ratio used on the

3pi is 30:1, which means that for every 30 turns of the motor shaft,

the output shaft turns once. This reduces the speed by a factor of

30, and (ideally) increases the torque by a factor of 30. The

resulting parameters of the 3pi motors are summarized in this

table:

Gear ratio: 30:1

Free-running speed: 700 rpm

Free-running current: 60 mA

Stall torque: 6 oz·in

Stall current: 540 mA

The two wheels of the 3pi each have a radius of 0.67 in, which means that the maximum force it can

produce with two motors when driving forward is 2×6/0.67 = 18 oz. The 3pi weighs about 7 oz with

batteries, so the motors are strong enough to lift the 3pi up a vertical slope or accelerate it at 2 g (twice

the acceleration of gravity). The actual performance is limited by the friction of the tires: on a steep

enough slope, the wheels will slip before they stall – in practice, this happens when the slope is around

30-40°.

Driving a motor with speed and direction control

One nice thing about a DC motor is that you can change the direction of rotation by switching the

polarity of the applied voltage. If you have a loose battery and motor, you can see this for yourself by

making connections one way and then turning the battery around to make the motor spin in reverse.

Of course, you don’t want to take the batteries out of your 3pi and reverse them every time it needs

to back up – instead, a special arrangement of four switches, called an H-bridge, allows the motor to

spin either backwards or forwards. Here is a diagram that shows how the H-bridge works:

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 17 of 85

If switches 1 and 4 are closed (the center picture), current flows through the motor from left to right,

and the motor spins forward. Closing switches 2 and 3 causes the current to reverse direction and the

motor to spin backward. An H-bridge can be constructed with mechanical switches, but most robots,

including the 3pi, use transistors to switch the current electronically. The H-bridges for both motors

on the 3pi are all built into a single motor driver chip, the TB6612FNG, and output ports of the main

microcontroller operate the switches through this chip. Here is a table showing how output ports PD5

and PD6 on the microcontroller control the transistors of motor M1:

PD5 PD6 1 2 3 4 M1

0 0 off off off off off (coast)

0 1 off on on off forward

1 0 on off off on reverse

1 1 off off on on off (brake)

Motor M2 is controlled through the same logic by ports PD3 and PB3:

PD3 PB3 1 2 3 4 M2

0 0 off off off off off (coast)

0 1 off on on off forward

1 0 on off off on reverse

1 1 off off on on off (brake)

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 18 of 85

PWM speed control, showing gradual deceleration.

Speed control is achieved by rapidly

switching the motor between two states in

the table. Suppose we keep PD6 high (at 5 V,

also called a logical “1”) and have PD5

alternate quickly between low (0 V or “0”) and

high. The motor driver will switch between

the “forward” and “brake” states, causing M1

to turn forward at a reduced speed. For

example, if PD6 is high two thirds of the time

(a 67% duty cycle), then M1 will turn at

approximately 67% of its full speed. Since

the motor voltage is a series of pulses of

varying width, this method of speed control is

called pulse-width modulation (PWM). An

example series of PWM pulses is shown in the graph at right: as the size of the pulses decreases from

100% duty cycle down to 0%, the motor speed decreases from full speed down to a stop.

In the 3pi, speed control is accomplished using special PWM outputs of the main microcontroller that

are linked to the internal timers Timer0 and Timer2. This means that you can set the PWM duty cycle

of the two motors once, and the hardware will continue to produce the PWM signal, in the background,

without any further attention.

The set_motors() function in the Pololu AVR Library (see Section 6 for more information) lets you

set the duty cycle, and it uses 8-bit precision: a value of 255 corresponds to 100% duty cycle. For

example, to get 67% on M1 and 33% on M2, you would call

To get a slowly decreasing PWM sequence like the one shown in the graph, you would need to write

a loop that gradually decreases the motor speed over time.

Turning with a differential drive

The 3pi has an independent motor and wheel on each side, which enables a method of locomotion

called differential drive. It is also known as a “tank drive” since this is how a tank drives. It is completely

unlike the steering system of automobile, which uses a single drive motor and steerable front wheels.

Turning with a differential drive is accomplished by running the two motors at different speeds. In the

previous set_motors() example, the left wheel will spin faster than the right, driving the robot forward

and to the right. The difference in speeds determines how sharp the turn will be, and spinning in place

can be accomplished by running one motor forward and one backward. Spinning is an especially

effective maneuver for a round robot, and you won’t have to worry about parallel parking!

1 set_motors(171,84); ?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 19 of 85

The 3pi demonstrating the effects of various motor
settings.

5.d. Digital inputs and sensors

The microcontroller at the heart of the 3pi, an Atmel AVR mega168 or mega328, has a number of pins

which can be configured as digital inputs: they are read by your program as a 1 or a 0 depending on

whether the voltage is high (above about 3 V) or low (below about 1.5 V). Here is the circuit for one of

the pushbutton inputs:

Normally, the pull-up resistor R (20-50 k) brings the voltage on the input pin to 5 V, so it reads as a 1,

but pressing the button connects the input to ground (0 V) through a 1 k resistor, which is much lower

than the value of R. This brings the input voltage very close to 0 V, so the pin reads as a 0. Without the

pull-up resistor, the input would be “floating” when the button is not pressed, and the value read could

be affected by residual voltage on the line, interference from nearby electrical signals, or even distant

lightning. Don’t leave an input floating unless you have a good reason. Since the pull-up resistors are

important, they are included within the AVR – the resistor R in the picture represents this internal pull-

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 20 of 85

up, not a discrete part on the 3pi circuit board.

A more complicated use for the digital inputs is in the reflectance sensors. Here is the circuit for the

3pi’s leftmost reflectance sensor, which is connected to pin PC0:

The sensing element of the reflectance sensor is the phototransistor shown in the left half of U4, which

is connected in series with capacitor C21. A separate connection leads through resistor R12 to pin

PC0. This circuit takes advantage of the fact the digital inputs of the AVR can be reconfigured as

digital outputs on the fly. A digital output presents a voltage of 5 V or 0 V, depending on whether it

is set to a 1 or a 0 by your program. The way it works is that the pin is set to an output and driven

high (5 V) to charge the output node. The pin is then set to an input, and the voltage falls as current

flows through the phototransistor. Here is an oscilloscope trace showing the voltage on the capacitor

(yellow) dropping as current flows through the phototransistor, and the resulting digital input value of

pin PC0 (blue):

The rate of current flow through the phototransistor depends on the light level, so that when the robot

is over a bright white surface, the value returns to 0 much more quickly than when it is over a black

surface. The trace shown above was taken when the sensor was on the edge between a black surface

and a white one – this is what it looks like on pure white:

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 21 of 85

https://a.pololu-files.com/picture/0J633.1200.png?75a67e4dd688dd72dc2febd14d37d3a5
https://a.pololu-files.com/picture/0J633.1200.png?75a67e4dd688dd72dc2febd14d37d3a5

The length of time that the digital input stays at 1 is very short when over white, and very long

when over black. The function read_line_sensors() in the Pololu AVR Library switches the port as

described above and returns the time for each of the five sensors. Here is a simplified version of the

code that reads the sensors:

This piece of code is found in the file src\PololuQTRSensors\PololuQTRSensors.cpp . The code makes

use of timer TCNT2, which is a special register in the AVR that we have configured to count up

continuously, incrementing every 0.4 μs. Basically, the code waits until one of the sensors changes

value, counting up the elapsed time in the variable time . (It is important to use a separate variable for

the elapsed time since the timer TCNT2 periodically overflows, dropping back to zero.) Upon detecting

a transition from a 1 to a 0 on one of the sensors (by measuring a change in the input port PINC), the

code determines which sensor changed and records the time in the array sensor_values[i] . After the

time limit _maxValue is reached (this is set to 2000 by default on the 3pi, corresponding to 800 μs),

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

time = 0;
last_time = TCNT2;
while (time < _maxValue)
{

// Keep track of the total time.
// This implicity casts the difference to unsigned char, so
// we don't add negative values.
unsigned char delta_time = TCNT2 - last_time;
time += delta_time;
last_time += delta_time;

// continue immediately if there is no change
if (PINC == last_c)

continue;

// save the last observed values
last_c = PINC;

// figure out which pins changed
for (i = 0; i < _numSensors; i++)
{

if (sensor_values[i] == 0 && !(*_register[i] & _bitmask[i]))
sensor_values[i] = time;

}
}

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 22 of 85

https://a.pololu-files.com/picture/0J634.1200.png?94eda2dc67dbdf8a5b0eadeec7bf1ee8
https://a.pololu-files.com/picture/0J634.1200.png?94eda2dc67dbdf8a5b0eadeec7bf1ee8

the loop ends, and the time values are returned.

5.e. 3pi Simplified Schematic Diagram

A full understanding of how your 3pi works cannot be achieved without first understanding its

schematic diagram:

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 23 of 85

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 24 of 85

You can download a pdf version of the schematic here [https://www.pololu.com/file/0J119/3pi-schematic.pdf]

(481k pdf).

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

5. How Your 3pi Works Page 25 of 85

https://www.pololu.com/file/0J119/3pi-schematic.pdf

6. Programming Your 3pi
To do more with your 3pi than explore the demo program or use it as a serial slave to a master

device, you will need to program it, which requires a computer and an external AVR ISP programmer

like our USB AVR programmer v2.1 [https://www.pololu.com/product/3172]. Your programmer’s user’s

guide should have all the information you need to get started programming AVRs like the one on

the 3pi. If you are using our USB AVR Programmer v2 or v2.1, you can find it’s user’s guide here

[https://www.pololu.com/docs/0J67]. You might also check out our original Pololu AVR Programming

Quick Start Guide [https://www.pololu.com/docs/0J51] for tutorials on how to get started programming

your 3pi in Windows, Linux, and Mac OS X, but it was written for our older USB AVR Programmer, and

much of it is now out of date.

Warning: Do not attempt to program your 3pi if its batteries are drained or uncharged (make

sure you charge any new rechargeable batteries fully before you first use them). Losing

power during programming could permanently disable your 3pi.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

6. Programming Your 3pi Page 26 of 85

https://www.pololu.com/product/3172
https://www.pololu.com/docs/0J67
https://www.pololu.com/docs/0J67
https://www.pololu.com/docs/0J51
https://www.pololu.com/docs/0J51

Pololu 3pi robot on a 3/4" black line.

7. Example Project #1: Line Following

7.a. About Line Following

Now that you have learned how to compile a

simple program for the 3pi, it’s time to teach your

robot do something more complicated. In this

example project, we’ll show you how to make

your 3pi follow a black line on a white

background, by coordinating its sensors and

motors. Line following is a great introduction to

robot programming, and it makes a great

contest: it’s easy to build a line-following course,

the rules are simple to understand, and it’s not

hard to program your 3pi to follow a line.

Optimizing your program to make your 3pi zoom

down the line at the highest speed possible,

however, is a challenge that can introduce you

to some advanced programming concepts.

A great looking line following course can be constructed for a few dollars in a couple of hours at home.

For information on building your own course, see our tutorial on Building Line Following and Line

Maze Courses [https://www.pololu.com/docs/0J22].

