
An instructional manual for

A cardboard illustrative aid
to computation

David Hagelbarger

Saul Fingerman
Bell Telephone Laboratories

CARDIAC

An instructional manual for

A cardboard illustrative aid
to computation

by David Hagelbarger

Saul Fingerman
Bell Telephone Laboratories

Cartoon illustrations by A. Barthelson

Bell System Educational Aid

Developed by Bell Telephone Laboratories

Copyright © 1968 Bell Telephone Laboratories, Incorporated

All rights reserved. Permission to
reproduce any material contained in
this book must be obtained, in writing,
from the publisher.

Third Printing, April 1970

Table of Contents

Preface vii

SECTION 1. What CARDIAC Is -- And Isn't 1

SECTION 2. Basic Units of a Simple Computer 2
Computing - Input - Memory - The accumulator - The program -
Output

SECTION 3. Communicating with Computers 4
New meanings for read and print - The language of machines-
Pulses - One's and zero's - Input and output devices

SECTION 4. FlowCharts 7
For addition - For changing a flat tire - Action diagrams

SECTION 5. Instructions, Data, and Addresses 10
Operational codes - Addresses in the memory - Instruction words
and data words are look-alikes - Stored-program computers

SECTION 6. Converting Simco to the Stored-Program Mode 12
The instruction register - The program counter - The control unit
- How the computer tells instruction words from data words

SECTION 7. Introducing CARDlAC 16
You are the power supply - Input - Output - Memory - Ferrite
cores - Accumulator - Overflow - Program counter - Instruction
register - The accumulator-test window - The instruction-decoder
winduw - Sequencing - Control

SECTION 8. The First Program 20
Speed - Directions for loading - More on Op codes - Where should
programs begin

SECTION 9. Loops 22
Program for counting - More efficient program for counting - The
unconditional jump - Op code 8

v

SECTION 10. Getting Out of Loops 26
The conditional transfer - Op code 3 - Change of sign in the ac-
cumulator - Program for rocket-launching countdown - Condi-
tional vs. unconditional transfers

SECTION 11. Multiplication 29
Expensive multiplication vs. economical multiplication - Loop
with an index - Program for single-digit multiplication

SECTION 12. Shifting Digits 31
The magic nines trick - Op code 4, the shift instruction - How to
shift digits in the accumulator - Program for reversing the order
of a number "abc"

SECTION 13. Bootstraps and Loading Programs 33
Organizing a new computer's registers - Bootstrapping - Bootstrap
routine for CARDIAC - Loading programs explained - Loading
program for CARDIAC

SECTION 14. Subroutines 35
What they are - Calling sequences - Double precision - Double-
precision subrouting for CARDIAC

SECTION 15. Developing Programs 38
Algorithms - Developing a program for Single-Pile Nim - Rules
of Single-Pile Nim - Strategy and game analysis - Table look-up
programs - Improving the game - Macro and micro flow charts

SECTION 16. Programs for Writing Programs 49
Assemblers - Compilers
Selected General Bibliography on Computers 52

vi

Preface

You may be surprised that CARDIAC, which is about computers, has
been developed and made available by the Bell System. It is true that
the Bell System's relationship with computers is not obvious but
nevertheless it is very substantial.

To begin with, the Bell System is the nation's largest user of
computers (with the exception of the federal government). Hundreds of
computers are used for billing, record keeping and other internal
operations. The Bell System also offers a number of services for
interconnecting computers, or connecting with them.

In addition, the entire Bell System telephone network has often been
compared to a gigantic computer: Digital information in the form of a
called number is pulsed into a central office, switching equipment
possessing computer-like features then solves the problem of
establishing a connection between the called and calling telephones.

Out of the research and development that made this network
possible, has blossomed much of the basic technology of modern
computers.

But it is at Bell Telephone Laboratories—the research and
development unit of the Bell System—that the System's most extensive
involvement with computers is to be found.

The first electrical digital computers were conceived at Bell
Laboratories (as well as at Harvard University, in an entirely
independent effort), shortly before World War II. The inventor was
George Stibitz, who later went on to develop several other computers
that remained in productive service throughout the war. These were all
relay machines—primitive by comparison to the incredibly efficient
electronic computers that have become so much a part of contemporary
life.

What made efficiency possible was the transistor. Invented at Bell
Laboratories, the transistor not only cut size and power requirements,
but also provided the speed and reliability that makes it possible for
computers to perform millions of operations without errors.

