
Markov Crawler
Users Manual

jan.balewski@gmail.com, ver 1.0

December 25, 2017

This instruction assumes you have assembled the Markov Crawler Kit following the As-
sembly Instruction. You can ssh to Raspberry Pi (R-Pi) from your laptop (or a desktop)
connected to the same local network as R-Pi WiFi. The muSD card included in Markov
Crawler Kit contains the preinstalled Rasbian OS and preinstalled Markov Crawler software.

Contents

Listings

1 Ssh to Raspberry Pi (R-Pi)

Power ON R-Pi , the red LED on R-Pi should stay on, the green one (disc access) should
blink few times, then turn off. In this section I’m assuming your laptop runs Linux-like
operating system. It is assumed you have basic Linux skills, you know Python, and you have
some experience with R-Pi . Open an x-terminal your laptop. Execute those commands:

1. to check if R-Pi is visible from the laptop ’ping’ it using the local IP you have iden-
tified when R-Pi was connected to the physical terminal during the assembly process.
Execute:

laptop1$ ping -c 2 192.168.1.6

PING 192.168.1.6 (192.168.1.6): 56 data bytes

64 bytes from 192.168.1.6: icmp_seq=0 ttl=64 time=560.956 ms

64 bytes from 192.168.1.6: icmp_seq=1 ttl=64 time=10.104 ms

2. use ssh to connect to R-Pi, include opening the graphic tunnel by adding ’-X’. The
R-Pi user name is pi, password jas, user pi is sudo. Execute:

laptop1$ ssh 192.168.1.8 -l pi -X

pi@192.168.1.6’s password:

....

Linux raspberry2 4.0.9-v7+ #807 SMP PREEMPT Fri Jul 24 15:21:02 BST 2015 armv7l

1

.......

$ cd

$ ls -F

markov-crawler/ Desktop/ Adafruit-Raspberry-Pi-Python-Code/

3. verify graphics works by executing on R-Pi:

$ xload &

The display of load vs. time should pop up on your laptop in few seconds, see Fig. ??.

Figure 1: On your laptop open x-terminal, ssh to R-Pi . To verify the graphics is transported
from R-Pi to laptop launch the ’xload’ application monitoring the load on the R-Pi .

1.1 Update Markov Crawler software

The Markov Crawler software is stored in the R-Pi directory /home/pi/markov-crawler/.
If this directory does not exist (or was erased by accident) you can always pull a fresh copy
from the Bitbucket Git as described in the Appendix ??.

It is likely there will be an update to the Markov Crawler software since the Markov
Crawler Kit was sent to you, so before you start modifying your Markov Crawler code please
resynchronize it with Git by executing:

pi@raspberry2 ~ $ cd markov-crawler

pi@raspberry2 ~/markov-crawler $ git pull

2

......

Unpacking objects: 100% (3/3), done.

From https://bitbucket.org/balewski/markov-crawler

0271b9e..b074f37 master -> origin/master

Updating 0271b9e..b074f37

....

1 file changed, 1 insertion(+), 1 deletion(-)

3

1.2 Markov Crawler code structure

The Markov Crawler code is written in Python (runs under Python ver 2.7). A significant
part of the code was borrowed from the Berkeley CS-188 EdX online class. The CS-188 code
was refactored to integrate it with the hardware connected to R-Pi , several new modules
were added. You should see the following subdirectories:

$ cd

$ ls

Desktop/ Adafruit-Raspberry-Pi-Python-Code/ markov-crawler/

The Adafruit-Raspberry-Pi-Python-Code/ directory contains a low level Python code
needed to control the PWM pulse generator. There is no need to modify it. You will work
with the code localized in the markov-crawler/ directory. Let see what is there?

$ cd ~/markov-crawler

$ ls -F

mouseUtil/ reflexAgent-cs188/ setup@ utils-cs188/

qlearnAgent-cs188/ reflexAgentSimple/ setup-RPi1/

Readme.txt servosUtil/

• setup/ directory contains various constants pertaining to the Markov Crawler hard-
ware, e.g. pickle defines the angular range for servo-motors, calibrates mini-mouse,
defines dimensions of physical Markov Crawler used by in the virtual model.

