1300 Henley Court
Pullman, WA 99163
509.334.6306

BEYOND THEORY www.digilentinc.com

PmodACL2™ Library Reference Manual

Revised October 14, 2014

Overview

The pmodACL2 library provides an interface to an ADXL362 3- axis accelerometer. The library initializes the
accelerometer and reads real time data and can support a FIFO buffer system to get 100 kHz spaced results.

1 Library Operation

1.1 Library Interface

The header file ACL2.h defines all of the used register addresses and initialization bytes. The file also holds two
classes. The first class is myQueue, which is the base for the FIFO buffer using a set integer array. The second class
is the ACL2 class. This class is the main interface with the ADXL362 and uses the myQueue class to implement the
FIFO buffer for all three axes with the ability to have a buffer for the temperature data. Include the ACL2 library
and instantiate an ACL2 object.

1.2 ACL2 Initialization

The ACL2 module is initialized by calling the function begin(). This function sets up the FIFO buffers then calls an
initialization function that chooses the following settings.

- Set the freefall detection threshold to 600 mg (g = earth gravity)

- Set the freefall detection time to 30 ms

- Enables the inactivity detect

- Sets the inactivity interrupt to interrupt pin 1

- Setssensorrangeto:*8g

- Enables measurement

After the accelerometer is initialized, the device will immediately assert real time data at a frequency of 100 kHz.

. Copyright Digilent, Inc. All rights reserved. _
DOC#: 515-010 Other product and company names mentioned may be trademarks of their respective owners. Page 10f10

PmodACL2™ Library Reference Manual M

2 Used Registers and Their Functions

These are the main registers used in the ACL2 libraries. A more in-depth view of these register functions can be
found in the ADXL362 datasheet found below. Any of these registers can be accessed by a user by using the
readRegister and writeRegister functions.

|__Addressname | Address | Function |

PART_ID 0x02 Displays the ACL part ID.

X_DATA 0x08 8 bit x-axis data (low power).

Y_DATA 0x09 8 bit y-axis data (low power).

Z_DATA 0x0A 8 bit z-axis data (low power).

STATUS 0x0B Status Register.

FIFO_ENTRIES_L 0x0C LSBs of the 12 bit value of entries in the FIFO buffer.
FIFO_ENTRIES_H 0x0D MSBs of the 12 bit value of entries in the FIFO buffer.
XDATA_L OxO0E LSBs of the 12 bit x-axis accelerometer data.
XDATA_H OxOF MSBs of the 12 bit x-axis accelerometer data.
YDATA L 0x10 LSBs of the 12 bit y-axis accelerometer data.

YDATA _H 0x11 MSBs of the 12 bit y-axis accelerometer data.
ZDATA L 0x12 LSBs of the 12 bit z-axis accelerometer data.
ZDATA_H 0x13 MSBs of the 12 bit z-axis accelerometer data.
TEMP_L 0x14 LSBs of the 12 bit temperature data.

TEMP_H 0x15 MSBs of the 12 bit temperature data.

SOFT_RESET Ox1F Resets registers to default values.

THRESH_INACT_L 0x23 LSBs of the 12 bit threshold inactivity.
THRESH_INACT_H 0x24 MSBs of the 12 bit threshold inactivity.
FIFO_CONTROL 0x28 Various controlling bits for the FIFO buffer.
FIFO_SAMPLES 0x29 Amount of samples before FIFO watermark INT1 fires.
INTMAP1 0x2A Sets which interrupt gets mapped to the INT1 pin.
INTMAP2 0x2B Sets which interrupt gets mapped to the INT2 pin.
FILTER_CTL 0x2C Various controlling bits for the ACL.

POWER_CTL 0x2D Various controlling bits for the ACL.

3 ACL2Library Functions

3.1 myQueue Class

The myQueue class uses a set length integer array. This is possible because the FIFO buffer on the ADXL362 will
work on a fill dump basis. Meaning the buffer will fill up until the user needs the data, then the buffer will be
completely emptied. This means a set array length can be used and no data is dynamically allocated. Below is a
filled myQueue with 510 items.