Within a decade of its inception, the transistor was proved out with
TRADIC, an airborne computer built by Bell Laboratories for the
military. Since then, direct descendants of TRADIC have

vii

played essential roles in other military programs, such as the SAGE
communications network and the very complex Nike Zeus and Nike-X
antiballistic-missile projects.

The computer is playing an increasingly important part in all areas of
research at Bell Laboratories. Today, about 30 per cent of the technical
personnel there spend more than half their time programming computers.

Currently, a Bell Laboratories task force is developing BIS (Business
Information System) to supply Bell System management with the kind of
up-to-the-minute information needed to reduce operating costs and provide
better customer service. BIS will use new third generation computers—
high-speed, on-line, real-time random-access machines with mass
information storage and retrieval capabilities.

It is no exaggeration to say the story of Bell Laboratories and computers
is a significant one. Information theory, error detection and correction
codes, electronic switching, programs for visual computer displays such as
BEFLIX, as well as for design, simulation and modeling—these and many
others are only highlights in the long story. And as a by-product of this
story, CARDIAC was developed, which we hope will help you to
understand computers.

G.I.R

viii

1

SECTION

WHAT CARDIAC IS
... AND ISN'T

CARDIAC is an acronym for CARDboard Illustrative Aid to Computation. The key word
here is "illustrative." It means that CARDIAC illustrates the operation of a computer
without actually being a computer. In fact, it is not even a practical aid to computing. On
the other hand, it is a very practical aid to understanding computers and computer
programming.

You'll need this kind of understanding to keep up with the Computer Age you are about
to enter. These are fast-moving times, and those who make no effort to understand
computers may very well get left behind.

2

SECTION

BASIC UNITS OF
A SIMPLE COMPUTER

Before we get into computers or CARDIAC, it might be a good idea to see
what's actually involved in computing. Most of us can compute without too
much trouble. In fact, we're so good at it, we add, subtract, multiply, and
divide without giving any thought to the mechanics of what we're doing.
But, to understand computers, we'll temporarily have to discard these
automatic skills and take a closer, step-by-step look at what we do.

Let's go back several years to one of your earliest arithmetic classes.
The teacher has just called you to the blackboard to solve a problem: Add
147 to 332.

After clearing your mind of everything but your newly learned
procedures for addition, you write the two numbers on the board. You write
them in column form, as you have been taught to do — one below the
other. Then, you draw a line beneath them and begin adding the right-hand
column. "Seven plus two equal nine," you say, and dutifully write a nine
below the line. "Four plus three equal seven," and you write a seven below
the line. "One plus three equal four," and you write that down, too. Are you
finished? Not quite. You know the teacher is waiting to hear the results so
you loudly call out, "The answer is 479." Now, you're finished.

Simple Computer Block Diagram
Let's see exactly what you did to get that answer. At the same time, we'll
begin diagramming a simple computer that can do the same things.

Input
First of all, you listened. As soon as the teacher called your name, you
began taking mental notes of everything she said, paying particular
attention to three words: The words were "add" (an instruction),
"147" (data), and "332" (data). Our computer will also need a similar input
device to receive instructions and data.

3

Memory
After receiving the data, you need something convenient in which to store, or
remember it, so you wrote the numbers on the blackboard. Our computer will also
need a memory.

Accumulator
Next, you proceeded to add the two data numbers column by column, writing the
partial results as you went, until the final sum had accumulated below the line. In
short, you carried out the necessary arithmetic operations. Our computer must also
have an arithmetic unit. Since the results of every arithmetic operation will
accumulate within this unit, we'll call it an accumulator.

Program
Recall now, that when you stored your data in the blackboard memory, you didn't
simply write the two numbers in random fashion. Instead, you wrote them neatly one
below the other in column form—in the prescribed fashion for addition. Recall also,
that in adding the numbers, you began with the right-hand column, added it, moved
on to the next column, and so on. You performed each step according to a rigidly
prescribed set of instructions that you had previously learned. This set of
instructions, which guided you through the entire problem, we call the program. Our
still-to-be-completed computer would be useless without one.

Output
The last thing you did before erasing the board and returning to your seat was to call
out the answer to your teacher. Our computer will also have to make its answers
available to us in some recognizable form. For this operation, we will need an output
device.