• servosUtil/ - here resides the servo driver (servoDriver.py) and the servo calibration
tool (servoCalibMain.py) which you will use next.

• mouseUtil/ - here resides mouseDriver.py code and a calibration tool mouseCal-
ibMain.py.

• reflexAgentSimple/ - can make the Markov Crawler to walk using predefined se-
quence of rotations of servos, see more in Section. ??.

• reflexAgent-cs188/ - state-machine based interface to Markov Crawler . A GUI
allows for execution of individual steps as well as of a pre-defined policy. The animation
of Crawler pose and readout of its measured position is displayed.

• qlearnAgent-cs188/ - the AI brain of the Markov Crawler . Uses Markov decision
process to train Crawler to walk either virtually or based on optical mouse feedback.

4

2 Calibration of servo motors

A servo motor can usually only turn for a total of 180o. Servo motors are controlled by an
electrical pulse of variable width, sent by the PWM generator via one of the 3 servo wires.
The PWM pulse width is expected to be between 150 and 650 (µs), the repetition rate is
fixed, set to 50 Hz. [1].

Figure 2: Physical and software angular limits of the arm of the Markov Crawler . Similar
limits apply to the hand angle.

? During the assembly you have rotated both servos clock-wise (w/o power) to such
position that the arm and the hand are at the extreme but do not touch anything. This
is ’down’ position of both servos. Now we need to define in software the lower and upper
angu?lar limits.

The end goal is to translate the desire angle of an arm/hand expressed in radians in to
the physical position. This is the generic formula converting the requested angle α measure
in radians to the PWM value resulting with desire rotation of the servo.

x(α) = pwm0 + dir · α · fact, where − π/2 < α < +π/2 (1)

pwm(α) =

pwmH if x(α) > pwmH

pwmL if x(α) < pwmL

x(α) otherwise

(2)

1http://www.jameco.com/jameco/workshop/howitworks/how-servo-motors-work.html

5

The servo driving software needs to know the ’configuration’: dir = ±1, fact, pwm0, pwmL, pwmH

which depend on the particular servo you are using and on the angle you inserted the servo
horn on the servo shaft. Fig. ?? will help you to understand the relations between those
parameters.

You will find all those constants experimentally with the help of the GUI shown in Fig. ??.
The servo configuration will be saved in to a Python pickle file, separately for the arm and
for the hand.

Launch the servoCalibMain.py program calibrating servo as follows. Note, you need
launched this code as ’gksu’ 2) to have enough privileges to access R-Pi GPIO pins commu-
nicating with the PWM generator via IC2 protocol.

$ cd ~/markov-crawler/servosUtil

$ gksu "./servoCalibMain.py"

actConfig action= read

reading pickle from : ../setup/generic.servo.conf

....

The GUI window (see Fig. ??) should pop-up on your laptop. By default, this program reads
in the ’generic’ servo params ../setup/generic.servo.conf which are incorrect. If needed,
you can change this input pickle name at the launch time by adding run-time parameters
(use -h flag to see all options). Before we proceed read those few comments:

• the toggle switch (Fig. ?? bottom-left) can be used at any time to turn ON/OFF the
power to servos - if they seems to behave out of control. The power to R-Pi is not
interrupted in such case and you should not loose connection to it.

• the A-meter shows the sum of current drawn by both servos. It is expected to see
below 0.90A per servo, only if they move and encounter a resistance (or up to 1.8A if
both servos move simultaneously). If you observe large current drawn when servo is
not moving try to figure out what is blocking the servo. If you can’t find it within a
minute, then toggle the servo power switch to OFF and continue thinking. You do not
want to dissipate that much power in to a servo for more than few minutes. To give
you the scale 5V*1.8A=9W of power.

• there are magenta #-numbers added to Fig. ?? to guide you through the calibration
process. In general, all red-labeled values are stored in to the pickle, meaning do not
touch those sliders until you press ’write’. The black-labeled values are only to help
you to calibrate the servo, meaning it does not matter what those values are when you
press ’write’.

• the order you change sliders matters for the calibration constants, so move only the
slider you are asked to move.