7.b. A Simple Line-Following Algorithm for 3pi

A simple line following program for the 3pi is available in the folder examples\atmegaxx8\3pi-

linefollower .

Note: An Arduino-compatible version of this sample program can be downloaded as part

of the Pololu Arduino Libraries [https://www.pololu.com/docs/0J17] (see Section 5.g).

The source code demonstrates a variety of different features of the 3pi, including the line sensors,

motors, LCD, battery voltage monitor, and buzzer. The program has two phases.

The first phase of the program is the initialization and calibration phase, which is handled by the

function intitialize(). This function is called once, at the beginning of the main() function, before

anything else happens, and it takes care of the following steps:

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

7. Example Project #1: Line Following Page 27 of 85

https://a.pololu-files.com/picture/0J831.1200.jpg?c87a76253ebf62222c74be6c0a598302
https://a.pololu-files.com/picture/0J831.1200.jpg?c87a76253ebf62222c74be6c0a598302
https://www.pololu.com/docs/0J22
https://www.pololu.com/docs/0J22
https://www.pololu.com/docs/0J17
https://www.pololu.com/docs/0J17/5.g

1. Calling pololu_3pi_init(2000) to set up the 3pi, with the sensor timeout set to 2000×0.4 us

= 800 us. This means that the sensor values will vary from 0 (completely white) to 2000

(completely black), where a value of 2000 indicates that the sensor’s capacitor took at least

800 us to discharge.

2. Displaying the battery voltage returned by the read_battery_millivolts() function. It is

important to monitor battery voltage so that your robot does not surprisingly run out of

batteries and shut down during the middle of a competition or during programming. For more

information, see Section 2 of the command reference [https://www.pololu.com/docs/0J18].

3. Calibrating the sensors. This is accomplished by turning the 3pi to the right and left on the line

while calling the calibrate_line_sensors() function. The minimum and maximum values read

during this time are stored in RAM. This allows the read_line_sensors_calibrated() function

to return values that are adjusted to range from 0 to 1000 for each sensor, even if some of

your sensors respond differently than the others. The read_line() function used later in the

code also depends on having calibrated values. For more information, see Section 19 of the

command reference [https://www.pololu.com/docs/0J18].

4. Displaying the calibrated line sensor values in a bar graph. This demonstrates the use of

the lcd_load_custom_character() function together with print_character() to make it easy

to see whether the line sensors are working properly before starting the robot. For more

information on this and other LCD commands, see Section 5 of the command reference

[https://www.pololu.com/docs/0J18].

5. Waiting for the user to press a button. It’s very important for your robot not to start driving

until you want it to start, or it could unexpectedly drive off of a table or out of your hands when

you are trying to program it. We use the button_is_pressed() function to wait for you to press

the B button while displaying the battery voltage or sensor readings. For more information

on button commands, see Section 9 of the command reference [https://www.pololu.com/docs/

0J18].

In the second phase of the program, your 3pi will take a sensor reading and set the motor speed

appropriately based on the reading. The general idea is that if the robot is off on either side, it should

turn to get back on, but if it’s on the line, it should try to drive straight ahead. The following steps occur

inside of a while(1) loop, which will continue repeating over and over until the robot is turned off or

reset.

1. The function read_line() is called. This takes a sensor reading and returns an estimate of

the robot’s position with respect to the line, as a number between 0 and 4000. A value of

0 means that the line is to the left of sensor 0, value of 1000 means that the line is directly

under sensor 1, 2000 means that the line is directly under sensor 2, and so on.

2. The value returned by read_line() is divided into three possible cases:

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

7. Example Project #1: Line Following Page 28 of 85

https://www.pololu.com/docs/0J18/2
https://www.pololu.com/docs/0J18
https://www.pololu.com/docs/0J18/19
https://www.pololu.com/docs/0J18
https://www.pololu.com/docs/0J18/5
https://www.pololu.com/docs/0J18
https://www.pololu.com/docs/0J18
https://www.pololu.com/docs/0J18/9
https://www.pololu.com/docs/0J18
https://www.pololu.com/docs/0J18

◦ 0–1000: the robot is far to the right of the line. In this case, to turn sharply left, we set

the right motor speed to 100 and the left motor speed to 0. Note that the maximum

speed of the motors is 255, so we are driving the right motor at only about 40%

power here.

◦ 1000–3000: the robot is approximately centered on the line. In this case, we set

both motors to speed 100, to drive straight ahead.

◦ 3000–4000: the robot is far to the left of the line. In this case, we turn sharply to the

right by setting the right motor speed to 0 and the left motor speed to 100.

3. Depending on which motors are activated, the corresponding LEDs are turned on for a more

interesting display. This can also help with debugging.

To open the program in Atmel Studio, you may go to examples\atmegaxx8\3pi-linefollower and

simply double-click on 3pi-linefollower.cproj . Compile the program, load it onto your 3pi, and try

it out. You should find that your robot is able to follow the curves of your line course without ever

completely losing the line. However, its motors are moving at a speed of at most 100 out of the

maximum possible of 255, and the algorithm causes a lot of unnecessary shaking on the curves. At

this point, you might want to work on trying to adjust and improve this algorithm, before moving on to

the next section. Some ideas for improvement are:

• Increase the maximum possible speed.

• Add more intermediate cases, with intermediate speed settings, to make the motion less

jerky.

• Give your robot a memory: have its maximum speed increase after it has been on the line

consistently for a few cycles.

You might also want to:

• Measure the speed of your loop, using timing functions from Section 17 of the command

reference [https://www.pololu.com/docs/0J18] to time a few thousand cycles or by blinking the

LEDs on and off every 1000 cycles.

• Display sensor readings on the LCD. Since writing to the LCD takes a significant amount of

time, you should do this at most few times per second.

• Incorporate the buzzer into your program. You might want your 3pi to play music while it

is driving or make informational beeps that depend on what it is doing. See Section 3 of

the command reference [https://www.pololu.com/docs/0J18] for more information on using the

buzzer; for music, you’ll want to use the PLAY_CHECK option to avoid disrupting your sensor

readings.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

7. Example Project #1: Line Following Page 29 of 85

https://www.pololu.com/docs/0J18/17
https://www.pololu.com/docs/0J18
https://www.pololu.com/docs/0J18
https://www.pololu.com/docs/0J18/3
https://www.pololu.com/docs/0J18

The entire source code to this simple line following program is presented below, for your reference.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

7. Example Project #1: Line Following Page 30 of 85

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

/*
* 3pi-linefollower - demo code for the Pololu 3pi Robot
*
* This code will follow a black line on a white background, using a
* very simple algorithm. It demonstrates auto-calibration and use of
* the 3pi IR sensors, motor control, bar graphs using custom
* characters, and music playback, making it a good starting point for
* developing your own more competitive line follower.
*
* http://www.pololu.com/docs/0J21
* http://www.pololu.com
* http://forum.pololu.com
*
*/

// The 3pi include file must be at the beginning of any program that
// uses the Pololu AVR library and 3pi.
#include <pololu/3pi.h>

// This include file allows data to be stored in program space. The
// ATmegaxx8 has 16x more program space than RAM, so large
// pieces of static data should be stored in program space.
#include <avr/pgmspace.h>

// Introductory messages. The "PROGMEM" identifier causes the data to
// go into program space.
const char welcome_line1[] PROGMEM = " Pololu";
const char welcome_line2[] PROGMEM = "3\xf7 Robot";
const char demo_name_line1[] PROGMEM = "Line";
const char demo_name_line2[] PROGMEM = "follower";

// A couple of simple tunes, stored in program space.
const char welcome[] PROGMEM = ">g32>>c32";
const char go[] PROGMEM = "L16 cdegreg4";

// Data for generating the characters used in load_custom_characters
// and display_readings. By reading levels[] starting at various
// offsets, we can generate all of the 7 extra characters needed for a
// bargraph. This is also stored in program space.
const char levels[] PROGMEM = {

0b00000,
0b00000,
0b00000,
0b00000,
0b00000,
0b00000,
0b00000,
0b11111,
0b11111,
0b11111,
0b11111,
0b11111,
0b11111,
0b11111

};

// This function loads custom characters into the LCD. Up to 8
// characters can be loaded; we use them for 7 levels of a bar graph.
void load_custom_characters()
{

lcd_load_custom_character(levels+0,0); // no offset, e.g. one bar
lcd_load_custom_character(levels+1,1); // two bars

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

7. Example Project #1: Line Following Page 31 of 85

http://www.pololu.com/docs/0J21
http://www.pololu.com/
http://forum.pololu.com/

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

lcd_load_custom_character(levels+2,2); // etc...
lcd_load_custom_character(levels+3,3);
lcd_load_custom_character(levels+4,4);
lcd_load_custom_character(levels+5,5);
lcd_load_custom_character(levels+6,6);
clear(); // the LCD must be cleared for the characters to take effect

}

// This function displays the sensor readings using a bar graph.
void display_readings(const unsigned int *calibrated_values)
{

unsigned char i;

for(i=0;i<5;i++) {
// Initialize the array of characters that we will use for the
// graph. Using the space, an extra copy of the one-bar
// character, and character 255 (a full black box), we get 10
// characters in the array.
const char display_characters[10] = {' ',0,0,1,2,3,4,5,6,255};

// The variable c will have values from 0 to 9, since
// calibrated values are in the range of 0 to 1000, and
// 1000/101 is 9 with integer math.
char c = display_characters[calibrated_values[i]/101];

// Display the bar graph character.
print_character(c);

}
}

// Initializes the 3pi, displays a welcome message, calibrates, and
// plays the initial music.
void initialize()
{

unsigned int counter; // used as a simple timer
unsigned int sensors[5]; // an array to hold sensor values

// This must be called at the beginning of 3pi code, to set up the
// sensors. We use a value of 2000 for the timeout, which
// corresponds to 2000*0.4 us = 0.8 ms on our 20 MHz processor.
pololu_3pi_init(2000);
load_custom_characters(); // load the custom characters

// Play welcome music and display a message
print_from_program_space(welcome_line1);
lcd_goto_xy(0,1);
print_from_program_space(welcome_line2);
play_from_program_space(welcome);
delay_ms(1000);

clear();
print_from_program_space(demo_name_line1);
lcd_goto_xy(0,1);
print_from_program_space(demo_name_line2);
delay_ms(1000);

// Display battery voltage and wait for button press
while(!button_is_pressed(BUTTON_B))
{

int bat = read_battery_millivolts();

clear();

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

7. Example Project #1: Line Following Page 32 of 85

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

print_long(bat);
print("mV");
lcd_goto_xy(0,1);
print("Press B");

delay_ms(100);
}

// Always wait for the button to be released so that 3pi doesn't
// start moving until your hand is away from it.
wait_for_button_release(BUTTON_B);
delay_ms(1000);

// Auto-calibration: turn right and left while calibrating the
// sensors.
for(counter=0;counter<80;counter++)
{

if(counter < 20 || counter >= 60)
set_motors(40,-40);

else
set_motors(-40,40);

// This function records a set of sensor readings and keeps
// track of the minimum and maximum values encountered. The
// IR_EMITTERS_ON argument means that the IR LEDs will be
// turned on during the reading, which is usually what you
// want.
calibrate_line_sensors(IR_EMITTERS_ON);

// Since our counter runs to 80, the total delay will be
// 80*20 = 1600 ms.
delay_ms(20);

}
set_motors(0,0);

// Display calibrated values as a bar graph.
while(!button_is_pressed(BUTTON_B))
{

// Read the sensor values and get the position measurement.
unsigned int position = read_line(sensors,IR_EMITTERS_ON);

// Display the position measurement, which will go from 0
// (when the leftmost sensor is over the line) to 4000 (when
// the rightmost sensor is over the line) on the 3pi, along
// with a bar graph of the sensor readings. This allows you
// to make sure the robot is ready to go.
clear();
print_long(position);
lcd_goto_xy(0,1);
display_readings(sensors);

delay_ms(100);
}
wait_for_button_release(BUTTON_B);

clear();

print("Go!");

// Play music and wait for it to finish before we start driving.
play_from_program_space(go);
while(is_playing());

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

7. Example Project #1: Line Following Page 33 of 85

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

}

// This is the main function, where the code starts. All C programs
// must have a main() function defined somewhere.
int main()
{

unsigned int sensors[5]; // an array to hold sensor values

// set up the 3pi
initialize();

// This is the "main loop" - it will run forever.
while(1)
{

// Get the position of the line. Note that we *must* provide
// the "sensors" argument to read_line() here, even though we
// are not interested in the individual sensor readings.
unsigned int position = read_line(sensors,IR_EMITTERS_ON);

if(position < 1000)
{

// We are far to the right of the line: turn left.

