
LRC - Instructable

LRC - Instructable (version: 2014/03/03)
#
This contains the code for the instructable:
#
Incredibility Powerful Resistance Calculator by russ_hensel
#
The code computes series/parallel properties of various inductors,
resistors, and capacitors.
The worksheet can be downloaded from
Instructables, as part of a larger zip file: <url>
#
#
Intended Use:
Read and tinker around with it, you may want to copy and rename so you
still have
an original to mess with.
Version: March 3, 2014 Status: Done
Built and tested on Sage 5.1 Running under Virtual Box on Windows 7
#
Estimated Minimum Level Useful for Understanding the Worksheet
SageMath - beginner
Electronics - basic knowledge
#
Possibly useful references (Some are more advanced than the material in this
worksheet)
Some related files:

LRC - Examples
#
Authors: http://www.instructables.com/member/russ_hensel/ (contact for
comments, additions, or problems)

Explaining and Understanding the code in the next cell is not part of
the instructable, but feel free to read as you wish
for the instructable, just skip to the end of the next cell and execute it.
the next cell has a copy of the LRC code

 LRC defined

For the first calculation we will get the total resistance for a resistor
of 1 K ohms in series with one of 10 K ohms
(and yes I know if you know much electronics you can do this in your head)
print "First Calculation - Add 1K resistor to 10K resistor in series:"
print

Step 1
make a resistor which is the calculator, LRC stands for Inductance, Resistance,
Capacitance, and is # used because the calculator can do all of them.
I will use the long name “aResistor” to remind you what it stands for,
but you could use just “r”
This next line creates a "aResistor" of no value (technically with a value of None
)

Step 1
aResistor = LRC()
print "ignore the print out about frequency, this is only used in more advanced
calculations"

Step 2
we now add a new resistance to our "resistor"

aResistor.add_series_r(1000) # add a 1 k ohm resistor

this will cause a output that tells what we did

Step 3
now add the second resistance, in series with the first

aResistor.add_series_r(10000) # 10000 = 10K

this again will cause a output that tells what we did

Step 4
get the final value for the resistance (note that z is a general symbol for
resistance)

print
print "Final value of combined resistance = ", aResistor.get_z()

shows the current value for the resistance, just the sum of resistances

final comment suppresses default print at end of cell

First Calculation - Add 1K resistor to 10K resistor in series:

LRC() using internal frequency lrc_freq in Hz
ignore the print out about frequency, this is only used in more
advanced calculations
LRC.add_series_r() 1000
LRC.add_series_r() 10000

Final value of combined resistance = 11000

next cell shows same calculation without most of the comments
and prints, shows that calculations may be shorter than they
seem in my more verbose examples.

aResistor = LRC()
aResistor.add_series_r(1000)

aResistor.add_series_r(10000)
print "Final value of combined resistance = ", aResistor.get_z()
final comment suppresses default print at end of cell

LRC() using internal frequency lrc_freq in Hz
LRC.add_series_r() 1000
LRC.add_series_r() 10000
Final value of combined resistance = 11000

print "Second Calculation - Add 1K resistor to 10K resistor in parallel:"
print

make a "aResistor" which is the calculator

aResistor = LRC()

we now add a resistance to our "resistor"

aResistor.add_parallel_r(1000)

this will cause a output that tells what we did, and the current
value for the impedance = resistance

now add the second resistance, in parallel with the first

aResistor.add_parallel_r(10000)

this again will cause a output that tells what we did, and the

print
print "Final value of combined resistance = ", aResistor.get_nz()
nz in function above pushes full numeric evaluation to a decimal value

thi comment suppress end of cell default print

Second Calculation - Add 1K resistor to 10K resistor in parallel:

LRC() using internal frequency lrc_freq in Hz
LRC.add_parallel_r() 1000
LRC.add_parallel_r() 10000