Our block diagram is now complete enough to warrant a name. Since it's a fairly
simple computer, we'll call it SIMCO, for short.

Fig. No. 1. Block diagram for SIMCO.

4

SECTION

COMMUNICATING
WITH COMPUTERS

Input
The next section will introduce two words that computer people use in a very
special sense. The words are READ and PRINT, and their use involves the input
and output sections of a computer. To explain their special meanings, it will be
helpful to turn momentarily to the devices actually used by real computers.

Science fiction writers to the contrary, computers are only machines—no more
and no less. The various elements of a computer must communicate with each
other in a language machines can "understand"—specifically, an electronic
language. By and large, the "alphabet" of this language consists of electrical
pulses, and the "words" are made up of sequences of such pulses arranged
according to standard codes.

If we designate the absence of a pulse as zero and the presence of a pulse as
one, we can encode almost any kind of information we want into groups of one's
and zero's.

The input section of a computer is simply a device for entering such one's and
zero's into a computer in the form of pulses. One of

Fig. No. 2. Punched card.

5

the most common input devices is the punched card reader shown in Fig. 3. Fig.
2 shows a typical punched card.

Tiny metal feelers in the card reader sense the presence (or absence) of holes
in punched cards. The feelers act as switches that relay pulses (or no pulses) to
the computer's memory section.
Thus, each combination of holes and no-holes represents a letter or a number.

Hereafter. when we order our computer to read something, we will be telling
it to take a piece of information from the input for storage in some specified
location of the memory.

Output Devices
Output devices are the computer's means of communicating with us. Not
surprisingly, their operation is pretty much the reverse of input devices. They
take pulsed information from the memory section and convert it into some form
we can understand.

One of the most Common forms of output devices is the high-speed printer
shown in Fig. 4. It can convert into print pulsed information from a computer's
memory at the rate of hundreds of lines per minute. Hereafter, when we
command our imaginary computer to print something, we will be telling it to
take some information from a specified location in the memory and print it out.

Fig. No. 4. High speed printer.

Fig. No. 3. Punched card reader.

6

Fig. No. 5. Flow chart for repairing a flat tire.

7

SECTION

FLOW CHARTS

The block diagram we have constructed contains the basic elements of a simple
computer. However, it doesn't tell us much about the interactions occurring
between these units. Now, we're ready to begin the important business of
studying exactly what these interactions are.

One way to begin visualizing the internal dynamics of a computer is to draw
a flow chart—a step-by-step diagram of all operations involved in the solution
of a particular problem. Flow charts can be drawn for nearly every kind of
activity imaginable, including changing a flat tire-as shown on the facing page.
A flow chart for a student adding two numbers at the blackboard is shown
below:

Fig. No. 6. Flow chart for blackboard addition.

This flow chart may seem fairly obvious; but, as problems and
procedures become more complicated, flow charts become more

8

helpful as an intermediate step between analyzing a problem and
programming a computer to solve it.

For example, even the flow chart for adding two numbers becomes
somewhat more involved when it is drawn up for SIMCO.

Fig. No. 7. Flow chart for addition with SIMCO.

Action Diagrams
As shown on page 9, the action indicated in each step of our flow chart can be
illustrated by a series of block diagrams. Data flow is shown by solid lines.
Dashed lines indicate flow of controlling pulses.

9

Fig. No.8. SIMCO adding two numbers.

10

SECTION

INSTRUCTIONS, DATA,
AND ADDRESSES

The mysterious looking numbers in the program units in Fig. 8 are machine-language
abbreviations of the verbal instructions contained in the flow chart. Their meaning
will be made clear as we go. For the moment, it's necessary to understand only that
they are perfectly clear to the computer,* and that the program unit supplies them in
the correct sequence.

Operational Codes
Each instruction, or "word," in the program unit consists of three digits. The first

digit of each program word is the operational code - a command to the computer to
perform a specific operation such as "read," "print," "add," or "subtract." Incredible as
it seems, only ten such operations are needed to solve almost any problem for which a
precise method of solution can be stated!

The ten operational codes for SIMCO are:
0 = Input 5 = Output
1 = Clear and Add 6 = Store
2 = Add 7 = Subtract
3 = Test Accumulator Contents 8 = Unconditional Jump
4 = Shift 9 = Halt and Reset

These are the same operational codes used by CARDIAC. As you'll see, there are
many other functional similarities, including CARDIAC's ability to solve any
problem that can be solved by SIMCO.