• at any time the PWM value computed using Eq. ?? and sent to the servo is displayed
in the GUI at location #12.

For each servo you will need to repeat the following steps. Lets start with the ’arm’ servo,
manually bent the ’hand’ vertically up.

2Gksu is a tool to allow a user to run a GUI program as root. It does for X programs what sudo does for
commands.

6

Figure 3: GUI allowing to calibrate each servo motor. The numerical values for each servo
will be different.

1. confirm the 3-prong arm-servo cable is plugged into PWM channel 7 (see Fig. ??
bottom-right). The black cable wire should be plugged to black ground pin on the
PWM controller.

2. select ’pwm chan’ value to be 7 (GUI location #1), the arm should jerk

3. slowly move ’pwmZero’ slider (location #2) - the hand should rotate over whole phys-
ically allowed 1800 range.

4. move slider #2 to set the arm angle of at about 450 UP, above the horizontal plane.

5. press ’newLow’ button (location #3) - the value of slider #2 should show up behind
this button. If you move slider #2 to lower value the hand will not move more. You
have set the soft limit for the maximal UP-angle of the arm.

6. move slider #2 in the opposite direction to set arm angle at about -450 (DOWN), below
the horizontal plane.

7. press ’new High’ button (location #4) - the value of slider #2 should show up behind
this button.

8. if you want to reset the angular range set by buttons #3 & #4 press the ’full range’
button (location #5). Next, repeat setting of both ranges. It may happen that for your
servo the UP/DOWN and High/Low relation is reversed. It is fine - set the angular
limits so they make sense.

9. move slider #2 to set the arm horizontally and do not move this slider again.

7

10. until now the ’setAngle/deg’ slider (location #7) was at the value of 00. If not. fix it
and start all over.

11. move slider ’angle/deg’ (location # 7) to +300 (UP) and verify the arm moved UP. If
it moved down then (un) check ’Inverted’ (location #8). This should fix the problem.

12. now we want to fine-tune the relation between set angle and the servo angle. If the arm
is significantly off +300 use slider ’pwm/rad’ (location #9) to improve it. To verify the
fact variable in Eq. ?? is correct move the slider #9 to -450 and check if the arm angle
is now -450.

13. you are almost done. Edit the pickle name, change ’generic’ to ’arm’ in the ’setup’ file
field (location #10) and press ’write’ button (location # 11). You should see on the
x-terminal:

actConfig action= write

write pickle : ../setup/arm.servo.conf

14. quit GUI by pressing ’Quit’ button (location #13). This GUI runs on a separate thread
so crtl-C will not kill it.

The steps above generated arm.servo.conf configuration pickle for the arm. Next, repeat
the same calibration procedure for the hand servo with the following changes:

• set the hand angle range to be [−1500,+300] instead of the arm [−450,+450] .

• the hand servo is connected to channel 8 of PWM and you need to change it in GUI
at the location #1.

• save the pickle as hand.servo.conf

You may want to verify the calibration you are using. To do so you can upload the
existing pickle to GUI by entering the path-to and name of the pickle at location #10 and
pressing the ’read’ button (location #14). Alternatively, you can specifying the path-to and
name of the pickle at a GUI launch time:

$ gksu "./servoCalibMain.py --setupPath ../setup/ --name arm"

actConfig action= read

reading pickle from : ../setup/arm.servo.conf

...

To conclude, verify both pickle files exist and are of non-zero length:

ls~/markov-crawler/setup/generic.servo.conf arm.servo.conf hand.servo.conf

8

2.1 Exercise one servo with moveOneServo.py

Now it is time to exercise the servo calibration you have just established. Inspect the short
Python test code moveOneServo.py, shown in a compact form in Listing ??.

