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Detecting Singularities of Stewart Platforms

T. Charters ∗ R. Enguiça † P. Freitas ‡

Abstract. A Stewart platform, also known as a hexapod positioner, is a

parallel manipulator using an octahedral assembly of struts. There are six

independently actuated legs, whose lengths determine the position and orien-

tation of the platform. These devices may display instabilities associated with

architectural singularities and the purpose of the present study is to propose

an approach for their detection. The main point is the formulation of the di-

rect problem (given the leg lengths, find the position and orientation, velocity

and acceleration of the platform) in an appropriate coordinate system based

on quaternions.

Keywords. Stewart platform, parallel manipulator, quaternions, di-

rect and inverse problems, architectural singularities

1 Introduction

The purpose of this study is to present methods allowing for the detection of singularities in a

Stewart platform. These are points where the platform becomes uncontrollable, that is, for which

its position will not be determined uniquely by fixing the lengths of the legs. To have an idea of

what may happen, consider the simple situation where both the top and bottom platforms are two

identical regular hexagons placed one on top of the other. Then the system has an extra degree

of freedom and whatever the lengths of the six legs the platform will slide and collapse. In such

a situation, we say that the architecture is singular – see [4], for instance. This is a well-known

problem for systems of this type, and one of our aims is to provide efficient methods and tools to

test the safety of a given platform.

In order to avoid this type of singularity, it is usual to consider a modified pair of hexagons

such as that shown in Figure 1, where now the top platform is a rescaled and rotated copy of the
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Detecting singularities of Stewart platforms

bottom platform. Throughout this report we shall make this assumption, but other configurations

may be studied using similar methods.

Although in this more general configuration the existence of singularities will not be as obvious

as in the case exemplified above with two identical hexagons, they may still exist and part of the

problems arising when designing a Stewart platform and its controller will be to ensure that these

points lie outside the working area. If not, in spite of the fact that finding such a trajectory might

be highly unlikely or even impossible, its existence will still affect the behaviour of the platform.

Above all, it will not be possible to rule out completely a collapse due to sliding along such a path.

Before proceeding, let us make the following further assumptions:

A1. The control of the platform is done via the control of the lengths of the six legs.

A2. The joints are universal joints.

A3. The order of magnitude of the errors in the determination of the lengths of the six legs and

in the joints may be considered to be negligible.

Having in mind the above assumptions, which basically allow us to rule out mechanical problems

caused by insufficient precision in the components involved, we formulate the following working

hypothesis which will dominate most of our study:

(H) A Stewart platform may only become uncontrollable if there exists a continuum of positions

of the top platform corresponding to the same (fixed) values of the leg lengths.

We begin by considering the inverse and direct problems (Sections 2 and 3, respectively) and

develop an approach based on an alternative formulation for the latter using quaternions (Sec-

tion 3.2). In the last section we present some conclusions and suggestions which we believe to be

important when working with this type of platforms. Finally we include a short appendix with a

derivation of the dynamical equations in terms of quaternions.

2 The Inverse Problem: Lengths as a Function of Position

The Stewart platform considered has six degrees of freedom – see for instance, [2], p.279. We will

first use the (standard) variables x, y, z, pitch, roll and yaw, where x, y and z are the coordinates

of the centre of the top platform, and pitch, roll and yaw denote the Euler angles defining the

inclination of this platform with respect to the bottom platform. As we will see, in order to study

certain singular configurations, these variables are not always the best choice, and we will use a

different approach in Section 3.2.

We take for the origin of our referential the centre of the circle that passes by all 6 points of the

bottom platform. Assuming the radius of this circle to be one, the coordinates of the six points

where the legs are supported are thus
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Figure 1: The Stewart platform.
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Since the bottom and top platforms are related by a yaw rotation of π and a 2/3 rescaling

factor, we can use the matrix R defined by
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to find the six points of the top platform. The variables x, y, z represent the centre of the top

platform and ψ, θ, φ the three Euler angles roll, pitch and yaw. Since a translation of the centre of

the platform is not a linear application, in order to still be able to represent this transformation

by a matrix we must consider a 4 × 4 matrix (a point (x0, y0, z0) of R
3 will be represented by

(x0, y0, z0, 1)).

To compute the leg lengths, we just have to compute the norms of the vectors L1 = R(B4)−B1,

L2 = R(B5) − B2, L3 = R(B6) − B3, L4 = R(B1) − B4, L5 = R(B2) − B5, L6 = R(B3) − B6.