// Set the right motor to 100 and the left motor to zero,
// to do a sharp turn to the left. Note that the maximum
// value of either motor speed is 255, so we are driving
// it at just about 40% of the max.
set_motors(0,100);

// Just for fun, indicate the direction we are turning on
// the LEDs.
left_led(1);
right_led(0);

}
else if(position < 3000)
{

// We are somewhat close to being centered on the line:
// drive straight.
set_motors(100,100);
left_led(1);
right_led(1);

}
else
{

// We are far to the left of the line: turn right.
set_motors(100,0);
left_led(0);
right_led(1);

}
}

// This part of the code is never reached. A robot should
// never reach the end of its program, or unpredictable behavior
// will result as random code starts getting executed. If you
// really want to stop all actions at some point, set your motors
// to 0,0 and run the following command to loop forever:
//
// while(1);

}

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

7. Example Project #1: Line Following Page 34 of 85

7.c. Advanced Line Following with 3pi: PID Control

A more advanced line following program for the 3pi is available in the folder examples\atmegaxx8\3pi-

linefollower-pid .

Note: An Arduino-compatible version of this sample program can be downloaded as part

of the Pololu Arduino Libraries [https://www.pololu.com/docs/0J17] (see Section 5.g).

The technique used in this example program, known as PID control, addresses some of the problems

that you might have noticed with the previous example, and it should allow you to greatly increase your

robot’s line following speed. Most importantly, PID control uses continuous functions to compute the

motor speeds, so that the jerkiness of the previous example can be replaced by a smooth response.

PID stands for Proportional, Integral, Derivative; these are the three input values used in a simple

formula to compute the speed that your robot should turn left or right.

• The proportional value is approximately proportional to your robot’s position with respect

to the line. That is, if your robot is precisely centered on the line, we expect a proportional

value of exactly 0. If it is to the left of the line, the proportional term will be a positive number,

and to the right of the line, it will be negative. This is computed from the result returned by

read_line() simply by subtracting 2000.

• The integral value records the history of your robot’s motion: it is a sum of all of the values

of the proportional term that were recorded since the robot started running.

• The derivative is the rate of change of the proportional value. We compute it in this example

as the difference of the last two proportional values.

Here is the section of code that computes the PID input values:

Note that we cast the variable position to an int type in the formula for proportional. An unsigned

int can only store positive values, so the expression position-2000 , without casting, would lead to a

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// Get the position of the line. Note that we *must* provide
// the "sensors" argument to read_line() here, even though we
// are not interested in the individual sensor readings.
unsigned int position = read_line(sensors,IR_EMITTERS_ON);

// The "proportional" term should be 0 when we are on the line.
int proportional = ((int)position) - 2000;

// Compute the derivative (change) and integral (sum) of the
// position.
int derivative = proportional - last_proportional;
integral += proportional;

// Remember the last position.
last_proportional = proportional;

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

7. Example Project #1: Line Following Page 35 of 85

https://www.pololu.com/docs/0J17
https://www.pololu.com/docs/0J17/5.g

negative overflow. In this particular case, it actually wouldn’t affect the results, but it is always a good

idea to use casting to avoid unexpected behavior.

Each of these input values provides a different kind of information. The next step is a simple formula

that combines all of the values into one variable, which is then used to determine the motor speeds:

The values 1/20, 1/10000, and 3/2 represent adjustable parameters that determine how your 3pi will

react to the line. The particular values chosen for this example were somewhat arbitrarily picked,

and while they work sufficiently for typical line following, there is plenty of room to improve them.

In general, increasing these PID parameters will make power_difference larger, causing stronger

reactions, while decreasing them will make the reactions weaker. It’s up to you to think about the

different values and experiment with your robot to determine what effect each parameter has. This

example gives the motors a maximum speed of 100, which is a safe initial value. Once you have

adjusted the parameters to work well at a speed of 100, try increasing the speed. You’ll probably need

to readjust the parameters as the maximum speed increases. By gradually increasing the maximum

speed and tuning the parameters, see if you can get your 3pi to run as fast as possible! We have been

able to run 3pis with a maximum speed of 255 on courses with 6"-radius curves, all by finding the right

PID parameters.

Please see Section 2 of the 3pi robot videos [https://www.pololu.com/docs/0J32] gallery for videos of 3pi

line followers using tuned PID and higher maximum speeds.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// Compute the difference between the two motor power settings,
// m1 - m2. If this is a positive number the robot will turn
// to the right. If it is a negative number, the robot will
// turn to the left, and the magnitude of the number determines
// the sharpness of the turn.
int power_difference = proportional/20 + integral/10000 + derivative*3/2;

// Compute the actual motor settings. We never set either motor
// to a negative value.
const int max = 60;
if(power_difference > max)

power_difference = max;
if(power_difference < -max)

power_difference = -max;

if(power_difference < 0)
set_motors(max+power_difference, max);

else
set_motors(max, max-power_difference);

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

7. Example Project #1: Line Following Page 36 of 85

https://www.pololu.com/docs/0J32/2
https://www.pololu.com/docs/0J32

8. Example Project #2: Maze Solving

8.a. Solving a Line Maze

The next step up from simple line following is to

teach your 3pi to navigate paths with sharp

turns, dead ends, and intersections. Make a

complicated network of intersecting black lines,

add a circle to represent the goal, and you have

a line maze, which is a challenging environment

for a robot to explore. In a line maze contest,

robots travel as quickly as possible along the

lines from a designated start to the goal, keeping

track of the intersections that they pass along

the way. Robots are given several chances to

run the maze, so that they can follow the fastest

possible path after learning about all of the dead ends.

The mazes that we will teach you to solve in this tutorial have one special feature: they have no loops.

That is, there is no way to re-visit any point on the maze without retracing your steps. Solving this type

of maze is much easier than solving a looped maze, since a simple strategy allows you to explore the

entire maze. We’ll talk about that strategy in the next section.

We also usually construct our mazes using only straight lines drawn on a regular grid, but this is mostly

just to make the course easy to reproduce – the maze-solving strategy described in this tutorial does

not require these features.

For information on building your own course, see our tutorial on Building Line Following and Line

Maze Courses [https://www.pololu.com/docs/0J22].

An additional resource for understanding simple, non-looped maze solving is this presentation

[https://www.pololu.com/file/0J195/line-maze-algorithm.pdf] (505k pdf) written by customer (and robotics

professor) R. Vannoy. It doesn’t include any code, but it goes over some important concepts and

contains a number of visuals to help illustrate the important points.

8.b. Working with Multiple C Files in Atmel Studio

The C source code for an example line maze solver is available in the folder examples\atmegaxx8\

3pi-mazesolver .

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 37 of 85

https://a.pololu-files.com/picture/0J878.1200.jpg?dcb8a1880e9ab60189aa6e85a720b607
https://a.pololu-files.com/picture/0J878.1200.jpg?dcb8a1880e9ab60189aa6e85a720b607
https://www.pololu.com/docs/0J22
https://www.pololu.com/docs/0J22
https://www.pololu.com/file/0J195/line-maze-algorithm.pdf
https://www.pololu.com/file/0J195/line-maze-algorithm.pdf

Note: An Arduino-compatible version of this sample program can be downloaded as part

of the Pololu Arduino Libraries [https://www.pololu.com/docs/0J17] (see Section 5.g) The

Arduino sample sketch is all contained within a single file.

This program is much more complicated than the examples you have seen so far, so we have split

it up into multiple files. Using multiple files makes it easier for you to keep track of your code. For

example, the file turn.c contains only a single function, used to make turns at the intersections:

The first line of the file, like any C file that you will be writing for the 3pi, contains an include command

that gives you access to the functions in the Pololu AVR Library. Within turn(), we then use the library

functions delay_ms() and set_motors() to perform left turns, right turns, and U-turns. Straight “turns”

are also handled by this function, though they don’t require us to take any action. The motor speeds

and the timings for the turns are parameters that needed to be adjusted for the 3pi; as you work on

making your maze solver faster, these are some of the numbers that you might need to adjust.

To access this function from other C files, we need a “header file”, which is called turn.h . The header

file just contains a single line:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include <pololu/3pi.h>

// Turns according to the parameter dir, which should be 'L', 'R', 'S'
// (straight), or 'B' (back).
void turn(char dir)
{

switch(dir)
{
case 'L':

// Turn left.
set_motors(-80,80);
delay_ms(200);
break;

case 'R':
// Turn right.
set_motors(80,-80);
delay_ms(200);
break;

case 'B':
// Turn around.
set_motors(80,-80);
delay_ms(400);
break;

case 'S':
// Don't do anything!
break;

}
}

1 void turn(char dir);

?

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 38 of 85

https://www.pololu.com/docs/0J17
https://www.pololu.com/docs/0J17/5.g

This line declares the turn() function without actually including a copy of its code. To access the

declaration, each C file that needs to call turn() adds the following line:

Note the double-quotes being used instead of angle brackets. This signifies to the C compiler that

the header file is in the project directory, rather than being a system header file like 3pi.h . Always

remember to put the code for your functions in the C file instead of the header file! If you do it the other

way, you will be making a separate copy of the code in each file that includes the header.

The file follow-segment.c also contains a single function, follow_segment(), which will drive 3pi

straight along a line segment until it reaches an intersection or the end of the line. This is almost the

same as the line following code discussed in Section 7, but with extra checks for intersections and

the ends of lines. Here is the function:

1 #include "turn.h" ?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 39 of 85

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

void follow_segment()
{

int last_proportional = 0;
long integral=0;

while(1)
{

// Normally, we will be following a line. The code below is
// similar to the 3pi-linefollower-pid example, but the maximum
// speed is turned down to 60 for reliability.