1 $ cat moveOneServo . py
2 import time , os
3 import p i c k l e
4 from servoDr ive r import ServoDriver
5

6 confName =” . . / setup /hand . se rvo . conf ”
7 #confName =”. ./ setup /arm . servo . conf ”
8

9 conf=p i c k l e . load (open (confName , ” r ”))
10

11 se rvo = ServoDriver ()
12 se rvo . s e tupCont ro l l e r ()
13 se rvo . c on f i g (conf)
14

15 f o r ang in [0 . , 3 0 . , −30, 0 .] :
16 se rvo . setAngleDeg (ang)
17 pr in t ’ s e t ang le (deg)=%s , s t a tu s=%s ’%(ang , se rvo . s t a tu s)
18 time . s l e e p (0 . 8) # important to g ive se rvo some time to reach new po s i t i o n
19

20 se rvo . f u l l S t o p () # now A−meter w i l l show no cur rent

Listing 1: moveOneServo.py python code rotating hand-servo over list of angles.

Lets walk through key lines of the Listing ?? allowing to position one servo at the angle
given in degrees.

• line 4: imports the servo driver module

• line 6: defines location of the pickle with calibration of hand-servo. Note, by changing
the name of pickle to the arm (commented out line 13) you would control the arm-servo
instead.

• lines 11-13 : servo module is initialized with calibration from the pickle file

• line 15 defines loop over list of angles of your choice.

• line 16 : servo1.setAngleDeg(ang) will tell servo to change change to new angle, specified
in deg. Alternatively, you can use angle in radians and call : servo.setAngle(-3.14/4) .

• line 17 shows how servo is reporting if your request is sensible. If you command an
angle beyond the soft range you have chosen during calibration then servo will stop at
the boundary and return string ’low’ or ’high’.

• line 18 gives servo time to reach new position, program must simply wait

• line 20 shuts down PWM generator and servo does not hold its position. Until Servo-
Driver:fullStop() is executed servo can draw (sizable) current.

Execute the code :
$ gksu ./moveOneServo.py

9

and observe the hand-servo moves. Next, grab Crawler hand with your hand, so servo must
work harder and observe the current shown by A-meter is approaching 0.9 A. It is OK for
a servo to draw that much current for few seconds, but make sure it is not constant for an
hour - this would overheat/destroy the servo. Finally, change the name of the calibration
pickle to the arm-servo (enable line 7) and verify now the arm moves.

Fell free to modify the ./moveOneServo.py code and make it more complex. Note,
ServoDriver instance talks to one PWM, so you can’t have 2 instances of ServoDriver. The
next section shows how to drive 2 servos simultaneously.

3 Programmatic arm-hand coordination (Reflex Agent)

This section will discuss how to control and coordinate movement of the hand and the arm of
the Markov Crawler to cause Markov Crawler to walk forward. We will start with the simplest
approach, by extending the one servo example to two servos. Next, we will use two correlated
harmonic oscillator functions to encode more flexible and more smooth but still predefined
motion pattern of the Markov Crawler . Finally, we will adopted the State Machine based
code from CS-188 to encode walking which will be encode list-based (again), but the code
will be ready to be interfaced with the Q-learning AI code from SC-188, discussed in the
next section.

Figure 4: Left: angular range allowed for Crawler hand and arm. Right: the same range
shown as rectangle. The red star is equivalent to the arm and hand position shown on the
left.

Before discussing the Python code let introduce the notion of the arm-hand state space.
Fig. ?? -left shows the angular range allowed (in software) for both appendages. Note, the
hand angle is defined relatively to the arm ’bone’. Fig. ??-right shows all possible hand and
arm angles values on a 2D plane. Any physical configuration of the Markov Crawler can be
represented as a point inside the blue rectangle. E.g. the red star is equivalent to the arm
and hand position shown on the left.

10

3.1 Discrete list-based walking

The simplest reflex agent uses a list of (arm,hand) angle values, as shown in Fig. ??-left. It
loops over the list in predefined order, dials the pair of angles, and waits for a fraction of
second until servos reach the new set position. The movement is jerky because torque of the
servos is strong. Listing. ?? shows full implementation of this algorithm. Execute the code :
$ gksu ./moveOneServo.py
and observe the hand-servo moves

Figure 5: Left: Red points mark trajectory implemented in babyWalk reflex agent. Right:
smoothWalk reflex agent uses two correlated harmonic oscillator functions for more smooth
walking. By changing the relative phase one can reverse the direction of walking or stale the
Crawler.