ItemO Item1 Item2 Item3 ltemd e, Item510 Item511 Item512
| Int0 Int1 Int2 Int3 ntd | e | o, Int510 | -1 | -1 |
T) T
front_ptr and head_ptr tail_ptr back_ptr
Copyright Digilent, Inc. Al righ d.
Oct)ﬁgp%rgdulglt :rrltd c%cmparqulgngsrr:::%\éitioned may be trademarks of their respective owners. Page 20f10

PmodACL2™ Library Reference Manual M

3.1.1 Public Functions

myQueue()
Parameters:
e None
Return Value:
e None

Constructor for queue sets the pointers to initial positions and clears the queue by calling resetQueue().

empty()

Parameters:
e None

Return Value:
e None

Sets all members of the queue to -1 and resets the pointers to the beginning. At a top level it deletes all queue
members. Below is the queue after empty.

IltemO Ilteml ltem2 ltem3 ltem4d ltem510 Item511 Item512
-1 | 1 | 1 -1 1 |] -1 -1 | 1
T i
front_ptr/head_ptr/tail_ptr back_ptr
size()
Parameters:
e None

Return Value:

e Int tail_ptr
o The number of items currently in the queue

size() returns the tail_ptr. This works out to be the size of the queue in this implementation.

front()
Parameters:
e None

Return Value:

e Int dataQueuelhead_ptr - 1]
o Thevalue at the front of the queue

This function returns the first value in the queue without destroying it.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 30f 10

PmodACL2™ Library Reference Manual M

back()
Parameters:
e None

Return Value:

e Int dataQueue[tail_ptr - 1]
o The value at the back of the queue

back() returns the value one less than the tail_ptr. tail_ptr points to the array member after the last valid data.
dataQueue[tail_ptr — 1] is the last int in the queue.

push_back(int value)
Parameters:

e Intvalue
o The value to push onto the queue

Return Value:
e None

Push_back(int value) accepts a value then pushes that value onto the back of the queue.

int pop_front()
Parameters:

e None
Return Value:

e intresult
o Data coming off the queue

pop_front() reads the first member in the queue then returns it and moves the head_ptr to move to the next item
in line.

resetQueue()
Parameters:
e None
Return Value:
e None

Sets pointer values, including front and back pointers, to start over queue then empties it by calling empty().

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 10

PmodACL2™ Library Reference Manual M

getQueue(int* outQueue)
Parameters:

e Int* outQueue
o intarray to copy dataQueue data

Return Value:
e None

Accepts an integer array pointer then empties the dataQueue into the array for use by the user.

3.2 ACL2Class

3.2.1 Public Functions

ACL2()
Parameters:
e None

Return Value:
e None

Constructor for class ACL2.

begin(int CS)
Parameters:

e intCS
o chip select pin for SPI communications

Return Value:
e None

This function starts the SPI communication, stores the desired chip select, and sets the accelerometer to the
suggested zero values. If you know at startup the accelerometer will be at rest, a better implementation would be
to run setZero() instead of storing these default values into the zero variables. The function then calls reset().

init()
Parameters:
e None

Return Value:
e None

This function sets the ACL2 up for basic use applying a sensitivity of +- 8g (256 per 1g) and sets up default settings
on activity and drop detection by writing to various registers.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 50f 10

PmodACL2™ Library Reference Manual M

int getX()
Parameters:

e None
Return Value:

e intx
o The value of acceleration in the X direction found by using getData()

This function calls getData with the XDATA_H and XDATA_L registers and return the X value for acceleration.

int getY()
Parameters:

e None
Return Value:

e Inty
o The value of acceleration in the Y direction found by using getData()

This function calls getData with the YDATA_H and YDATA_L registers and return the Y value for acceleration.

int getZ()
Parameters:

e None
Return Value:

e intz
o The value of acceleration in the Z direction found by using getData()

This function calls getData with the ZDATA_H and ZDATA_L registers and return the Z value for acceleration.

int getTemp()
Parameters:

e None
Return Value:

e inttemp
o The value of temperature on the chip

This function calls getData with the TEMP_H and TEMP_L registers and return the temp value for on board
temperature.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 6 of 10

PmodACL2™ Library Reference Manual M

Uint8_t getStatus()
Parameters:

e None
Return Value:

e uInt8_t status
o The 8 bits that occupy the STATUS register

This function reads the status register and returns the 8 bit value.