Letting Li, i = 1, · · · , 6 be those norms, we have the following explicit formulae:
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,
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3 The Direct Problem: Position as a Function of the Six Lengths

This is a much more complex problem, as it involves inverting the expressions above in order

to obtain x, y, z, ψ, θ and φ as functions of the leg lengths Li, i = 1, ..., 6. Not only will this be

much more demanding from a computational point of view, but in general we cannot expect these

functions to be determined uniquely. More precisely, for a given set of leg lengths we will, in general,

have more than one possible configuration of the platform.

3.1 The Jacobian

Let us consider the vector function L : R
6 → R

6 with L(x, y, z, ψ, θ, φ) ≡ (L1, L2, L3, L4, L5, L6).

By computing the zeros of the Jacobian determinant of L, J(L), we can find the points where L is

not necessarily locally invertible, that is, the points of R
6 where variations of L1, L2, L3, L4, L5, L6

can lead to more than one position of the top platform. Using the software Mathematica we were

able to obtain an expression for J . However, this was too complex to be used analytically. In the

case of some specific configurations it is still possible to determine several zeros of J and therefore

possible problematic points.

69



Charters, Enguica, and Freitas

3.2 Alternative Formulation Based on Quaternions

The formalism used in Sections 2 and 3.1 for the description of the relation between the leg lengths

and the position of the platform makes it difficult to draw conclusions about the existence of the

uncontrollable behaviour which has been observed. In order to study its existence we shall use unit

quaternions to parameterise spatial rotations in three dimensions instead. In the following analysis

we follow [5, 6].

Spatial rotations in three dimensions can be parameterised using both Euler angles (φ, θ, ψ)

and unit quaternions q = (q0, q1, q2, q3), ||q|| = 1. A unit quaternion may be described as a vector

q in R
4 such that

q = (q0, q2, q2, q3),

qTq = q20 + q21 + q22 + q23 = 1.

The Euler angles are related to the unit quaternions by

φ = arctan

(

2(q0q1 + q2q3)

1 − 2(q2
1

+ q2
2
)

)

,

θ = arcsin (2(q0q2 − q3q1)) ,

ψ = arctan

(

2(q0q3 + q1q2)

1 − 2(q2
2

+ q2
3
)

)

,

while the rotation matrix is given by

R =









2q20 − 1 + 2q21 2q1q2 − 2q0q3 2q0q2 + 2q1q3

2q1q2 + 2q0q3 2q20 − 1 + 2q22 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q0q1 + 2q2q3 2q20 − 1 + 2q23









.

Consider the Stewart platform shown in Figure 1, where the two coordinate systems O and O′

are fixed to the base and the mobile platforms. The platform geometry can be described by vectors

Li, i = 1, 2, . . . , 6, defined by Li = Ti − Bi, i = 1, 2, . . . , 6, where Bi and Ti are the base and top

vertex coordinates, respectively. We assume that these points are related by

Ti = µABi, i = 1, 2, . . . , 6,

where A is a 3 × 3 orthogonal matrix and µ ∈ (0, 1) is the rescaling factor. The coordinates of the

base vertices are given by

Bi = (xi, yi, 0), i = 1, 2, . . . , 6.

Given the position P = (x, y, z) and the transformation matrix R between the two coordinate

systems, the leg vectors may be written as

Li = RTi − Bi + P

= (µRA− I)Bi + P, i = 1, 2, . . . , 6.
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So the length for each i-leg is given by

L T
i Li = ((µRA− I)Bi + P)T ((µRA− I)Bi + P) (1)

Given q, A and P the leg lengths are given by

Li =

√

((µRA− I)Bi + P)T ((µRA− I)Bi + P). (2)

3.2.1 Closed Form Solutions

In the forward kinematics the six leg lengths Li, i = 1, 2, . . . , 6, are given, while R and P are

unknown. Let ex = (1, 0, 0), ey = (0, 1, 0), ez = (0, 0, 1) and expand (1) to get

L2
i = PTP + B T

i

(

(µ(RA)T − I)(µRA− I)
)

Bi

+ 2B T
i (µ(RA)T − I)P, (3)

or

L2
i = PTP + 2xi

(

ex
T (µ(RA)TP − P)

)

+ 2yi

(

ey
T (µ(RA)TP − P)

)

− 2µ
[

x2
i (ex

TRAex) + xiyi(ex
TRAey + ey

TRAex)

+y2
i (µey

TRAey)
]

+ (1 + µ2)(x2
i + y2

i ). (4)