*It is possible to conceive of a computer capable of responding to verbal instructions like the
ones in our flow chart. For example, an input device could be designed to understand the
command, "Take the first number from the memory and add it to the number in the
accumulator." However, there are literally thousands of word combinations for saying the same
thing. Designing a computer that could generalize a single, unambiguous meaning from all these
combinations is still possible only in the realm of science fiction.

11

Memory and Addresses
All the time it is working, a computer is constantly shuttling data to and from its memory
unit. Obviously, each item stored in the memory must be kept separate and distinct from
every other item. What's more, each item must be stored so that it can be instantly retrieved
when needed. This kind of instantaneous and foolproof access to the memory is possible
only if it is physically divided into a number of distinctly identifiable locations. (Think of
these as electronic pigeon holes.) Each location has its own number, or address. Large
computers typically have as many as fifteen thousand addresses. For practical reasons,
SIMCO's memory (and CARDIAC's) consists of 100 addresses, numbered 00 through 99.
The last two digits of each program word correspond to one of these addresses. Thus, our
computer works with 3-digit words: one digit for the operational code, and two for a
memory address.

Instruction Words and Data Words Are Look-Alikes
The remarkable thing is that all instructions can be given in this same, invariable format of
a 3-digit word.

But, if our instructions words are made up of three digits, what do our data words look
like? Answer: They look exactly the same. Data words—the material being processed—are
also made up of three digits. It would probably be more accurate to say their length is
limited to three digits, since this is the maximum capacity of each memory cell. In any case,
the point is that both types of words look the same.

Before we can answer the intriguing question of how the computer tells them apart, we
must first recognize that this similarity is an enormous advantage. It means, first of all, that
both kinds of words can be processed by the same hardware. They can be fed into the same
input devices, operated on in the same accumulator, and stored in the same memory. This
not only makes for greater economy, but also means that, as a computer is proceeding
through a problem, it can process its own instructions. Computers functioning this way are
known as stored-program computers. It is the ability to store and revise their own program
that gives stored-program computers the appearance of being almost completely automatic
in their operation.

12

SECTION

CONVERTING SIMCO
TO THE

STORED-PROGRAM MODE
To make SIMCO a stored-program computer, we have to replace its inefficient
program unit with three new devices—an instruction register, a program counter,
and a control unit. The addition of these units makes SIMCO the equal of any real
computer.

Fig. No. 9. Stored-program computer.

The Instruction Register
The function of the instruction register is to store each instruction word during the
time that particular instruction is being executed. Unlike SIMCO's cumbersome
program unit, which had to store an entire program, the instruction register needs to
store only one instruction at a time. Once this instruction is executed, the instruc-
tion register is fed a new word.

13

The Program Counter
Among its many other functions, SIMCO's program unit had to feed out
instructions in the proper sequence. To do this, it had to keep tabs of exactly
where it was in this sequence.

Like a man following a long list of written instructions, it kept its place by
"moving its finger" to the next instruction before executing the previous one. The
program counter contains the memory address from which the current instruction
was fetched. Before the instruction is executed, 1 is added to this address. Since
instructions are stored sequentially in memory, increasing the address by 1
automatically provides the correct address for the next instruction.

The program counter also requires another capability: Although instructions are
stored sequentially in the memory, a computer often has to repeat an earlier
instruction or even jump ahead to another, not in sequence. Instructions that elicit
this response are known as jump instructions. Their purpose will be fully
explained later. Till then, it's enough to know that the program counter must
sometimes be able to change its count (and, hence, the address of the next
instruction) by more than one.

The Control Unit
The control unit controls the operation of the instruction register and program
counter in relation to all the computer's other units. It is a connecting, or
switching, device; something like a telephone operator who sets up connections in
response to signals on her switchboard.

Specifically, the control unit:
1. Increases the number in the program counter by one, thereby changing that

number to the address of the next instruction.

Fig. No. 10. Control adding 1 to the program counter.

14

2. Uses the number in the program counter as the address from which to fetch the next
instruction word to the instruction register. The program counter directs the memory cell
selector to the proper cell.

Fig. No. 11. Control fetching a word to the instruction register.

Fig. No. 12. Instruction register reading a word into the memory.

