// From here https://learn.adafruit.com/multi-tasking-the-arduino-part-3/using-neopatterns #ifndef NEOPATTERNS_H #define NEOPATTERNS_H #include // Pattern types supported: enum pattern { NONE, RAINBOW_CYCLE, THEATER_CHASE, COLOR_WIPE, SCANNER, FADE, FLICKER }; // Patern directions supported: enum direction { FORWARD, REVERSE }; // NeoPattern Class - derived from the Adafruit_NeoPixel class class NeoPatterns : public Adafruit_NeoPixel { public: // Member Variables: pattern ActivePattern; // which pattern is running direction Direction; // direction to run the pattern unsigned long Interval; // milliseconds between updates unsigned long lastUpdate; // last update of position uint32_t Color1, Color2; // What colors are in use uint16_t TotalSteps; // total number of steps in the pattern uint16_t Index; // current step within the pattern uint16_t Pixel; // current step within the pattern void (*OnComplete)(); // Callback on completion of pattern // Constructor - calls base-class constructor to initialize strip NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)()) :Adafruit_NeoPixel(pixels, pin, type) { OnComplete = callback; } // Update the pattern void Update() { if((millis() - lastUpdate) > Interval) // time to update { lastUpdate = millis(); switch(ActivePattern) { case RAINBOW_CYCLE: RainbowCycleUpdate(); break; case THEATER_CHASE: TheaterChaseUpdate(); break; case COLOR_WIPE: ColorWipeUpdate(); break; case SCANNER: ScannerUpdate(); break; case FADE: FadeUpdate(); break; case FLICKER: // Custom animation for candle FlickerUpdate(); break; default: break; } } } // Increment the Index and reset at the end void Increment() { if (Direction == FORWARD) { Index++; if (Index >= TotalSteps) { Index = 0; if (OnComplete != NULL) { OnComplete(); // call the comlpetion callback } } } else // Direction == REVERSE { --Index; if (Index <= 0) { Index = TotalSteps-1; if (OnComplete != NULL) { OnComplete(); // call the comlpetion callback } } } } // Reverse pattern direction void Reverse() { if (Direction == FORWARD) { Direction = REVERSE; Index = TotalSteps-1; } else { Direction = FORWARD; Index = 0; } } // Initialize for a RainbowCycle void RainbowCycle(uint8_t interval, direction dir = FORWARD) { ActivePattern = RAINBOW_CYCLE; Interval = interval; TotalSteps = 255; Index = 0; Direction = dir; } // Update the Rainbow Cycle Pattern void RainbowCycleUpdate() { for(int i=0; i< numPixels(); i++) { setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255)); } show(); Increment(); } // Initialize for a Theater Chase void TheaterChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir = FORWARD) { ActivePattern = THEATER_CHASE; Interval = interval; TotalSteps = numPixels(); Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } // Update the Theater Chase Pattern void TheaterChaseUpdate() { for(int i=0; i< numPixels(); i++) { if ((i + Index) % 3 == 0) { setPixelColor(i, Color1); } else { setPixelColor(i, Color2); } } show(); Increment(); } // Initialize for a ColorWipe void ColorWipe(uint32_t color, uint8_t interval, direction dir = FORWARD) { ActivePattern = COLOR_WIPE; Interval = interval; TotalSteps = numPixels(); Color1 = color; Index = 0; Direction = dir; } // Update the Color Wipe Pattern void ColorWipeUpdate() { setPixelColor(Index, Color1); show(); Increment(); } // Initialize for a SCANNNER void Scanner(uint32_t color1, uint8_t interval) { ActivePattern = SCANNER; Interval = interval; TotalSteps = (numPixels() - 1) * 2; Color1 = color1; Index = 0; } // Update the Scanner Pattern void ScannerUpdate() { for (int i = 0; i < numPixels(); i++) { if (i == Index) // Scan Pixel to the right { setPixelColor(i, Color1); } else if (i == TotalSteps - Index) // Scan Pixel to the left { setPixelColor(i, Color1); } else // Fading tail { setPixelColor(i, DimColor(getPixelColor(i))); } } show(); Increment(); } // Initialize for a Fade void Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir = FORWARD) { ActivePattern = FADE; Interval = interval; TotalSteps = steps; Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } // Update the Fade Pattern void FadeUpdate() { // Calculate linear interpolation between Color1 and Color2 // Optimise order of operations to minimize truncation error uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps; uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps; uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps; ColorSet(Color(red, green, blue)); show(); Increment(); } // ***************************************** // START Custom animation for LED candle // ***************************************** // Initialize for a Flicker void Flicker(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir = FORWARD) { ActivePattern = FLICKER; Interval = interval; TotalSteps = steps; Color1 = color1; Color2 = color2; Index = 0; Direction = dir; Pixel = random(0,numPixels()); // random(min,max) --max is EXCLUSIVE } // Initialize for a Flicker void FlickerUpdate() { // Calculate linear interpolation between Color1 and Color2 // Optimize order of operations to minimize truncation error uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps; uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps; uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps; uint8_t white = ((White(Color1) * (TotalSteps - Index)) + (White(Color2) * Index)) / TotalSteps; setPixelColor(Pixel,Color(red, green, blue, white)); show(); Increment(); } // ***************************************** // END Custom animation for LED candle // ***************************************** // Calculate 50% dimmed version of a color (used by ScannerUpdate) uint32_t DimColor(uint32_t color) { // Shift R, G and B components one bit to the right uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1); return dimColor; } // Set all pixels to a color (synchronously) void ColorSet(uint32_t color) { for (int i = 0; i < numPixels(); i++) { setPixelColor(i, color); } show(); } // Returns the Blue component of a 32-bit color uint8_t White(uint32_t color) { return (color >> 24) & 0xFF; } // Returns the Red component of a 32-bit color uint8_t Red(uint32_t color) { return (color >> 16) & 0xFF; } // Returns the Green component of a 32-bit color uint8_t Green(uint32_t color) { return (color >> 8) & 0xFF; } // Returns the Blue component of a 32-bit color uint8_t Blue(uint32_t color) { return color & 0xFF; } // Input a value 0 to 255 to get a color value. // The colours are a transition r - g - b - back to r. uint32_t Wheel(byte WheelPos) { WheelPos = 255 - WheelPos; if(WheelPos < 85) { return Color(255 - WheelPos * 3, 0, WheelPos * 3); } else if(WheelPos < 170) { WheelPos -= 85; return Color(0, WheelPos * 3, 255 - WheelPos * 3); } else { WheelPos -= 170; return Color(WheelPos * 3, 255 - WheelPos * 3, 0); } } }; #endif