1 $ cat babyWalk . p
2 import time
3 import p i c k l e
4 import sys , os
5 sys . path . append (os . path . r e lpa th (” . . / s e r v o sU t i l /”))
6 from servoDr ive r import ServoDriver
7

8 # de f i n e parameters below
9 stepDelay=0.3 # (seconds) , between s t ep s

10 walkTime=10. # (sec) , t o t a l durat ion o f walking
11 handConfName=” . . / setup1 /hand . se rvo . conf ”
12 armConfName =” . . / setup1 /arm . servo . conf ”
13 dbg=0 # debugging switch , s e t to 1 to see more p r i n t ou t s
14

15 # open p i c k l e s f o r hand and arm and i n i t i a l i z e two i n s t an c e s o f ServoDriver
16 handConf=p i c k l e . load (open (handConfName , ” r ”))
17 hand = ServoDriver (dbg)
18 hand . s e tupCont ro l l e r ()
19 hand . c on f i g (handConf)
20

21 armConf=p i c k l e . load (open (armConfName , ” r ”))
22 arm = ServoDriver (dbg)
23 arm . l i n kCon t r o l l e r (hand . pwmDriver) # use common PWM dr i v e r
24 arm . c on f i g (armConf)
25

11

26 #de f i n e r e s e t s t a t e o f both s e rvo s
27 s t a t eRese t =(20 ,−15) # (arm , hand) ang l e s in deg at r e s e t p o s i t i o n
28 arm . setAngleDeg (s ta t eRese t [0]) #execute s arm r e s e t
29 time . s l e e p (0 . 5) # th i s de lay desynchron i ze s power consumed by hand from arm ,

keep i t
30 hand . setAngleDeg (s ta t eRese t [1])
31 time . s l e e p (0 . 5)
32

33 # de f i n i t i o n o f (arm , hand) r e l a t i v e angular s t a t e s in deg f o r one cy c l e
34 s t a t e L i s t =[s tateReset ,(−5 ,−45) ,(−20 ,−80) ,(−40 ,−100) ,(−5 ,−150) ,(30 ,−140)]
35

36 # execut ion o f c y c l e u n t i l time runs out
37 whi le walkTime >0 :
38 pr in t ”−−−−−walking time l e f t %.1 f (s ec) ”%walkTime
39 f o r s t a t e in s t a t e L i s t :
40 arm . setAngleDeg (s t a t e [0])
41 hand . setAngleDeg (s t a t e [1])
42 time . s l e e p (stepDelay)
43 walkTime=walkTime − stepDelay
44

45 hand . f u l l S t o p () # must be executed to f r e e s e rvo s

Listing 2: babyWalk.py python code sequencing through the list of pair of angles for hand
and arm causing Crawler to walk along the trajectory shown in Fig. ??-left.

The new elements in Listing. ?? are discussed below.

• lines 9,10 : define the time between steps and total duration of the walk

• line 23 : show how 2nd servo can be added to the same PWM controller

• lines 26-31 : show how to initialize both servos from unknown position at cold start
w/o drawing too much current (which could cause R-Pi to reboot)

• line 34 : defines the sequence of angle pairs for one cycle of walking (shown as red
points in Fig. ??-left)

• lines 40-42 : implement simultaneous movement of both servos

3.2 Continuos pendulum-based walking

A more smooth motion can be implemented by moving both servos more frequently by a
smaller angle, as shown in Fig. ??-right. Mathematically, we want to model the amplitudes
of the angles of the hand and the arm by two harmonic oscillator functions which relative
phase will decide on the walking direction.

φarm = φ0 + φampl sin(ω ·∆t · k) (3)

θarm = θ0 + θampl sin(ω ·∆t · k + α) (4)

where ω · ∆t · k controls how both amplitudes change with time encoded as micro-steps k.
The relative phase α controls if Crawler walks forward, backward, or does not move at all.
The key element of this algorithm are shown in Listing. ??. The full code is available at the
directory ∼/markov-crawler/reflexAgentSimple.