3. Activates the instruction register to execute the current instruction. The instruction
shown being executed is causing a word to be read from the input into the memory.

How the Computer Tells Instruction Words from
Data Words
We are now ready to look into the question of how the various units of a computer can
distinguish between instruction words and data words. From a computer's point of
view, the solution is

15

simple: The use and meaning of a word depend entirely on which unit of the
computer it happens to be in.

This is analogous to the way a set of numbers, such as 38-24-36, can be
variously interpreted depending on where they are used. In a Hollywood movie
studio, they would probably indicate the dimensions of a curvaceous actress
(data). In a football stadium, they would most likely be signals for the next play
(instructions). In an elementary arithmetic classroom, they could simply be three
numbers to be added (data).

Similarly, the meaning of a 3-digit word in our computer depends on where in
the computer it happens to be. For example, "017" in the instruction register will
mean "Take the word now appearing in the input and store it in memory cell
17."

In the accumulator, 017 will be treated purely as the data number seventeen
and will be added or subtracted to or from any other number already in the
accumulator.

As for the memory unit, 017 can be either an instruction word or a data word.
Its use will depend on what other unit the program calls for it to be fetched to. If
it is a data word and the program mistakenly calls for it to be fetched to the
instruction register, it will be treated as an instruction, and the computer will go
slightly insane. This is an all too common error of programmers, and computers
have been known to do pretty strange things because of it. Fortunately, the
results of such mistakes are usually so outlandish, computer operators can soon
see that something has gone wrong and remove the program for correction.

16

SECTION

INTRODUCING CARDIAC
Now that we have assembled a complete block diagram of a computer, we are ready
to correlate its elements with the analogous elements of CARDIAC. Some of these
analogies are fairly obvious and will require little comment. Others, less obvious,
will be explained in detail.

NOTE: One unit has been deliberately omitted from our block diagram. It is the
power supply, or energy source. It was omitted because, when working with
CARDIAC, you will be the energy source. You will operate the slides and transfer
data from one section of CARDIAC to another. You will even do the arithmetic that
must be done in the accumulator. This in no way detracts from CARDIAC's power as
a learning tool. Remember, you are not working with CARDIAC to learn arithmetic,
but to learn how a computer operates.

Input
As was previously mentioned, a computer's input devices are the means by which
data and a program of instructions are entered into the computer fer storage in the
memory.

Since one of the most common input devices is the punched card reader,
CARDIAC's input has been made in the shape of a strip of punched cards attached
end to end.

After pencilling our program and data on the strip, it will be inserted in the input
slot. Card number 1 should appear just below the arrow.

During the course of a problem, instructions directing the flow of input
information will appear in the instruction decoder window.

Output
CARDIAC's output looks and functions like its input. The strip of cards is inserted in
the output slot with card number 1 appearing under the window. During its operation,
CARDIAC's control section will direct the flow of any output data generated to the
cards.

17

Memory
A computer "remembers" things magnetically. Its primary memory is usually
made up of thousands upon thousands of tiny ferrite cores, each capable of
storing one bit, or binary digit, of information. Clockwise magnetization of a
core indicates a binary zero, while counterclockwise magnetization indicates a
binary one. Information pulsed to these cores from other circuits change their
polarity one way or the other.

The core memories of very large computers can store as many as 192,000
words, each consisting of thirty-six or more binary digits.

To keep things simple, CARDIAC works with decimal, rather than binary,
digits. Also, its memory is considerably smaller. It can store only 100 three-digit
words, and these are entered by pencil and retrieved visually.

Accumulator
The accumulator is a computer's arithmetic unit. In it, numbers are added,
subtracted, or subjected to operations such as shifting of digits to the left or right.

Numbers in the accumulator can also be tested for their sign — negative or
positive.

CARDIAC's accumulator fulfills the same purposes. However, you will
function as its electronics by executing any arithmetic called for by the
instruction register. You will also set the accumulator-sign slide so that the
correct sign appears in the circular window.

Similarly, when entering numbers on the input or output cards or in the
memory, you will have to indicate if they are negative. Unsigned numbers imply
that they are positive.

The accumulator proper consists of only the bottom row of squares; the two
upper rows serve only as a scratchpad for addition and subtraction.

Since CARDIAC's memory can store only 3-digit numbers, you may be
puzzled by the inclusion of an extra square in the accumulator. It is there to
handle the overflow that will result when two 3-digit numbers whose sum
exceeds 999 are added.