// Get the position of the line.
unsigned int sensors[5];
unsigned int position = read_line(sensors,IR_EMITTERS_ON);

// The "proportional" term should be 0 when we are on the line.
int proportional = ((int)position) - 2000;

// Compute the derivative (change) and integral (sum) of the
// position.
int derivative = proportional - last_proportional;
integral += proportional;

// Remember the last position.
last_proportional = proportional;

// Compute the difference between the two motor power settings,
// m1 - m2. If this is a positive number the robot will turn
// to the left. If it is a negative number, the robot will
// turn to the right, and the magnitude of the number determines
// the sharpness of the turn.
int power_difference = proportional/20 + integral/10000 + derivative*3/2;

// Compute the actual motor settings. We never set either motor
// to a negative value.
const int max = 60; // the maximum speed
if(power_difference > max)

power_difference = max;
if(power_difference < -max)

power_difference = -max;

if(power_difference < 0)
set_motors(max+power_difference,max);

else
set_motors(max,max-power_difference);

// We use the inner three sensors (1, 2, and 3) for
// determining whether there is a line straight ahead, and the
// sensors 0 and 4 for detecting lines going to the left and
// right.

if(sensors[1] < 100 && sensors[2] < 100 && sensors[3] < 100)
{

// There is no line visible ahead, and we didn't see any
// intersection. Must be a dead end.
return;

}
else if(sensors[0] > 200 || sensors[4] > 200)
{

// Found an intersection.
return;

}

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 40 of 85

Between the PID code and the intersection detection, there are now about six more parameters that

could be adjusted. We’ve picked values here that allow 3pi to solve the maze at a safe, controlled

speed; try increasing the speed and you will quickly run in to lots of problems that you’ll have to handle

with more complicated code.

Putting the C files and header files into your project is easy with Atmel Studio. On the right side of your

screen, in the “Solution Explorer” pane, you should see a list of files in your project. Right click on the

name of your project and you will have the option to add files to the list. When you build your project,

Atmel Studio will automatically compile all C files in the project together to produce a single hex file.

8.c. Left Hand on the Wall

The basic strategy for solving a non-looped maze is called “left hand on the wall”. Imagine walking

through a real labyrinth – a human-sized maze built with stone walls – while keeping your left hand on

the wall at all times. You’ll turn left whenever possible and only turn right at an intersection if there is

no other exit. Sometimes, when you reach a dead end, you’ll turn 180 degrees to the right and start

walking back the way you came. Eventually, as long as there are no loops, your hand will travel along

each length of wall in the entire labyrinth exactly once, and you’ll find your way back to the entrance.

If there is a room somewhere in the labyrinth with a monster or some treasure, you’ll find that on the

way, since you’ll travel down every hallway exactly twice. We use this simple, reliable strategy in our

3pi maze solving example:

The values returned by select_turn() correspond to the values used by turn(), so these functions will

work nicely together in our main loop.

63
64
65

}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// This function decides which way to turn during the learning phase of
// maze solving. It uses the variables found_left, found_straight, and
// found_right, which indicate whether there is an exit in each of the
// three directions, applying the "left hand on the wall" strategy.
char select_turn(unsigned char found_left, unsigned char found_straight,

unsigned char found_right)
{

// Make a decision about how to turn. The following code
// implements a left-hand-on-the-wall strategy, where we always
// turn as far to the left as possible.
if(found_left)

return 'L';
else if(found_straight)

return 'S';
else if(found_right)

return 'R';
else

return 'B';
}

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 41 of 85

8.d. The Main Loop(s)

The strategy of our program is expressed in the file maze-solve.c . Most importantly, we want to keep

track of the path that we have followed, so we define an array storing up to 100; these will be the same

characters used in the turn() function. We also need to keep track of the current path length so that we

know where to put the characters in the array.

Our “main loop” is found in the function maze_solve(), which is called after calibration, from main.c .

This function actually includes two main loops – a first one that handles solving the maze, and a

second that replays the solution for the fastest possible time. In fact, the second loop is actually a loop

within a loop, since we want to be able to replay the solution many times. Here’s an outline of the code:

The first main loop needs to drive down a segment of the course, decide how to turn, and record the

turn in the path variable. To pass the correct arguments to select_turn(), we need to carefully examine

the intersection as we cross it. Note that there is a special exception for finding the end of the maze.

The following code works pretty well, at least at the slow speeds that we’re using:

1
2

char path[100] = "";
unsigned char path_length = 0; // the length of the path

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

// This function is called once, from main.c.
void maze_solve()
{

while(1)
{

// FIRST MAIN LOOP BODY
// (when we find the goal, we use break; to get out of this)

}

// Now enter an infinite loop - we can re-run the maze as many
// times as we want to.
while(1)
{

// Beep to show that we finished the maze.
// Wait for the user to press a button...

int i;
for(i=0;i<path_length;i++)
{

// SECOND MAIN LOOP BODY
}

// Follow the last segment up to the finish.
follow_segment();

// Now we should be at the finish! Restart the loop.
}

}

?

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 42 of 85

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

// FIRST MAIN LOOP BODY
follow_segment();

// Drive straight a bit. This helps us in case we entered the
// intersection at an angle.
// Note that we are slowing down - this prevents the robot
// from tipping forward too much.
set_motors(50,50);
delay_ms(50);

// These variables record whether the robot has seen a line to the
// left, straight ahead, and right, whil examining the current
// intersection.
unsigned char found_left=0;
unsigned char found_straight=0;
unsigned char found_right=0;

// Now read the sensors and check the intersection type.
unsigned int sensors[5];
read_line(sensors,IR_EMITTERS_ON);

// Check for left and right exits.
if(sensors[0] > 100)

found_left = 1;
if(sensors[4] > 100)

found_right = 1;

// Drive straight a bit more - this is enough to line up our
// wheels with the intersection.
set_motors(40,40);
delay_ms(200);

// Check for a straight exit.
read_line(sensors,IR_EMITTERS_ON);
if(sensors[1] > 200 || sensors[2] > 200 || sensors[3] > 200)

found_straight = 1;

// Check for the ending spot.
// If all three middle sensors are on dark black, we have
// solved the maze.
if(sensors[1] > 600 && sensors[2] > 600 && sensors[3] > 600)

break;

// Intersection identification is complete.
// If the maze has been solved, we can follow the existing
// path. Otherwise, we need to learn the solution.
unsigned char dir = select_turn(found_left, found_straight, found_right);

// Make the turn indicated by the path.
turn(dir);

// Store the intersection in the path variable.
path[path_length] = dir;
path_length ++;

// You should check to make sure that the path_length does not
// exceed the bounds of the array. We'll ignore that in this
// example.

// Simplify the learned path.
simplify_path();

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 43 of 85

We’ll discuss the call to simplify_path() in the next section. Before that, let’s take a look at the second

main loop, which is very simple. All we do is drive to the next intersection and turn according to our

records. After doing the last recorded turn, the robot will be one segment away from the finish, which

explains the final follow_segment() call in the outline of maze_solve() above.

8.e. Simplifying the Solution

After every turn, the length of the recorded path increases by 1. If your maze, for example, has a long

zigzag passageway with no side exits, you’ll see a sequence like ‘RLRLRLRL’ appear on the 3pi’s

LCD. There’s no shortcut that would get you through this section of the path faster than just following

the left hand on the wall strategy. However, whenever we encounter a dead end, we can simplify the

path to something shorter.

Consider the sequence ‘LBL’, where ‘B’ stands for “back” and is the action taken when a dead end

is encountered. This is what happens if there is a left turn that branches off of a straight path and

leads immediately to a dead end. After turning 90° left, 180°, and 90° left again, the net effect is that

the robot is heading in its original direction again. The path can be simplified to a 0° turn: a single ‘S’.

The following diagram depicts this scenario, showing the two functionally equivalent paths from start

to end:

63
64

// Display the path on the LCD.
display_path();

1
2
3
4
5
6
7
8
9

10
11
12

// SECOND MAIN LOOP BODY
follow_segment();

// Drive straight while slowing down, as before.
set_motors(50,50);
delay_ms(50);
set_motors(40,40);
delay_ms(200);

// Make a turn according to the instruction stored in
// path[i].
turn(path[i]);

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 44 of 85

Another example is a T-intersection with a dead end on the left: ‘LBS’. The turns are 90° left, 180°,

and 0°, for a total of 90° right. The sequence should be replaced with a single ‘R’.

In fact, whenever we have a sequence like ‘xBx’, we can replace all three turns with a turn

corresponding to the total angle, eliminating the U-turn and speeding up our solution. Here’s the code

to handle this:

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 45 of 85

One interesting point about this code is that there are some sequences that should never be

encountered by a left-turning robot, like ‘RBR’, which would be replaced by ‘S’ according to this code.

In a more advanced program, you might want to keep track of inconsistencies like this, since they

indicate some kind of a problem that could cause the robot to get lost.

Now let’s step through a slightly more complicated maze, showing how we can simplify the path as we

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

// Path simplification. The strategy is that whenever we encounter a
// sequence xBx, we can simplify it by cutting out the dead end. For
// example, LBL -> S, because a single S bypasses the dead end
// represented by LBL.
void simplify_path()
{

// only simplify the path if the second-to-last turn was a 'B'
if(path_length < 3 || path[path_length-2] != 'B')

return;

int total_angle = 0;
int i;
for(i=1;i<=3;i++)
{

switch(path[path_length-i])
{
case 'R':

total_angle += 90;
break;

case 'L':
total_angle += 270;
break;

case 'B':
total_angle += 180;
break;

}
}

// Get the angle as a number between 0 and 360 degrees.
total_angle = total_angle % 360;

// Replace all of those turns with a single one.
switch(total_angle)
{
case 0:

path[path_length - 3] = 'S';
break;

case 90:
path[path_length - 3] = 'R';
break;

case 180:
path[path_length - 3] = 'B';
break;

case 270:
path[path_length - 3] = 'L';
break;

}

// The path is now two steps shorter.
path_length -= 2;

}

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 46 of 85

explore it:

Fully explore the maze using a left-hand-on-the-wall strategy.

The above list of actions is a record of all the steps we took to fully explore the maze while looking

for the end, which is marked by the large black circle. Our goal is to now reduce this list to represent

the shortest path from start to finish by weeding out all of the dead ends. One option is to perform this

pruning when we finish the maze, but the better approach is to perform the pruning as we go to keep

our list from growing excessively large and taking up more memory than we have available.

Prune out the first dead end as we identify it.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 47 of 85

When we encounter the first intersection after our first “back” action, we know we have reached a dead

end that can be removed from our list of actions. In this case, the most recent actions in our list is the

sequence ‘SBL’, and the diagram shows that this sequence can be simplified into a single right turn

‘R’.

Prune out the rest of this dead-end branch as we back-track.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 48 of 85

We next end up with the sequence ‘RBL’, which reduces to a single back ‘B’, and this combines with

the next action to produce the sequence ‘LBL’, which reduces to a single straight ‘S’.

Prune out the final dead-end branch to leave us with the shortest path from start to finish.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 49 of 85

The last dead end gives us the sequence ‘SBL’, which reduces to a sigle right turn ‘R’. Our action list

is now just ‘R’ and represents the shortest path from start to finish.