12

1 arm hand phase=80 #deg
2 walkTime=10. # (sec) , t o t a l durat ion o f walking
3 stepDelay=0.05 # (seconds) , between micro−s t ep s
4 rotat ion omega=250 # deg/ second
5

6 # de f i n e mean ang le and amplitude o f o s c i l l a t i o n s , un i t s : deg
7 arm phi0=−10
8 arm ampl=30
9 hand phi0=−100

10 hand ampl=50
11

12
13

14 pr in t ”Arm and Hand ready , s t a r t walking ”
15 whi le walkTime >0 :
16 x=rotat ion omega ∗walkTime
17 xHand=math . rad ians (x+arm hand phase)
18 xArm=math . rad ians (x)
19 hand phi= hand phi0+math . s i n (xHand) ∗hand ampl
20 arm phi= arm phi0+math . s i n (xArm) ∗hand ampl
21 arm . setAngleDeg (arm phi)
22 hand . setAngleDeg (hand phi−arm phi) # no hand ang le i s vs . body
23 time . s l e e p (stepDelay)
24 walkTime=walkTime − stepDelay
25

26 hand . f u l l S t o p () # must be executed to f r e e s e rvo s

Listing 3: Excerpts from smoothWalk.py python code implementing two correlated
harmonic oscillator functions to encode more flexible and more smooth motion. The
forward/backward direction is controlled by the relative hand-arm phase.

13

3.3 State Machine-based walking encoding, SC-188 approach

reflexMain.py is the discretized state-machine based interface to the Markov Crawler . It
includes GUI allowing for execution of individual steps as well as of a pre-defined policy. The
animation of the computed Crawler pose and readout of its measured position are displayed
as well.

3.3.1 Defining physical dimensions of Markov Crawler

Before we launch the reflexMain.py we need to verify the dimensions of the physical Crawler
you have build and the name of all configuration files are correct. Those are all config files
required by reflexMain.py .

$ ls ~/markov-crawler/setup

arm.servo.conf generic.servo.conf mouse.conf walkForward.conf

crawler5.conf hand.servo.conf walkBackward.conf

Please open in an editor the crawler5.conf master configuration file (shown in Listing. ??)
and verify the values are correct for the Crawler you have assembled. Refer to Fig. ?? for
meaning of Crawler dimensions.

1 g l oba l c rawle rConf ig
2 c rawle rConf ig={}
3 c rawle rConf ig [’name ’]=” crawle r5 ”
4 c rawle rConf ig [’ setupPath ’]=” . . / setup /”
5

6 c rawle rConf ig [’ bodyLenght ’]=160 # uni t (mm)
7 c rawle rConf ig [’ bodyHeight ’]=73 # uni t (mm)
8

9 c rawle rConf ig [’ handLength ’]=77 # uni t (mm)
10 c rawle rConf ig [’ handHighAngle ’]=math . rad ians (−40) # uni t (deg)
11 c rawle rConf ig [’ handLowAngle ’]=math . rad ians (−140) # uni t (deg)
12 c rawle rConf ig [’ handNbucket ’]=5 # uni t (s t a t e count)
13 c rawle rConf ig [’ handServoConfig ’]=”hand . se rvo . conf ”
14

15 c rawle rConf ig [’ armLength ’]=90 # uni t (mm)
16 c rawle rConf ig [’ armHighAngle ’]=math . rad ians (3 9 . 1) # uni t (deg)
17 c rawle rConf ig [’ armLowAngle ’]=math . rad ians (−30) # uni t (deg)
18 c rawle rConf ig [’ armNbucket ’]=5 # uni t (s t a t e count)
19 c rawle rConf ig [’ armServoConfig ’]=”arm . servo . conf ”
20

21 c rawle rConf ig [’ mouseConfig ’]= ’mouse . conf ’
22 c rawle rConf ig [’ r e f l exForwPo l i cy ’]= ’ walkForward . conf ’
23 c rawle rConf ig [’ r e f l exBackwPol i cy ’]= ’walkBackward . conf ’
24

25 c rawle rConf ig [’ canvasLenght ’]=900 # uni t p i x e l s on the s c r e en
26

27 # needed only f o r q−l e a rn i ng
28 c rawle rConf ig [’ l earnDelay ’]=0.4 # add i t i o na l de lay when l e a rn i ng

Listing 4: The master configuration crawler5.conf describes dimensions of the physical
Crawler and location of various calibration pickles.