Program Counter
The program counter keeps track of which step of a program a computer should
execute next. It is actually an electronic counter whose count represents the
address of the memory cell from which the next instruction must be fetched.

Because the instruction register sometimes calls for an instruction out of
sequence, the program counter must be resettable to any number dictated by the
instruction register. Usually, however, it simply increases its count by one,
automatically setting itself to the address of the next memory cell.

CARDIAC's program counter is simply a marker in the shape of a lady bug.
During the course of a program, it is manually moved

18

from one memory cell to another. If used properly, it will mark your place as
accurately as an electronic program counter and, probably, require less
maintenance.

Instruction Register
If you were to add two numbers on an ordinary desk calculator, you would
most likely go through each of the following steps:

1. Read the instruction ("Add number A to number B").
2. Look at number A.
3. Punch the keys for number A.
4. Look at number B.
5. Punch the keys for number B.
6. Punch the "total" key.

A computer's instruction register accomplishes the equivalent of all this key
punching by first storing an instruction and then pulsing the correct circuits to
execute it. Which circuits the pulses go to is determined by the operation code
of the instruction word being pulsed. This is analogous to what happens when
you dial the ten digits of a long distance telephone number. The first three
digits (the area code) activate equipment that routes the call to the proper city.
The next three digits select the correct exchange in that city. Then, the
remaining four digits operate the necessary switching equipment to connect
you with the individual telephone you are calling.

CARDIAC's instruction register consists of the op-code and address slides
plus the three windows that display the material printed on them.

The window labeled "instruction register" allows us to look into the register
to see the instruction word stored in it.

The "accumulator test" window is used to test the sign of a number in the
accumulator. It also tests the input to see it all cards have been read into the
memory.

The instruction-decoder window, in a sense, generates the pulses that
activate the correct circuits to execute an instruction. Since you are substituting
for these circuits, the instructions are written in English rather than in pulses.
You can think of this window as decoding the pulses for you.

Sequencing
In a real computer, the sequence of instruction pulses generated by the
instruction register is all important. In CARDIAC, too, correct sequencing is all
important. The flow chart path indicated by the arrows must be rigidly
followed from the instruction-register window to the accumulator-test window
to the instruction-decoder window and back to the instruction-register window.

This flow represents the innermost cycle of a computer's operation.

19

Control
A computer's control unit also follows an invariable three-part cycle.

First of all, it fetches an instruction from the memory to the instruction
register.

Next, it increments the number in the program counter, raising that number
to the address of the next instruction.

Finally, it triggers the instruction register into executing the previously
fetched instruction. While the instruction register is going through its cycle, the
control unit remains quiescent. It assumes control again only after the
instruction register has completed an instruction.

You will serve as CARDIAC's control unit by visually following its internal
flow chart. While doing so, you will perform all of the operations described
above.

As you go through each cycle, you should occasionally pause to remember
that computers go through the same cycle about a million times faster.

20

SECTION

THE FIRST PROGRAM
Now that we have examined CARDIAC's different sections, we are ready to run
through our first program. It is an extremely simple program for adding two
numbers. What's more, we have written it for you. Its purpose is not to impress
you with CARDIAC's power as a computer, but, rather, to familiarize you with
its operation. Later programs won't be so simple—particularly when you try
your hand at writing them.

In going through this program, please don't anticipate, or jump ahead.
Skipping even a single step can cause calamitous results. You may find the
procedure tedious, but computers do not. They do the same thing billions of
times a day, tirelessly and without even a twinge of boredom. This is their
power. Eventually, you will come to appreciate it as much as the scientists and
mathematicians who used to spend days, and even months in computational
drudgery.

Because our program consists of only seven instruction words, we could
simply write them on a single line like this: 034, 035, 134, 235, 636, 536, 900.
However, a longer program, lumped together like that, would be a mess. It's
much better to use the tabular format shown below.

The first column lists the addresses of the memory cells into which the
program words are to be loaded. The second column is the program proper and
will become the contents of these cells. The third column contains explanatory
comments.

Program No. 1: Adding Number "A" to Number "B"
to Produce Sum "S"

ADDRESS CONTENTS COMMENTS
17 034 Read "A".
18 035 Read "B".
19 134 Clear accumulator and add "A".
20 235 Add "B" ("S" is now in accumulator).
21 636 Store "S".
22 536 Print "S".
23 900 Halt and reset.