As we drove the maze, our action list would have looked like the following:

1. L

2. LS

3. LSB

4. LSBL => LR (pruning occurs here)

5. LRB

6. LRBL => LB (pruning occurs here)

7. LBL => S (pruning occurs here)

8. SB

9. SBL => R (pruning occurs here)

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 50 of 85

8.f. Improving the Maze-Solving Code

We have gone over the most important parts of the code; the other bits and pieces (like the function

display_path(), the start-up sequence and calibration, etc.) can be found with everything else in the

folder examples\atmegaxx8\3pi-mazesolver . After you have the code working and you understand it

well, you should try to improve your robot to be as fast as possible. There are many things you can do

to try to make it better:

• Increasing the line-following speed.

• Improving the line-following PID constants.

• Increasing turning speed.

• Identifying situations where the robot has gotten lost.

• Adjusting the speed based on what is coming up; e.g. driving straight through an ‘S’ at full

speed.

The following video shows a 3pi prototype—it only has one blue power LED, but it is otherwise

functionally identical to the final version—that we programmed to compete in LVBots Challenge 4.0.

The code is more advanced (and complicated) than the sample maze-solving code we have just

provided. Improvements over the sample program include a higher base running speed with better-

tuned line-following PID constants, faster and smoother turns, and increased speed on long straight

segments.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 51 of 85

<div class="player-unavailable"><h1 class="message">An error occurred.</h1><div class="submessage"><a
When we were trying to improve the 3pi’s maze performance, our first step was to improve its line-

following ability by better tuning the PID constants as we slowly increased the robot’s maximum speed,

and our second step was to improve the turns to be faster and smoother. Very quickly, however, we

noticed that further speed improvement was being limited by the intersections. If the robot was moving

too quickly when it hit them, it would invariably screw up somewhere. Going slowly enough to survive

the intersections led to unnecessarily slow driving on long straight segments, however.

Our solution was to time the length of every segment the robot encountered during the learning phase.

The code would reset the timer at an intersection and then stop it when the 3pi hit the following

intersection. As the program stored an array of visited intersections, it also stored the segment times

in a parallel array, producing something like:

{ L, S, S, R, L, ... }

{ 3, 3, 6, 5, 8, ... }

The top array gives the action performed at each visited intersection (L = turned left, S = went straight,

R = turned right), and the bottom array gives the amount of time spent driving along the segment that

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 52 of 85

directly led to that intersection. The units of the segment times were chosen to provide numbers that

can allow the robot to meaningfully differentiate between longer and shorter segments but that never

exceed 255 for any segment in the maze. This second restriction means that the values can be stored

in an array of unsigned chars (i.e. each segment’s time takes up just one byte of memory), which

helps keep memory usage down. The ATmega168 has just 1024 bytes of RAM, so it’s important that

applications like this store data in an efficient way that leaves enough room for the stack, which is also

stored in RAM. A good rule of thumb is to leave 300 – 400 bytes of RAM available for the stack and

data used by the Pololu AVR library (or more if you have some deeply nested functions or functions

with a lot of local variables). Note that the ATmega328 has 2048 bytes of RAM, which gives you a bit

more room for your data.

Once the 3pi has learned the maze, the maze-driving algorigthm is essentially:

1. If the robot is going straight at the next intersection, drive the current segment at high speed;

don’t even worry about slowing down until we know we have an intersection coming up that

will require a turn.

2. Otherwise, drive the current segment at high speed until time T has elapsed, at which point

slow back down to normal speed until the next intersection is reached.

The value T is computed from a function that uses the previously measured segment “length”. For

short segments, T is negative and the 3pi just drives the entire segment at normal speed. For longer

segments, T is positive and causes the 3pi to drive most of the segment at high speed before slowing

down just in time to handle the intersection safely. We came up with a function for T on paper and then

ran a series of tests to get the various constants right.

Typically, one might use encoders to measure the lengths of the segments. We were able to just use

timing on the 3pi, however, because of the 3pi’s power system, which uses a regulated voltage for the

motors and produces highly repeatable results. With a more traditional power system, motor speed

would decrease as the batteries discharge, and a timing approach like this would potentially produce

unreliable results. For example, if you were to use a robot with a more traditional power system, the

function you come up with for T when the batteries are freshly charged might work poorly when they

are nearly drained.

Tip: Once you start significantly increasing your maze-solving speed, performance becomes

dependent on the traction of the tires. Unfortunately, traction decreases over time as the tires pick up

dust and dirt from the course. Our fast maze solver needs to have its tires cleaned every few runs or

else it starts fishtailing on the turns, which slows it down and can even cause it to mess up. You can

see the effects of this on the second (solution) run of the video (the tires hadn’t been cleaned recently).

You can easily clean the tires by wiping them with a little rubbing alcohol on a paper towel.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

8. Example Project #2: Maze Solving Page 53 of 85

9. Pin Assignment Tables

General features of the Pololu 3pi robot, top view.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

9. Pin Assignment Tables Page 54 of 85

Labeled bottom view of the Pololu 3pi robot.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

9. Pin Assignment Tables Page 55 of 85

Specific features of the Pololu 3pi robot, top view.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

9. Pin Assignment Tables Page 56 of 85

Pin Assignment Table Sorted by Function

Function ATmegaxx8 Pin Arduino Pin

free digital I/Os (x3)

(remove PC5 jumper to free digital pin 19)
PD0, PD1, PC5 digital pins 0, 1, 19

free analog inputs (if you remove jumpers, x3) PC5, ADC6, ADC7 analog inputs 5 – 7

motor 1 (left motor) control (A and B) PD5 and PD6 digital pins 5 and 6

motor 2 (right motor) control (A and B) PD3 and PB3 digital pins 3 and 11

QTR-RC reflectance sensors (left to right, x5) PC0 – PC4 digital pins 14 – 18

red (left) user LED PD1 digital pin 1

green (right) user LED PD7 digital pin 7

user pushbuttons (left to right, x3) PB1, PB4, and PB5
digital inputs 9, 12, and

13

buzzer PB2 digital pin 10

LCD control (RS, R/W, E) PD2, PB0, and PD4 digital pins 2, 8, and 4

LCD data (4-bit: DB4 – DB7)
PB1, PB4, PB5, and

PD7

digital pins 9, 12, 13, and

7

reflectance sensor IR LED control (drive low to turn IR

LEDs off)
PC5 (through jumper) digital pin 19

user trimmer potentiometer ADC7 (through jumper) analog input 7

2/3rds of battery voltage ADC6 (through jumper) analog input 6

ICSP programming lines (x3) PB3, PB4, PB5
digital pins 11, 12, and

13

reset pushbutton PC6 reset

UART (RX and TX) PD0 and PD1 digital pins 0 and 1

I2C/TWI inaccessable to user

SPI inaccessable to user

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

9. Pin Assignment Tables Page 57 of 85

Pin Assignment Table Sorted by Pin

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

9. Pin Assignment Tables Page 58 of 85

ATmegaxx8

Pin
3pi Function Notes/Alternate Functions

PD0 free digital I/O USART input pin (RXD)

PD1 free digital I/O
connected to red user LED (high turns LED on)

USART output pin (TXD)

PD2 LCD control line RS external interrupt 0 (INT0)

PD3 M2 control line Timer2 PWM output B (OC2B)

PD4 LCD control line E
USART external clock input/output (XCK)

Timer0 external counter (T0)

PD5 M1 control line Timer0 PWM output B (OC0B)

PD6 M1 control line Timer0 PWM output A (OC0A)

PD7 LCD data line DB7 connected to green user LED (high turns LED on)

PB0 LCD control line R/W
Timer1 input capture (ICP1)

divided system clock output (CLK0)

PB1 LCD data line DB4
user pushbutton (pressing pulls pin low)

Timer1 PWM output A (OC1A)

PB2 buzzer Timer1 PWM output B (OC1B)

PB3 M2 control line
Timer2 PWM output A (OC2A)

ISP programming line

PB4 LCD data line DB5
user pushbutton (pressing pulls pin low)

Caution: also an ISP programming line

PB5 LCD data line DB6
user pushbutton (pressing pulls pin low)

Caution: also an ISP programming line

PC0
QTR-RC reflectance

sensor

(drive high for 10 us, then wait for line input to go low) sensor labeled

PC0 (leftmost sensor)

PC1
QTR-RC reflectance

sensor

(drive high for 10 us, then wait for line input to go low) sensor labeled

PC1

PC2
QTR-RC reflectance

sensor

(drive high for 10 us, then wait for line input to go low) sensor labeled

PC2 (center sensor)

PC3
QTR-RC reflectance

sensor

(drive high for 10 us, then wait for line input to go low) sensor labeled

PC3

PC4
QTR-RC reflectance

sensor

(drive high for 10 us, then wait for line input to go low) sensor labeled

PC4 (rightmost sensor)

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

9. Pin Assignment Tables Page 59 of 85

PC5
analog input and

digital I/O

jumpered to sensors’ IR LEDs (driving low turns off emitters)

ADC input channel 5 (ADC5)

ADC6
dedicated analog

input
jumpered to 2/3rds of battery voltage ADC input channel 6 (ADC6)

ADC7
dedicated analog

input

jumpered to user trimmer potentiometer ADC input channel 7

(ADC7)

reset reset pushbutton internally pulled high; active low digital I/O disabled by default

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

9. Pin Assignment Tables Page 60 of 85

10. Expansion Information

10.a. Serial slave program

The Pololu AVR library (see Section 6) comes with an example serial slave program for the 3pi in

libpololu-avr\examples\atmegaxx8\3pi-serial-slave , and a corresponding serial master program

in libpololu-avr\examples\atmegaxx8\3pi-serial-master . This example shows how to use a ring

buffer in SERIAL_CHECK mode to continuously receive and interpret a simple set of commands. The

commands control various features of the 3pi, making it possible to use the 3pi as a “smart base”

controlled by another processor. It is easy to add more commands yourself or adapt the library to work

on a different board.

Note that we offer several basic expansion kits on which you can mount such a secondary

microcontroller and additional electronics: black with cutouts [https://www.pololu.com/product/979] that let

you view the LCD underneath, black without cutouts [https://www.pololu.com/product/978] that replaces

the LCD and maximizes prototyping space, red with cutouts [https://www.pololu.com/product/977], and

red without cutouts [https://www.pololu.com/product/976].