Define now w = (w1, w2, w3, w4, w5, w6) as

w1 = PTP (5)

w2 = 2µex
T ((RA)TP − P) (6)

w3 = 2µey
T ((RA)TP − P) (7)

w4 = −2µex
TRAex (8)

w5 = −2µ
(

ex
TRAey + ey

TRAex

)

(9)

w6 = −2µey
TRAey. (10)

and d = (d1, d2, d3, d4, d5, d6).

di = L2
i − (1 + µ2)(x2

i + y2
i ), i = 1, 2, . . . , 6. (11)

Then relation (4) can be written as a linear system with the form

Qw = d, (12)

where the matrix Q is given by

Q =























1 x1 y1 x2
1 x1y1 y2

1

1 x2 y2 x2
2 x2y2 y2

2

1 x3 y3 x2
3 x3y3 y2

3

1 x4 y4 x2
4 x4y4 y2

4

1 x5 y5 x2
5 x5y5 y2

5

1 x6 y6 x2
6 x6y6 y2

6























.
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Note that if the base vertices are in a circle x2
i + y2

i = r for some r, then detQ = 0.

In the next sections we will show that one can obtain the rotation matrix R and the position

P in terms of the solution w = (w1, w2, . . . , w6) of the linear system given by (12). The solution

to the forward kinematics problem naturally divides into two cases, namely, a non-singular case

where detQ 6= 0 and a singular case where detQ = 0.

In the singular case, we obtain for a given set of length legs L1, . . . , L6, a singular solution

parameterised by a scalar parameter. These solutions describe a curve in the position and rotation

spaces in which the platform moves without changing the values of the leg lengths.

3.2.2 Non-Singular Case

In the case where the six base vertices are not on a quadratic curve, one gets detQ 6= 0, and so the

solution of (12), w = (w1, w2, w3, w4, w5, w6), may be obtained from

w = Q−1d.

Equations (5), (6) and (7) determine the position P = (x, y, z), while equations (8), (9) and (10)

give us the rotation parameters, namely, q.

To determine the rotation parameters consider the equations

w4 = −2µ
(

2q1
2 + 2q0

2 − 1
)

(13)

w5 = −8µq1q2 (14)

w6 = −2µ
(

2q2
2 + 2q0

2 − 1
)

, (15)

which are obtained from (8), (9) and (10), respectively. Eliminating q0, one gets

q1
2 − q2

2 = −(w4 − w6)/(4µ)

q1q2 = −w5/(8µ).

Let

α =
w4 − w6

4µ
, β = −

w5

8µ
.

Then the above equations can be written as

q41 + αq21 − β2 = 0

q42 − αq22 − β2 = 0.

Thus

q21 =
−α+ γ

2
(16)
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and

q22 =
α+ γ

2
, (17)

where

γ =
√

α2 + 4β2. (18)

Substituting q1 and q2 in the first equation in (13) and taking into account that qTq = 1 yields

q20 =
1

2
−
w4

4µ
+
α− γ

2
, (19)

q23 =
1

2
+
w4

4µ
−
α+ γ

2
. (20)

Provided that equations (16) to (20) have two solutions each, this would give a total of eight

different quaternions.

To determine the position, consider the equations

uT = 2µex
T ((RA)T − I),

vT = 2µey
T ((RA)T − I).

Thus

PTP = w1, (21)

uTP = w2, (22)

vTP = w3. (23)

Clearly (22) and (23) represent two planes whose intersection is the line given by

P = r0 + tr1, (24)

where t is a real parameter and the vectors r0 and r1 are given by

r0 =
(vTv)w2 − (uTv)w3

(uTu)(vTv) − (uTv)2
u −

−(uTv)w2 + (uTu)w3

(uTu)(vTv) − (uTv)2
v,

r1 =
u × v

||u × v||
.

This line intersects the sphere given by equation (21) at two points

P± = r0 ± t∗r1,

where

t∗ =
√

w1 − rT
0
r0.

Note that in order for P± to exist one must have

w1 ≥ rT
0 r0. (25)

In this way we have determined both R and P, there being a total of eight possible different

solutions for a given set of leg lengths.
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3.2.3 Singular Case

In this case we assume that all points belong to a circle x2
i + y2

i = 1, i = 1, 2, . . . , 6. Without loss

of generality we shall take r to be one. In this case the matrix

Q =























1 x1 y1 x2
1 x1y1 1 − x2

1

1 x2 y2 x2
2 x2y2 1 − x2

2

1 x3 y3 x2
3 x3y3 1 − x2

3

1 x4 y4 x2
4 x4y4 1 − x2

4

1 x5 y5 x2
5 x5y5 1 − x2

5

1 x6 y6 x2
6 x6y6 1 − x2

6























(26)

is singular, that is, detQ = 0 and in fact, except for highly degenerate cases, the rank of Q is five.