21

Directions
1. Using a soft (2B) pencil, lightly write the program words in

the indicated memory cells.
2. Write the two numbers to be added on the first and second

cards of an input strip. (Use any two numbers whose sum
doesn't exceed 999). Insert the strip in the input slot with
card number 1 appearing under the arrow.

3. Put the bug (program counter) in the punched hole of mem-
ory cell number 17.

4. Insert a blank card strip into the output slot with card num-
ber 1 appearing in the window.

5. Start.

More on OP Codes
If you followed the program carefully, CARDIAC will have produced the correct sum
on an output card.

Note that the last instruction "900" not only halted the machine, but also reset the
program counter to zero.

Six different operational codes were used in this program. They are listed below
along with their mnemonic abbreviations and explanations. The four remaining op
codes will be explained as they are introduced.

OP CODE ABBREVIATION OPERATION
0 _ _ INP Read input card into cell _ _.
1 _ _ CLA Clear accumulator and add into it the

contents of cell _ _.
2 _ _ ADD Add contents of cell _ _ into

accumulator.
5 _ _ OUT Print contents of cell _ _ on

output card.
6 _ _ STO Store contents of accumulator

in cell _ _.
9 _ _ HRS Halt machine and reset program

counter to _ _.

Where Should Programs Begin?
You may have wondered why our program began in memory cell 17 rather than in cell
01. Actually, we could have begun in cell 01, but it wouldn't have been good practice.
Long experience has taught programmers that it is a good idea to leave some empty
cells in front of a program. These provide a little "elbow room" if the earlier part of a
program has to be backed up to insert a forgotten word. Maneuvering space should
also be left at the end of a program for the same reason.

22

SECTION

LOOPS
Consider the following program for counting. It will generate an output of
1-2-3-4-5 ... and so on, up to any number you want.

Program No. 2: Counting

ADDRESS CONTENTS
20 100
21 603
22 503
23 200
24 603
25 503
26 200
27 603
28 503
29 200
30 603
31 503
32 200
33 603
34 503

Like the program for addition, this program is not as interesting for what it
does as for how it does it.

It won't be necessary to run this program through CARDIAC.
We can spot a serious drawback simply by looking it over. One glance should
be enough to show that it is much too long—fifteen words just to count up to
five. A similar program for counting up to a million would fill the memory of
even a large computer.

A more detailed examination is even more revealing. After the first word,
the program repeats itself every three steps: 603, 503, 200; 603, 503, 200; and
so on. Let's see what's happening:

23

ADDRESS CONTENTS COMMENTS
20 100 The contents of cell 00 (001) are put in the

accumulator.
21 603 The accumulator contents (001) are cop-

ied into cell 03, (without being erased from
the accumulator).

22 503 The contents of cell 03 are printed out. This
is the first count.

23 200 The contents of cell 00 (001) are added to
the contents of the accumulator (001) rais-
ing the sum to "002".

24 603 The accumulator's contents (002) are cop-
ied into cell 03, (without being erased from
the accumulator).

25 503 The contents of cell 03 are printed out. This
is the second count.

26 200 The contents of cell 00 (001) are added to
the accumulator, raising sum to "003".

27 603 The accumulator's contents (003) are cop-
ied into cell 03, (without being erased from
the accumulator).

28 503 The contents of cell 03 are printed out. This
is the third count.

29 200 The contents of cell 00 are added to accu-
mulator, raising sum to "004".

30 603 The accumulator's contents (004) are copied
into cell 03.

31 503 The contents of cell 03 are printed out. This
is the fourth count.

32 200 The contents of cell 00 are added to accu-
mulator, raising sum to "005".

33 603 The accumulator's contents (005) are cop-
ied into cell 03.

34 503 The contents of cell 03 are printed out. This
is the fifth count.

Fig. No. 13. Flow chart for counting program.

24

To make a computer count, as you saw, merely requires that it be programmed to
keep adding one into the accumulator and to keep storing and printing out the sum.

Counting is, in fact, an important computer function and is often used in
conjunction with other computer programs. The problem is: How do we make a
computer repeat the counting cycle without having to spell out every step in the
program? Obviously, we need another instruction—something that can be written
into a program just once which will make the computer loop back to the beginning of
each add-store-print cycle.