The following two pictures show the black version with cutouts mounted on a 3pi robot:

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 61 of 85

https://www.pololu.com/product/979
https://www.pololu.com/product/978
https://www.pololu.com/product/977
https://www.pololu.com/product/976
https://a.pololu-files.com/picture/0J980.1200.jpg?278e75c256f63afc3c322c6e006ace32
https://a.pololu-files.com/picture/0J980.1200.jpg?278e75c256f63afc3c322c6e006ace32
https://a.pololu-files.com/picture/0J979.1200.jpg?b53ac65fa08135830808b0b16e2d9dc3
https://a.pololu-files.com/picture/0J979.1200.jpg?b53ac65fa08135830808b0b16e2d9dc3
https://a.pololu-files.com/picture/0J1007.1200.jpg?bc877608c3efec2c94bcb2502d9de66e
https://a.pololu-files.com/picture/0J1007.1200.jpg?bc877608c3efec2c94bcb2502d9de66e
https://a.pololu-files.com/picture/0J1006.1200.jpg?239f1a9ee602dc62e2bca3d0d0f0a7a5
https://a.pololu-files.com/picture/0J1006.1200.jpg?239f1a9ee602dc62e2bca3d0d0f0a7a5

We also offer a more advanced expansion kit [https://www.pololu.com/product/2152] that lets you turn

your 3pi robot into an m3pi robot. The m3pi expansion kit has sockets for additional electronics,

making it simple to significantly increase the capabilities of your 3pi. One socket let’s you use a

powerful mbed development board [https://www.pololu.com/product/2150] as a high-level robot controller

(by issuing serial commands to the 3pi base while it is running its serial slave program), and

another socket can be used for a the easy addition of a wireless serial module (XBee, Wixel

[https://www.pololu.com/product/1337], Bluetooth, etc). Please note that the m3pi robot is also available

fully assembled. Please see the m3pi robot product page [https://www.pololu.com/product/2151] for more

information.

Pololu m3pi expansion kit.
Pololu m3pi robot controlled by an ARM

mbed development board.

Complete documentation of the serial functions used here can be found in Section 10 of the Pololu

AVR Library Command Reference [https://www.pololu.com/docs/0J18].

This slave program receives serial data on port PD0 (RX) of the 3pi and transmits responses (when

necessary) on port PD1 (TX), using a 115.2 kbaud, TTL-level serial protocol. In this example, there

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 62 of 85

https://a.pololu-files.com/picture/0J986.1200.jpg?214c3e9367d6edcab31282d843175876
https://a.pololu-files.com/picture/0J986.1200.jpg?214c3e9367d6edcab31282d843175876
https://a.pololu-files.com/picture/0J994.1200.jpg?8e37707d2accc0a075f487c3cec8d125
https://a.pololu-files.com/picture/0J994.1200.jpg?8e37707d2accc0a075f487c3cec8d125
https://www.pololu.com/product/2152
https://www.pololu.com/product/2150
https://www.pololu.com/product/1337
https://www.pololu.com/product/1337
https://www.pololu.com/product/2151
https://a.pololu-files.com/picture/0J3499.1200.jpg?0692235fe26a29c039ea2b5ce12061ed
https://a.pololu-files.com/picture/0J3499.1200.jpg?0692235fe26a29c039ea2b5ce12061ed
https://a.pololu-files.com/picture/0J3460.1200.jpg?811e339509eb0b7a7ac533440d538a51
https://a.pololu-files.com/picture/0J3460.1200.jpg?811e339509eb0b7a7ac533440d538a51
https://www.pololu.com/docs/0J18/10
https://www.pololu.com/docs/0J18
https://www.pololu.com/docs/0J18

are no parity bits, 8 data bits, and one stop bit (N81). The commands implemented here each consist

of a single command byte followed by zero or more data bytes. To make it easy to differentiate the

command bytes from the data bytes, the command bytes are all in the range 0x80-0xff, while the data

bytes are in the range 0x00-0x7f. That is, the command bytes have their most significant bits set, while

the data bytes have that bit unset.

Some commands result in the 3pi sending data back out to the controlling device. For commands

where integers are sent back, the least significant byte is sent first (little endian).

If bad commands or data bytes are detected, the slave program beeps and displays an error

message on the LCD. This means that if you are using the expansion kit without cutouts

[https://www.pololu.com/product/978], you should probably remove the LCD-related commands before

loading the program onto your 3pi.

The following commands are recognized by the slave program:

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 63 of 85

https://www.pololu.com/product/978
https://www.pololu.com/product/978

Command

byte
Command

Data

bytes

Response

bytes
Description

0x81 signature 0 6

Sends the slave name and code version, e.g.

“3pi1.0”. This command also sets motor

speeds to 0 and stops PID line following,

if active, so it is useful as an initialization

command.

0x86 raw sensors 0 10

Reads all five IR sensors and sends the raw

values as a sequence of two-byte ints, in the

range 0-2000

0x87 calibrated sensors 0 10

Reads all five IR sensors and sends

calibrated values as a sequence of two-byte

ints, in the range 0-1000

0xB0 trimpot 0 2
Sends the voltage output of the trimpot as a

two-byte int, in the range 0-1023

0xB1 battery millivolts 0 2
Sends the battery voltage of the 3pi in mV, as

a two-byte int

0xB3 play music 2-101 0

Plays a tune specified by a string of musical

commands. The first data byte specifies the

length of the following string (max length

100), so that the slave program knows how

many more data bytes to read. See the play()

command in Section 3 of the Pololu AVR

Library Command Reference for a

description of the musical command format.

0xB4 calibrate 0 10

Performs one round of calibration on the

sensors, reads all five IR sensors, and sends

calibrated values as a sequence of two-byte

ints, in the range 0-1000. This should be

called multiple times, as the robot moves

over a range from white to black.

0xB5 reset calibration 0 0

Resets the calibration. This should always be

used when connecting to a slave, in case

the master reset without a slave reset, for

example in case of a power glitch.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 64 of 85

https://www.pololu.com/docs/0J18/3
https://www.pololu.com/docs/0J18
https://www.pololu.com/docs/0J18

0xB6 line position 0 2

Reads all five IR sensors using calibrated

values and estimates the position of a black

line under the robot. The value, which is sent

back as a two-byte integer, is 0 when the

line is under sensor PC0 or farther to the left,

1000 when the line is directly under sensor

PC1, up to 4000 when it is under sensor

PC4 or farther to the right. See Section 19

of of the Pololu AVR Library Command

Reference for the formula used to estimate

position.

0xB7 clear LCD 0 0 Clears the LCD screen on the 3pi.

0xB8 print 2-9 0

Prints 1-8 characters to the LCD. The first

byte is the length of the following string of

characters, as with the play command above.

0xB9 LCD goto xy 2 0
Moves the LCD cursor to x-y coordinates

given by the next two bytes.

0xBA autocalibrate 0 1

Turns the robot left and right while calibrating.

For use when the robot it positioned over

a line. Returns the character ‘c’ when

complete.

0xBB start PID 5 0

Sets up PID parameters and begins line

following. The first data byte sets the

maximum motor speed. The next four bytes,

a, b, c, and d, represent the PID parameters.

Specifically, the difference in the motor

speeds will be set to (L-2000)×a/b + D×c/

d, where L is the position of the line as

described above, and D is the derivative of

L. The integral term is not implemented in

this program. See Section 7.c for more

information on PID line following.

0xBC stop PID 0 0
Stops PID line following, setting motor

speeds to 0.

0xC1 M1 forward 1 0 Sets motor M1 turning forward with a speed

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 65 of 85

https://www.pololu.com/docs/0J18/19
https://www.pololu.com/docs/0J18
https://www.pololu.com/docs/0J18

of 0 (off) up to 127 (full speed).

0xC2 M1 backward 1 0
Sets motor M1 turning backward with a

speed of 0 (off) up to 127 (full reverse).

0xC5 M2 forward 1 0
Sets motor M2 turning forward with a speed

of 0 (off) up to 127 (full speed).

0xC6 M2 backward 1 0
Sets motor M2 turning backward with a

speed of 0 (off) up to 127 (full reverse).

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 66 of 85

Source code

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 67 of 85

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

#include <pololu/3pi.h>

/*
* 3pi-serial-slave - An example serial slave program for the Pololu
* 3pi Robot. See the following pages for more information:
*
* http://www.pololu.com/docs/0J21
* http://www.pololu.com/docs/0J20
* http://www.poolu.com/
*
*/

// PID constants
unsigned int pid_enabled = 0;
unsigned char max_speed = 255;
unsigned char p_num = 0;
unsigned char p_den = 0;
unsigned char d_num = 0;
unsigned char d_den = 0;
unsigned int last_proportional = 0;
unsigned int sensors[5];

// This routine will be called repeatedly to keep the PID algorithm running
void pid_check()
{

if(!pid_enabled)
return;

// Do nothing if the denominator of any constant is zero.
if(p_den == 0 || d_den == 0)
{

set_motors(0,0);
return;

}

// Read the line position, with serial interrupts running in the background.
serial_set_mode(SERIAL_AUTOMATIC);
unsigned int position = read_line(sensors, IR_EMITTERS_ON);
serial_set_mode(SERIAL_CHECK);

// The "proportional" term should be 0 when we are on the line.
int proportional = ((int)position) - 2000;

// Compute the derivative (change) of the position.
int derivative = proportional - last_proportional;

// Remember the last position.
last_proportional = proportional;

// Compute the difference between the two motor power settings,
// m1 - m2. If this is a positive number the robot will turn
// to the right. If it is a negative number, the robot will
// turn to the left, and the magnitude of the number determines
// the sharpness of the turn.
int power_difference = proportional*p_num/p_den + derivative*p_num/p_den;

// Compute the actual motor settings. We never set either motor
// to a negative value.
if(power_difference > max_speed)

power_difference = max_speed;
if(power_difference < -max_speed)

power_difference = -max_speed;

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 68 of 85

http://www.pololu.com/docs/0J21
http://www.pololu.com/docs/0J20
http://www.poolu.com/

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

if(power_difference < 0)
set_motors(max_speed+power_difference, max_speed);

else
set_motors(max_speed, max_speed-power_difference);

}

// A global ring buffer for data coming in. This is used by the
// read_next_byte() and previous_byte() functions, below.
char buffer[100];

// A pointer to where we are reading from.
unsigned char read_index = 0;

// Waits for the next byte and returns it. Runs play_check to keep
// the music playing and serial_check to keep receiving bytes.
// Calls pid_check() to keep following the line.
char read_next_byte()
{

while(serial_get_received_bytes() == read_index)
{

serial_check();
play_check();

// pid_check takes some time; only run it if we don't
// have more bytes to process
if(serial_get_received_bytes() == read_index)

pid_check();

}
char ret = buffer[read_index];
read_index ++;
if(read_index >= 100)

read_index = 0;
return ret;

}

// Backs up by one byte in the ring buffer.
void previous_byte()
{

read_index --;
if(read_index == 255)

read_index = 99;
}

// Returns true if and only if the byte is a command byte (>= 0x80).
char is_command(char byte)
{

if (byte < 0)
return 1;

return 0;
}

// Returns true if and only if the byte is a data byte (< 0x80).
char is_data(char byte)
{

if (byte < 0)
return 0;

return 1;
}

// If it's not a data byte, beeps, backs up one, and returns true.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 69 of 85

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

char check_data_byte(char byte)
{

if(is_data(byte))
return 0;

play("o3c");

clear();
print("Bad data");
lcd_goto_xy(0,1);
print_hex_byte(byte);

previous_byte();
return 1;

}

///
// COMMAND FUNCTIONS
//
// Each function in this section corresponds to a single serial
// command. The functions are expected to do their own argument
// handling using read_next_byte() and check_data_byte().