This will be the case if x2
i + y2

i = 1, i = 1, 2, . . . , 6, and (xi, yi) 6= (xj , yj) for i 6= j, i, j = 1, 2, . . . , 6,

corresponding to the Braikenridge-Maclaurin construction [1].

This fact enables us to explicitly compute the LU factorisation of the matrix Q in terms of the

coordinates of the vertices of the base (xi, yi), i = 1, 2, . . . , 6. The linear system Qw = d may thus

be written in the form

Uw = L−1d, (27)

where detL = 1 and U is a rank 5 matrix. The solution of (27) is given in terms of a solution

(w1, w2, w3, w4, w5) depending on the value of w6, which we take to be a free parameter. So the

expressions given by (16), (17), (19) and (20) can be used to determine the values of the quaternion

q, the rotation matrix, and the point P as a function of the free parameter w6. Note that existence

of these solutions also depends on the inequality given by (25).

To illustrate the method, we shall now present an example in which we compute a solution of

this type explicitly for a given set of leg lengths.

3.2.4 An Example

Consider the platform given in Figure 1 and assume µ = 2/3. The base vertices coordinates are

given by

Bi = (xi, yi, 0) = (cos θi, sin θi, 0), i = 1, 2, . . . , 6 (28)

where θ is given by

θ =
(

0.262, 1.8326, 2.3562, 3.927, 4.4506, 6.0214
)

. (29)

Assume that

A =









−1 0 0

0 −1 0

0 0 1









.
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Substituting (28) in (26) yields

Q = LU =























1.0 0.966 0.259 0.933 0.25 0.067

1.0 −0.259 0.966 0.067 −0.25 0.933

1.0 −0.707 0.707 0.5 −0.5 0.5

1.0 −0.707 −0.707 0.5 0.5 0.5

1.0 −0.259 −0.966 0.067 0.25 0.933

1.0 0.966 −0.259 0.933 −0.25 0.067























,

and one gets

L =























1 0 0 0 0 0

1.0 1 0 0 0 0

1.0 1.366 1 0 0 0

1.0 1.366 3.7321 1 0 0

1.0 1.0 3.7321 1.366 1 0

1.0 0.0 1.0 0.366 1.0 1























,

U =























1.0 0.966 0.259 0.933 0.25 0.067

0 −1.2247 0.707 −0.866 −0.5 0.866

0 0 −0.518 0.75 −0.067 −0.75

0 0 0 −2.049 1.183 2.049

0 0 0 0 −0.866 0

0 0 0 0 0 0























;

with (L1, L2, L3, L4, L5, L6) = (0.870, 0.820, 0.820, 0.840, 0.850, 0.889), one gets,

L−1d =























−0.688

−0.0845

0.0474

−0.113

0.0273

0























.

The quaternions are obtained in terms of w6 by

q̄20 = 0.485 − 0.375w6,

q̄21 = 0.00124,

q̄22 = 0.0288,

q̄23 = 0.485 + 0.375w6.
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This implies that |w6| ≤ 1.2933. In Figures 2 and 3 we show the values of the quaternion

solution (q̄0, q̄1, q̄2, q̄3) and of t∗, and the values of P+ as a function of w6, respectively. From Figure

3 we see that the solution where the values of the quaternion q and position P varies continuously

with w6 depends on t∗.

6

*
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Figure 2: The positive quaternion solution (q̄0, q̄1, q̄2, q̄3)

as a function of w6, for the fixed set

of leg lengths (L1, L2, L3, L4, L5, L6) =

(0.870, 0.820, 0.820, 0.840, 0.850, 0.889).
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Figure 3: The position solution P+ = (x, y, z) as a function

of w6.
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4 Conclusions and Recommendations

This study supports the hypothesis that the collapse of this type of platforms is caused by the

existence of a continuum of solutions. However, the existence of such a class of solutions as described

in Section 3 depends drastically on the geometry of the base and top platforms. Thus, given a

particular configuration, a more thorough study needs to be performed and, in particular, the

specific characteristics of the platform need to be taken into account as described below.

The reasons for this shape dependence are related to the fact that although the singularity of

the determinant described in Section 3.2.3 depends only on the geometry of the base plate, the

existence of one-parameter families of solutions with fixed leg lengths will depend on the specific

geometry of the top plate.