Uint8_t getRange()
Parameters:

e None
Return Value:

e uInt8_trange
o either 2, 4, or 8g range class item

This function returns the uint8_t range class member which describes the current range of measurement.

Uint8_t readRegister(uint8_t thisRegister)
Parameters:

e Uint8_t thisRegister
o register to read a byte from

Return Value:

e uInt8_tinByte
o byte read from register

This function returns the byte located in thisRegister. The function handles all the SPI protocol.

writeRegister(uint8_t thisRegister, uint8_t thisValue)
Parameters:

e Uint8_t thisRegister
o register to write to
e Uint8_t thisValue
o byte to write in this register

Return Value:
e None

This function writes a byte to a register given by thisRegister's address. The function handles all the SPI protocol.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 10

PmodACL2™ Library Reference Manual M

reset()

Parameters:
e None

Return Value:
e None

This function writes the byte 'R’ to the reset register to initiate a soft reset. Then calls init to set the sensor up for
measurement again.

updateRange()
Parameters:
e None
Return Value:
e None

This function reads the filter control register and stores the sensitivity range into the private variable range.

setRange(int newRange)
Parameters:

e newRange
o Must be an int value of 2, 4, or 8

Return Value:
e None

This function reads the filter control register (FILTER_CTL) and stores the sensitivity range into the private variable
range.

setZero()

Parameters:
e None

Return Value:
e None

This function sets the zeroing variables so that the ACL puts out x=0, y =0, z = 1000. The function takes an average
over 100 samples since the data can be sporadic.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 10

PmodACL2™ Library Reference Manual M

int getFIFOentries()
Parameters:

e None
Return Value:

e Int entries
o Entriesin the FIFO buffer

This function reads the FIFO entries registers(FIFO_ENTRIES_H, FIFO_ENTRIES_L) using the getData function to
read how many FIFO entries are in the ADXL362 queue to be read out.

fillFIFO()

Parameters:
e None

Return Value:
e None

This function transfers FIFO data from the ADXL362 into the myQueue elements of the class. The getData
functionality had to be recreated since the SPI chip select signal has to stay low during the whole transfer. After
this function is called, the xFIFO, yFIFO, and zFIFO elements will be populated.

int getData(uint8_t regl, uint8_t reg2)

Parameters:
e regl
o The first register to read from. The high data value which contains the 3 MSBs
® reg2

o The second register to read from. The low data value which contains the 8 LSB’s
Return Value:
e None

This function reads data from a register couple and does the masking and shifting to create an int value. This
function is used often throughout the program. Changing it may cause several issues.

3.2.2 Private Functions

uint16_t twosToBin(uint16_t input)
Parameters:

e input
o An 11 bit two's complement value to be converted to a binary number

Return Value:

e return
o Returns a 16 bit unsigned integer with the positive value of the negative two's compliment

This function converts a negative twos compliment value and performs a bitwise flip and subtracts one to return a
positive int value. This does not return a negative number.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 9 of 10

PmodACL2™ Library Reference Manual M

char getDIR(uint16_t value)
Parameters:

e value
o FIFO raw data to parse direction from

Return Value:

e charresult
o Axis that the FIFO data represents (x/y/z)

This function takes the raw FIFO data and analyses the 2 MSBs to determine the axis the data represents.

3.2.3 Class Members

myQueue xFIFO myQueue designated for FIFO data on the x-axis

myQueue yFIFO myQueue designated for FIFO data on the y-axis.

myQueue zFIFO myQueue designated for FIFO data on the z-axis.

myQueue tempFIFO myQueue designated for FIFO data regarding temperature.

int chipSelect The pin being used as the SPI chipSelect.

uint8_t range The current range of the accelerometer (+2g/+4g/+8g).

int xZero Calibration setting for the x-axis.

int yZero Calibration setting for the y-axis.

int zZero Calibration setting for the z-axis.

8?%:'%?;(?&%#2?13 lcrg)crﬁggr:iygpgsrr{:ﬁ;\éﬁioned may be trademarks of their respective owners. Page 100f 10