14

Figure 6: Measurement of Crawler dimensions should be done as indicated on this figure.

15

4 Calibration of mini-mouse

The reflex agents you executed so far did not relay on any feedback about Crawler movement.
But Markov Decision Process needs to know it to generate rewards based the learning process.
Therefore, we need to calibrate mini-mouse attached to the bottom of the Markov Crawler .

The software assumes the mini-mouse is attached to the port /dev/input/mouse0. To
be 100% this is the case

1. unplug (all) USB mouse(s) from R-Pi

2. execute command below, you should see this answer

$ ll /dev/input/mouse0

ls: cannot access /dev/input/mouse0: No such file or directory

3. plug-in mini USB mouse

4. execute ’ls -l’ again. Now you should see ’mouse0’ and the current date

$ ll /dev/input/mouse0

crw-rw---T 1 root input 13, 32 Oct 11 19:01 /dev/input/mouse0

Now your mouse is visible by the R-Pi , we can calibrate its response. Each time the mouse
moves we can ask it how far it moved - mouse will return an integer proportional to the
traveled distance. We need to find a scale factor to convert this integer to mm. A simple
program mouseCalibMain.py will help to find this constant.

First you need to prepare a setup: tape a sheet of paper to the table and draw 3 parallel
lines, spaced by 10 cm. Place Markov Crawler with its foot on the middle line. Next, execute
the calibration program (you do not need gksu). The calibration factor should be close to
0.020, so start with this value. Move Crawler forth and back by 10cm and observe if the
reported traveled distance is about 100mm, as shown below. Once it does press ’s’ to save
the calibration. or press ’q’ to quit and start over with a slightly different constant.

$ cd ~/markov-crawler/mouseUtil

$./mouseCalibMain.py -c 0.020

mouse dev=/dev/input/mouse0 scaleFactor=0.020000

press: ENTER for distance or, s (save pickel) , q (quite w/o saving):

mouse distance(mm) step=100.7

mouse distance(mm) step=100.9

mouse distance(mm) step=-102.9

mouse distance(mm) step=-93.8

mouse distance(mm) step=103.6

mouse distance(mm) step=99.8

press: s

saved pickel: ../setup/mouse.conf

After this process you should see newly created mouse calibration file:

$ ls -l ../setup1/mouse1.conf

-rw-r--r-- 1 pi pi 75 Oct 11 21:40 ../setup1/mouse.conf

16

5 State Machine based reflex agent

At this point Markov Crawler is fully calibrated. Make sure the following setup files exist

$ ls ~/markov-crawler/setup/

arm.servo.conf mouse.conf walkForward.conf

crawler5.conf hand.servo.conf walkBackward.conf

17

A Fresh copy of code from Bitbucket Git

If the /home/pi/markov-crawler/ directory does not exist (or was erased by ac-
cident) you can always pull a fresh copy from the Bitbucket Git repository by
executing this command after you ssh to R-Pi :

$ cd

$ rm -rf markov-crawler

$ git clone https://balewski@bitbucket.org/balewski/markov-crawler

Cloning into ’markov-crawler’...

remote: Counting objects: 3, done.

.....

Unpacking objects: 100% (3/3), done.

B Full list of options for provided programs

B.1 servoCalibMain.py

$ cd ~/markov-crawler/servosUtil/

./servoCalibMain.py -h

Usage: servoCalibMain.py [options]

Options:

-h, --help show this help message and exit

-m, --mockServos disable servos

-v, --verbose print aux info

-n NAME, --name=NAME servo setup (pickle) name

-s SETUP, --setupPath=SETUP hardware configuration location

B.2 mouseCalibMain.py

$ cd ~/markov-crawler/mouseUtil/

pi@raspberry2 ~/markov-crawler/mouseUtil $./mouseCalibMain.py -h

Usage: mouseCalibMain.py [options]

Options:

-h, --help show this help message and exit

-m MOUSE_DEV, --mouseDevice=MOUSE_DEV mouse device

-c PIX2MM, --conversionFactor=PIX2MM pixel to mm conversion factor

-n NAME, --name=NAME mouse setup (pickle) name

-s SETUP, --setupPath=SETUP hardware configuration location

18