// Sends the version of the slave code that is running.
// This function also shuts down the motors and disables PID, so it is
// useful as an initial command.
void send_signature()
{

serial_send_blocking("3pi1.0", 6);
set_motors(0,0);
pid_enabled = 0;

}

// Reads the line sensors and sends their values. This function can
// do either calibrated or uncalibrated readings. When doing calibrated readings,
// it only performs a new reading if we are not in PID mode. Otherwise, it sends
// the most recent result immediately.
void send_sensor_values(char calibrated)
{

if(calibrated)
{

if(!pid_enabled)
read_line_sensors_calibrated(sensors, IR_EMITTERS_ON);

}
else

read_line_sensors(sensors, IR_EMITTERS_ON);
serial_send_blocking((char *)sensors, 10);

}

// Sends the raw (uncalibrated) sensor values.
void send_raw_sensor_values()
{

send_sensor_values(0);
}

// Sends the calibated sensor values.
void send_calibrated_sensor_values()
{

send_sensor_values(1);
}

// Computes the position of a black line using the read_line()

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 70 of 85

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

// function, and sends the value.
// Returns the last value computed if PID is running.
void send_line_position()
{

int message[1];
unsigned int tmp_sensors[5];
int line_position;

if(pid_enabled)
line_position = last_proportional+2000;

else line_position = read_line(tmp_sensors, IR_EMITTERS_ON);

message[0] = line_position;

serial_send_blocking((char *)message, 2);
}

// Sends the trimpot value, 0-1023.
void send_trimpot()
{

int message[1];
message[0] = read_trimpot();
serial_send_blocking((char *)message, 2);

}

// Sends the battery voltage in millivolts
void send_battery_millivolts()
{

int message[1];
message[0] = read_battery_millivolts();
serial_send_blocking((char *)message, 2);

}

// Drives m1 forward.
void m1_forward()
{

char byte = read_next_byte();

if(check_data_byte(byte))
return;

set_m1_speed(byte == 127 ? 255 : byte*2);
}

// Drives m2 forward.
void m2_forward()
{

char byte = read_next_byte();

if(check_data_byte(byte))
return;

set_m2_speed(byte == 127 ? 255 : byte*2);
}

// Drives m1 backward.
void m1_backward()
{

char byte = read_next_byte();

if(check_data_byte(byte))
return;

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 71 of 85

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

set_m1_speed(byte == 127 ? -255 : -byte*2);
}

// Drives m2 backward.
void m2_backward()
{

char byte = read_next_byte();

if(check_data_byte(byte))
return;

set_m2_speed(byte == 127 ? -255 : -byte*2);
}

// A buffer to store the music that will play in the background.
char music_buffer[100];

// Plays a musical sequence.
void do_play()
{

unsigned char tune_length = read_next_byte();

if(check_data_byte(tune_length))
return;

unsigned char i;
for(i=0;i<tune_length;i++)
{

if(i > sizeof(music_buffer)) // avoid overflow
return;

music_buffer[i] = read_next_byte();

if(check_data_byte(music_buffer[i]))
return;

}

// add the end of string character 0
music_buffer[i] = 0;

play(music_buffer);
}

// Clears the LCD
void do_clear()
{

clear();
}

// Displays data to the screen
void do_print()
{

unsigned char string_length = read_next_byte();

if(check_data_byte(string_length))
return;

unsigned char i;
for(i=0;i<string_length;i++)
{

unsigned char character;

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 72 of 85

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

character = read_next_byte();

if(check_data_byte(character))
return;

// Before printing to the LCD we need to go to AUTOMATIC mode.
// Otherwise, we might miss characters during the lengthy LCD routines.
serial_set_mode(SERIAL_AUTOMATIC);
print_character(character);
serial_set_mode(SERIAL_CHECK);

}
}

// Goes to the x,y coordinates on the lcd specified by the two data bytes
void do_lcd_goto_xy()
{

unsigned char x = read_next_byte();
if(check_data_byte(x))

return;

unsigned char y = read_next_byte();
if(check_data_byte(y))

return;

lcd_goto_xy(x,y);
}

// Runs through an automatic calibration sequence
void auto_calibrate()
{

time_reset();
set_motors(60, -60);
while(get_ms() < 250)

calibrate_line_sensors(IR_EMITTERS_ON);
set_motors(-60, 60);
while(get_ms() < 750)

calibrate_line_sensors(IR_EMITTERS_ON);
set_motors(60, -60);
while(get_ms() < 1000)

calibrate_line_sensors(IR_EMITTERS_ON);
set_motors(0, 0);

serial_send_blocking("c",1);
}

// Turns on PID according to the supplied PID constants
void set_pid()
{

unsigned char constants[5];
unsigned char i;
for(i=0;i<5;i++)
{

constants[i] = read_next_byte();
if(check_data_byte(constants[i]))

return;
}

// make the max speed 2x of the first one, so that it can reach 255
max_speed = (constants[0] == 127 ? 255 : constants[0]*2);

// set the other parameters directly
p_num = constants[1];

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 73 of 85

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

p_den = constants[2];
d_num = constants[3];
d_den = constants[4];

// enable pid
pid_enabled = 1;

}

// Turns off PID
void stop_pid()
{

set_motors(0,0);
pid_enabled = 0;

}

///

int main()
{

pololu_3pi_init(2000);
play_mode(PLAY_CHECK);

clear();
print("Slave");

// start receiving data at 115.2 kbaud
serial_set_baud_rate(115200);
serial_set_mode(SERIAL_CHECK);
serial_receive_ring(buffer, 100);

while(1)
{

// wait for a command
char command = read_next_byte();

// The list of commands is below: add your own simply by
// choosing a command byte and introducing another case
// statement.
switch(command)
{
case (char)0x00:

// slient error - probable master resetting
break;

case (char)0x81:
send_signature();
break;

case (char)0x86:
send_raw_sensor_values();
break;

case (char)0x87:
send_calibrated_sensor_values(1);
break;

case (char)0xB0:
send_trimpot();
break;

case (char)0xB1:
send_battery_millivolts();
break;

case (char)0xB3:
do_play();
break;

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 74 of 85

10.b. Serial master program

A serial master program used to control the serial slave program is included with the Pololu AVR

Library (see Section 6) in libpololu-avr\examples\atmegaxx8\3pi-serial-master . The program is

designed to run on an Orangutan SV-xx8 [https://www.pololu.com/product/1227], LV-168

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

case (char)0xB4:
calibrate_line_sensors(IR_EMITTERS_ON);
send_calibrated_sensor_values(1);
break;

case (char)0xB5:
line_sensors_reset_calibration();
break;

case (char)0xB6:
send_line_position();
break;

case (char)0xB7:
do_clear();
break;

case (char)0xB8:
do_print();
break;

case (char)0xB9:
do_lcd_goto_xy();
break;

case (char)0xBA:
auto_calibrate();
break;

case (char)0xBB:
set_pid();
break;

case (char)0xBC:
stop_pid();
break;

case (char)0xC1:
m1_forward();
break;

case (char)0xC2:
m1_backward();
break;

case (char)0xC5:
m2_forward();
break;

case (char)0xC6:
m2_backward();
break;

default:
clear();
print("Bad cmd");
lcd_goto_xy(0,1);
print_hex_byte(command);

play("o7l16crc");
continue; // bad command

}
}

}

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 75 of 85

https://www.pololu.com/product/1227
https://www.pololu.com/product/775

[https://www.pololu.com/product/775], or 3pi as a demonstration of what is possible, but you will probably

want to adapt it for your own controller. To use the program, make the following connections between

your master and slave:

• GND-GND

• PD0-PD1

• PD1-PD0

Turn on both master and slave. The master will display a “Connect” message followed by the signature

of the slave source code (e.g. “3pi1.0”). The master will then instruct the slave to display “Connect”

and play a short tune. Pressing the B botton on the master causes the slave to go through an auto-

calibration routine, after which you can drive the slave around using the A and C buttons on the master,

while viewing sensor data on the master’s LCD. Holding down the B button causes the slave to do PID

line following.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 76 of 85

https://www.pololu.com/product/775

Source code

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 77 of 85

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

#include <pololu/orangutan.h>
#include <string.h>

/*
* 3pi-serial-master - An example serial master program for the Pololu
* 3pi Robot. This can run on any board supported by the library;
* it is intended as an example of how to use the master/slave
* routines.
*
* http://www.pololu.com/docs/0J21
* http://www.pololu.com/docs/0J20
* http://www.poolu.com/
*/

// Data for generating the characters used in load_custom_characters
// and display_readings. By reading levels[] starting at various
// offsets, we can generate all of the 7 extra characters needed for a
// bargraph. This is also stored in program space.
const char levels[] PROGMEM = {

0b00000,
0b00000,
0b00000,
0b00000,
0b00000,
0b00000,
0b00000,
0b11111,
0b11111,
0b11111,
0b11111,
0b11111,
0b11111,
0b11111

};

// This function loads custom characters into the LCD. Up to 8
// characters can be loaded; we use them for 6 levels of a bar graph
// plus a back arrow and a musical note character.
void load_custom_characters()
{

lcd_load_custom_character(levels+0,0); // no offset, e.g. one bar
lcd_load_custom_character(levels+1,1); // two bars
lcd_load_custom_character(levels+2,2); // etc...
lcd_load_custom_character(levels+4,3); // skip level 3
lcd_load_custom_character(levels+5,4);
lcd_load_custom_character(levels+6,5);
clear(); // the LCD must be cleared for the characters to take effect

}

// 10 levels of bar graph characters
const char bar_graph_characters[10] = {' ',0,0,1,2,3,3,4,5,255};

void display_levels(unsigned int *sensors)
{

clear();
int i;
for(i=0;i<5;i++) {

// Initialize the array of characters that we will use for the
// graph. Using the space, an extra copy of the one-bar
// character, and character 255 (a full black box), we get 10
// characters in the array.

?