If the top platform under consideration is not obtained by a simple rescaling and rotation of the

bottom platform, further tests are needed to determine whether or not a continuum of solutions

will exist in that case (this may be achieved by means of a projective transformation taking a circle

into a conic section, thus, extending the results already obtained in this report). However, the fact

that we were able to find these for a wide class of top platforms and with leg-lengths within the

working area, leads us to believe that hypothesis (H) holds.

Furthermore, this would also explain why it might be difficult or even impossible to bring a

platform back into the working area once it collapses, without dismantling it. This is an effect

known to have happenned in practice and the main point is that it would be almost impossible

to find such a trajectory by trial and error alone. Besides, the momentum that the system would

gather once there is one extra degree of freedom might also be sufficient to force the platform past

what might be called a bridge, that is, it might allow it to jump from one continuum to another –

it is not clear either if or when this may happen, as it depends on several other considerations.

This hypothesis also explains another anomaly which is sometimes found during the testing of

Stewart platforms, namely, the fact that a platform may be found to be in a different position from

that which was predicted by the controlling software. Due to the dynamics of the platform, passing

close to a singular point in a continuum might not be sufficient to allow the platform to collapse,

as the speed will not, in general, be tangent to the continuum – to our knowledge, actual collapses

have been observed mainly while platforms are at rest. This effect might, however, be sufficient to

deflect the trajectory – more precisely, to affect the component of the velocity along the direction

of the continuum – thus changing the final position of the platform. As a first step towards the

study of the dynamics, see the Appendix where the derivation of the equations of motion for the

platform is given in terms of quaternions.

A summary of our recommendations is the following:

1. One basic conclusion is that due to the complexity of the problem the formulation used is of

fundamental importance; at this level, and besides using the matrix R in the formulation of the

inverse problem, we strongly recommend the usage of the formulation based on quaternions
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which was presented on Section 3.2

2. For each specific platform, a study similar to that presented in Section 3.2.3 should be carried out

to ascertain the existence of continua of solutions in that case. This mainly implies adapting

the computations in that section to take the specific shape and dimensions into consideration.

3. Carry out extensive tests to ascertain whether there exist mismatches between the actual position

of the platform and the position predicted by the software, even under reduced maximum

leg-length. If our hypothesis are correct, this provides an indirect way of detecting whether

there might still exist continua under the reduced working regime.

4. Implement a feedback mechanism for the position, in order to ensure that the software is in

tune with the actual position of the platform. This would also help ensure that the software

is well adapted to the platform.

At another level, it is clear that an important step in the future of any such project will be the

design of trajectories with specific predefined characteristics. This will be a major effort and will

require the introduction of new techniques.
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Appendix: Dynamical Behaviour

In order to establish the equations determining the motion of the platform, (see for instance [7])

one should also consider the formulation in terms of quaternions. This will provide a strong math-

ematical basis for future developments.

Consider the expression for the leg lengths position (1) and lengths given by (2) and define the

vector ni = Li/Li, for i = 1, 2, . . . , 6. The velocity of the point Li is obtained by differentiating (1)

with respect to time to obtain

L̇i = Ṗ + ω × R̃ · Bi, i = 1, 2, . . . , 6, (30)

where ω is the angular velocity vector and R̃ = µRA. Then

L̇i = Li · ni = Ṗ · ni + ω ·
(

R̃Bi

)

× ni, i = 1, 2, . . . , 6. (31)

In matrix form the system (31) takes the form

l̇ = J−1

[

Ṗ

ω

]

, (32)

where J is the Jacobian matrix of the form

J−1 =













nT
1

(

R̃B1 × n1

)T

...
...

nT
6

(

R̃B6 × n1

)T













. (33)

The angular velocity ω is related to the quaternion q by the transformation
[

0

ω

]

= 2QT (q)q̇, (34)

where

Q(q) =













q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 10













. (35)

Plugging (34) into (32) one gets

L̇ = J−1J−1
q

[

Ṗ

q̇

]

, (36)

where

J−1
q =

[

I3×3 03×4

04×3 2QT (q)

]

(37)
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The platform is in a singular position whenever the determinant of J̃−1 = J−1J−1
q is zero. These ze-

ros occur when detJ−1 = 0 (configuration singularities) or detJ−1
q = 0 (formulation singularities).

Configuration singularities are difficult to find analytically.

The equations of motion may be obtained by differentiating equation (36) with respect to time

yielding

L̈ = J̃−1

[

P̈

q̈

]

+
dJ̃−1

dt

[

Ṗ

q̇

]

. (38)
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