Final value of combined resistance = 909.090909090909

A More Complicated Circuit
I will give the schematic in ascii characters -- not part of the calculation,
just to help you understand
lots of print statements, not necessary, just to help explain what is going on
#
print "Third Calculation - example of series and parallel resistor combination:"
print
print "Calculate resistance from x to x"
print
print " |-----------1.5K-------------|"
print " | |"
print "x---|-----------1.5K-----==------|------1.5k------- 1.5K------x"
print " | |"
print " |-----------1.5K-------------|"
print

make the resistor calculator
print "Begin..."
aResistor = LRC()
print

print "Do the parallel resistors..."

print
print " |-----------1.5K-------------|"
print " | |"
print "x---|-----------1.5K-----==------|--"
print " | |"

print " |-----------1.5K-------------|"
print

aResistor.add_parallel_r(1.5e3) # 1.5e3 is scientific notation, a shorter way of
writing 1500
aResistor.add_parallel_r(1.5e3)
aResistor.add_parallel_r(1.5e3)

print "and now the two series reisistors "
print
print " |----------1.5k----------1.5K------|"
print
print

aResistor.add_series_r(1.5e3)
aResistor.add_series_r(1.5e3)

print
done but a final step using n()
print "Final value of combined resistance = ", aResistor.get_nz()

suppress end of cell default print

Third Calculation - example of series and parallel resistor
combination:

Calculate resistance from x to x

 |-----------1.5K-------------|
 | |
x---|-----------1.5K-----==------|------1.5k------- 1.5K------x
 | |
 |-----------1.5K-------------|

Begin...
LRC() using internal frequency lrc_freq in Hz

Do the parallel resistors...

 |-----------1.5K-------------|
 | |
x---|-----------1.5K-----==------|--
 | |
 |-----------1.5K-------------|

LRC.add_parallel_r() 1500.00000000000
LRC.add_parallel_r() 1500.00000000000
LRC.add_parallel_r() 1500.00000000000
and now the two series reisistors

 |----------1.5k----------1.5K------|

LRC.add_series_r() 1500.00000000000
LRC.add_series_r() 1500.00000000000

Final value of combined resistance = 3500.00000000000

print "Without much explanation get the formula for 2 resistors in parallel"
print "the calculator can even do algebra and plotting with formulas."
print "more of that in an advanced worksheet see files attached to instructable"

when we do things symbolically we need to define our symbols

var("r1") # symbol for resistor 1
var("r2") # symbol for resistor 2
var("r3") # symbol for resistor 3 the combination

lrc = LRC()

print
lrc.add_parallel_r(r1)
lrc.add_parallel_r(r2)

print
print "final formula is: "

show(lrc.get_z()) # show is similar to print but nicer output

Without much explanation get the formula for 2 resistors in parallel
the calculator can even do algebra and plotting with formulas.
more of that in an advanced worksheet see files attached to
instructable
LRC() using internal frequency lrc_freq in Hz

LRC.add_parallel_r() r1
LRC.add_parallel_r() r2

final formula is:

print "Repeat and extend symbolic calculation -- solve for r sub 1"
print "Again without much explanation get the formula for 2 resistors in parallel"
print

when we do things symbolically we need to define our symbols

var("r1") # symbol for resistor 1
var("r2") # symbol for resistor 2
var("r3") # symbol for resistor 3 the combination

lrc = LRC()

lrc.add_parallel_r(r1)
lrc.add_parallel_r(r2)

print
print "so the two in parllel are: ", lrc.get_z()
print

1
1
r1
+ 1
r2

print "Now do some algebra and turn the calculation into an equation for r3"
print "then solves for r1 in terms of r3 and r2"

I am not explaining this, but it is just SageMath, look in web references

equation = (r3 == lrc.get_z())
print equation

print
print "solving..."
solution = equation.solve(r1)
print(solution) # show(solution) gives nicer output, try it

Repeat and extend symbolic calculation -- solve for r sub 1
Again without much explanation get the formula for 2 resistors in
parallel

LRC() using internal frequency lrc_freq in Hz
LRC.add_parallel_r() r1
LRC.add_parallel_r() r2

so the two in parllel are: 1/(1/r1 + 1/r2)

Now do some algebra and turn the calculation into an equation for r3
then solves for r1 in terms of r3 and r2
r3 == (1/(1/r1 + 1/r2))

solving...
[
r1 == r2*r3/(r2 - r3)
]