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 78 of 85

http://www.pololu.com/docs/0J21
http://www.pololu.com/docs/0J20
http://www.poolu.com/

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

// The variable c will have values from 0 to 9, since
// values are in the range of 0 to 1000, and 1000/101 is 9
// with integer math.
char c = bar_graph_characters[sensors[i]/101];

// Display the bar graph characters.
print_character(c);

}
}

// set the motor speeds
void slave_set_motors(int speed1, int speed2)
{

char message[4] = {0xC1, speed1, 0xC5, speed2};
if(speed1 < 0)
{

message[0] = 0xC2; // m1 backward
message[1] = -speed1;

}
if(speed2 < 0)
{

message[2] = 0xC6; // m2 backward
message[3] = -speed2;

}
serial_send_blocking(message,4);

}

// do calibration
void slave_calibrate()
{

serial_send("\xB4",1);
int tmp_buffer[5];

// read 10 characters (but we won't use them)
serial_receive_blocking((char *)tmp_buffer, 10, 100);

}

// reset calibration
void slave_reset_calibration()
{

serial_send_blocking("\xB5",1);
}

// calibrate (waits for a 1-byte response to indicate completion)
void slave_auto_calibrate()
{

int tmp_buffer[1];
serial_send_blocking("\xBA",1);
serial_receive_blocking((char *)tmp_buffer, 1, 10000);

}

// sets up the pid constants on the 3pi for line following
void slave_set_pid(char max_speed, char p_num, char p_den, char d_num, char d_den)
{

char string[6] = "\xBB";
string[1] = max_speed;
string[2] = p_num;
string[3] = p_den;
string[4] = d_num;
string[5] = d_den;
serial_send_blocking(string,6);

}

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 79 of 85

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

// stops the pid line following
void slave_stop_pid()
{

serial_send_blocking("\xBC", 1);
}

// clear the slave LCD
void slave_clear()
{

serial_send_blocking("\xB7",1);
}

// print to the slave LCD
void slave_print(char *string)
{

serial_send_blocking("\xB8", 1);
char length = strlen(string);
serial_send_blocking(&length, 1); // send the string length
serial_send_blocking(string, length);

}

// go to coordinates x,y on the slave LCD
void slave_lcd_goto_xy(char x, char y)
{

serial_send_blocking("\xB9",1);
serial_send_blocking(&x,1);
serial_send_blocking(&y,1);

}

int main()
{

char buffer[20];

// load the bar graph
load_custom_characters();

// configure serial clock for 115.2 kbaud
serial_set_baud_rate(115200);

// wait for the device to show up
while(1)
{

clear();
print("Master");
delay_ms(100);
serial_send("\x81",1);

if(serial_receive_blocking(buffer, 6, 50))
continue;

clear();
print("Connect");
lcd_goto_xy(0,1);
buffer[6] = 0;
print(buffer);

// clear the slave's LCD and display "Connect" and "OK" on two lines
// Put OK in the center to test x-y positioning
slave_clear();
slave_print("Connect");
slave_lcd_goto_xy(3,1);

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 80 of 85

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

slave_print("OK");

// play a tune
char tune[] = "\xB3 l16o6gab>c";
tune[1] = sizeof(tune)-3;
serial_send_blocking(tune,sizeof(tune)-1);

// wait
wait_for_button(ALL_BUTTONS);

// reset calibration
slave_reset_calibration();

time_reset();

slave_auto_calibrate();

unsigned char speed1 = 0, speed2 = 0;

// read sensors in a loop
while(1)
{

serial_send("\x87",1); // returns calibrated sensor values

// read 10 characters
if(serial_receive_blocking(buffer, 10, 100))

break;

// get the line position
serial_send("\xB6", 1);

int line_position[1];
if(serial_receive_blocking((char *)line_position, 2, 100))

break;

// get the battery voltage
serial_send("\xB1",1);

// read 2 bytes
int battery_millivolts[1];
if(serial_receive_blocking((char *)battery_millivolts, 2, 100))

break;

// display readings
display_levels((unsigned int*)buffer);

lcd_goto_xy(5,0);
line_position[0] /= 4; // to get it into the range of 0-1000
if(line_position[0] == 1000)

line_position[0] = 999; // keep to a max of 3 chars
print_long(line_position[0]);
print(" ");

lcd_goto_xy(0,1);
print_long(battery_millivolts[0]);
print(" mV ");

delay_ms(10);

// if button A is pressed, increase motor1 speed
if(button_is_pressed(BUTTON_A) && speed1 < 127)

speed1 ++;

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 81 of 85

10.c. Available I/O on the 3pi's ATmegaxx8

The easiest way to expand your 3pi’s capabilities is probably to turn your 3pi into a “smart base” that

is controlled by the microcontroller of your choosing, as described in Section 10.a. This allows you to

connect your additional electronics to your secondary microcontroller and only requires you to make

connections to pins PD0 and PD1 on the 3pi. These two pins are completely unused digital I/O lines

that connect to the ATmegaxx8’s UART module when that module is enabled. You can freely use PD0

and PD1 for general-purpose digital I/O, or you can use them for serial communication with another

microcontroller, a serially-controlled device, or a computer (note that you will need to convert the signal

to RS-232 levels or USB to communicate with a computer).

In addition to PD0 and PD1, the 3pi robot has a limited number of I/O lines that can be used as inputs

for additional sensors or to control additional electronics such as LEDs or servos. These I/O lines can

be accessed through the pads at the center of the 3pi, between the two motors, labeled PD0, PD1,

ADC6, ADC7, and PC5. If you are using an expansion kit, these lines are brought up to the expansion

PCB.

Pins PC5, ADC6, and ADC7 are all connected to 3pi hardware via removable shorting blocks. By

removing the shorting block, you can use these pins for your own electronics. Pin PC5 can be used

as either a digital I/O or an analog input. When its shorting block is in place, it controls the emitters

for the IR sensors; when its shorting block is removed, the emitters are always on. Pin ADC6 is a

dedicated analog input that connects to a voltage divider circuit that monitors the battery voltage when

its shorting block is in place, and pin ADC7 is a dedicated analog input that connects to the user

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

else if(speed1 > 1)
speed1 -= 2;

else if(speed1 > 0)
speed1 = 0;

// if button C is pressed, control motor2
if(button_is_pressed(BUTTON_C) && speed2 < 127)

speed2 ++;
else if(speed2 > 1)

speed2 -= 2;
else if(speed2 > 0)

speed2 = 0;

// if button B is pressed, do PID control
if(button_is_pressed(BUTTON_B))

slave_set_pid(40, 1, 20, 3, 2);
else
{

slave_stop_pid();
slave_set_motors(speed1, speed2);

}
}

}

while(1);
}

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 82 of 85

trimmer potentiometer when its shorting block is in place.

Note: If you call the Pololu AVR library’s sensor reading functions, the 3pi will drive pin

PC5 high for the duration of the sensor read, and it will then drive pin PC5 low. It does

this even if the PC5 shorting block is removed. If this behavior will interfere with what you

want to connect to PC5, you can modify the library code to initialize the sensors with a

bogus emitter pin (e.g. 20 instead of 19).

If you are willing to give up the LCD, as is required when you use the expansion kit without

cutouts [https://www.pololu.com/product/978], you gain access to several more I/O lines. Removing the

LCD completely frees the three LCD control pins (PB0, PD2, and PD4), and it makes the four LCD

data pins (PB1, PB4, PB5, and PD7) available for limited use. If you do use the LCD data pins, you

must make sure that their alternate functions do not conflict with whatever you connect to them. Pins

PB1, PB4, and PB5 connect to the user pushbuttons, and PD7 connects to the green user LED. It is

important to note that PB4 and PB5 are also programming lines, so you must not connect anything

here that would interfere with programming.

So in summary, pins PD0 and PD1 are completely free digital I/O lines that can be used for general-

purpose I/O or for TTL serial communciation. Pins PC5, ADC6, and ADC7 can be freed from 3pi

hardware by removing their respective shorting blocks. PC5 can be used as an analog input or a digital

I/O, and ADC6 and ADC7 are dedicated analog inputs. Pins PB0, PD2, and PD4 become completely

free digital I/O lines once you remove the LCD, and pins PB1, PB4, PB5, and PD7 are digital I/O lines

that you can use for certain applications if you are careful not to cause conflicts between them and

their alternate functionality.

For more information, please see Section 9 for the 3pi pin assignment tables and Section 5.e for the

3pi schematic diagram.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

10. Expansion Information Page 83 of 85

https://www.pololu.com/product/978
https://www.pololu.com/product/978

11. Related Resources
To learn more about using the Pololu 3pi Robot, see the following list of resources:

• Pololu AVR Programming Quick Start Guide [https://www.pololu.com/docs/0J51]: tutorials on

how to get started programming in Windows, Linux, and Mac OS X.

• Pololu AVR Library Command Reference [https://www.pololu.com/docs/0J18]: detailed

information about every function in the library.

• Programming the 3pi Robot from the Arduino Environment [https://www.pololu.com/docs/

0J17]: a guide to programming the 3pi using the Arduino IDE in place of AVR Studio.

• Atmel Studio 7 [https://www.microchip.com/avr-support/atmel-studio-7]

• AVR Libc Home Page [http://www.nongnu.org/avr-libc/]

• ATmega328P documentation [http://www.atmel.com/devices/atmega328p.aspx]

• ATmega168 documentation [http://www.atmel.com/devices/atmega168.aspx]

• Tutorial: AVR Programming on the Mac [http://bot-thoughts.blogspot.com/2008/02/avr-

programming-on-mac.html]

• WinAVR [http://winavr.sourceforge.net/]

• Anibit graphical programming tool for the Pololu 3pi [https://anibit.com/webtools/3pi/]

Finally, we would like to hear your comments and questions over at the 3pi Robot Group

[http://forum.pololu.com/viewforum.php?f=29] on the Pololu Robotics Forum [http://forum.pololu.com/]!

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

11. Related Resources Page 84 of 85

https://www.pololu.com/docs/0J51
https://www.pololu.com/docs/0J18
https://www.pololu.com/docs/0J17
https://www.pololu.com/docs/0J17
https://www.microchip.com/avr-support/atmel-studio-7
http://www.nongnu.org/avr-libc/
http://www.atmel.com/devices/atmega328p.aspx
http://www.atmel.com/devices/atmega168.aspx
http://bot-thoughts.blogspot.com/2008/02/avr-programming-on-mac.html
http://bot-thoughts.blogspot.com/2008/02/avr-programming-on-mac.html
http://winavr.sourceforge.net/
https://anibit.com/webtools/3pi/
http://forum.pololu.com/viewforum.php?f=29
http://forum.pololu.com/viewforum.php?f=29
http://forum.pololu.com/

12. Revision History and Errata
• 3pi robots with serial numbers less than 0J7259 have AREF connected to AVCC. This makes

it unsafe to configure the AVR’s ADC to use the internal voltage reference. Newer 3pi robots

disconnect AREF from AVCC and add capacitor C32 between AREF and GND, making it

safe to use the internal voltage reference.

Pololu 3pi Robot User’s Guide © 2001–2019 Pololu Corporation

12. Revision History and Errata Page 85 of 85

	Pololu 3pi Robot User’s Guide
	1. Introduction
	2. Contacting Pololu
	3. Important Safety Warning and Handling Precautions
	4. Getting Started with Your 3pi Robot
	4.a. What You Will Need
	4.b. Powering Up Your 3pi
	4.c. Using the Preloaded Demo Program
	4.d. Included Accessories

	5. How Your 3pi Works
	5.a. Batteries
	Introduction to Batteries

	5.b. Power management
	5.c. Motors and Gearboxes
	Driving a motor with speed and direction control
	Turning with a differential drive

	5.d. Digital inputs and sensors
	5.e. 3pi Simplified Schematic Diagram

	6. Programming Your 3pi
	7. Example Project #1: Line Following
	7.a. About Line Following
	7.b. A Simple Line-Following Algorithm for 3pi
	7.c. Advanced Line Following with 3pi: PID Control

	8. Example Project #2: Maze Solving
	8.a. Solving a Line Maze
	8.b. Working with Multiple C Files in Atmel Studio
	8.c. Left Hand on the Wall
	8.d. The Main Loop(s)
	8.e. Simplifying the Solution
	8.f. Improving the Maze-Solving Code

	9. Pin Assignment Tables
	Pin Assignment Table Sorted by Function
	Pin Assignment Table Sorted by Pin

	10. Expansion Information
	10.a. Serial slave program
	Source code

	10.b. Serial master program
	Source code

	10.c. Available I/O on the 3pi's ATmegaxx8

	11. Related Resources
	12. Revision History and Errata