The Unconditional Jump
CARDIAC has just such an instruction. Operation Code number 8, the "jump"
instruction, gets us out of this dilemma very nicely. It will send the bug back (or
ahead) to any cell we want. In programming terminology, this is known as an
unconditional transfer.
It enables us to program a computer to loop through some repetitive sequence of
operations without having to write each step of that sequence more than once.

But, reading, about a loop makes it seem more complex than it really is, so let's
actually run through one on CARDIAC.

Here is a "looped" program for counting. It can count indefinitely, yet it contains
only five words! Run through it up to a count of three or four to prove to yourself that
it works. Start with the bug in cell 21.

Fig. No. 14. Flow chart for
counting program with a loop.

Program No. 3: Counting Program with Loop

ADDRESS CONTENTS COMMENTS
21 100 Clear and add contents of cell 00.
22 603 Store contents of acc. in cell 03,
23 503 Print contents of cell 03.
24 200 Add contents of cell 00.
25 822 Jump to instruction in cell 22.

25

Operation code 8 embodies another handy feature (which wasn't used in the
above program): In addition to letting the program counter jump out of
sequence to begin a loop, it marks the counter's place so that it can return to
where it left off when the computer is through looping. Operation code 8 does
this by including a sub-instruction to record the bug‘s last address (before
jumping) in cell 99. This procedure will be explained later in greater detail.

26

SECTION

GETTING OUT OF LOOPS
The loop, as you can see, is a very useful part of a programmer's bag of
tricks. So useful, that it's doubtful any programs are ever written without
them. Even so, it may have occurred to you that, if programmers can put a
computer into a loop, they must also have some means of getting it out again.
A computer trapped in a loop is in serious trouble. Nor is this an uncommon
programming error. What keeps it from being fatal is that programs are
usually timed, and computers will automatically "dump" a program whose
estimated running time has been exceeded.

In order to get out of a loop, a computer must be able to "make a decision"
based on some predetermined criterion. This criterion can be determined by
the programmer, but the decision-making ability must be built into the
computer's hardware.

Since a looping computer keeps repeating the same instructions over and
over again, the "decision" it makes must be to introduce a new instruction
that will break the loop. Naturally, it can't be introduced at random. The
computer must know exactly when to introduce the new instruction. It must
recognize and respond to some predetermined change occurring within itself.
The change can be (and often is) the change of a number's sign in the
accumulator.

Say, for example, that a computer has been programmed to count
backwards from 100. The program does this by adding 100 to the
accumulator and then repeatedly subtracting "1" from it by means of a loop.

After 100 looped subtractions, the accumulator will pass through
zero* to minus one. When this happens, the change of sign is de-

*Zero is arbitrarily defined as a positive number. Thus, if the count is to be a full 100,
it must begin at 99.

27

tected by appropriate hardware and used to elicit a new instruction. This is
precisely what happens in CARDIAC, and the new instruction is operation code
number 3. Its mnemonic abbreviation is TAC—for "test accumulator contents."
The program below puts this instruction to good use. In effect, it puts minus four
in the accumulator and then keeps adding one to it until the accumulator reaches
zero. Since zero is a positive number (for CARDIAC), the accumulator sign
changes at this point, and the addition loop is broken. Run through this program,
paying close attention to what happens when you change the accumulator sign.
Also notice how op code no. 3 establishes a loop and then breaks it when the
accumulator sign changes. After loading the program into the memory, put the bug
in cell 20 to begin.

Program No. 4: Rocket-Launching Countdown
(Launch to occur when computer

output generates 000)

ADDRESS CONTENTS COMMENTS
00 + 001 Data.
19 - 004 Data.
20 119 - 004 to accumulator.
21 200 Add 001.
22 618 Store accum. in cell 18.
23 518 Print contents of cell 18.

24 321 Test acc.

25 900 Halt and reset.

If minus, jump to cell 21.{
If plus, go ahead to cell 25.

Fig. No. 15. Flow chart of rocket—launching countdown.

28

Conditional vs. Unconditional Transfers
As the previous two programs demonstrated, both the conditional transfer (op code
3) and the unconditional transfer (op code 8) modify the program counter's count.
That is, they jump the bug to an out-of-sequence address. The major difference
between the two instructions is that the unconditional transfer always elicts a
jump, while the conditional transfer elicts a jump only when the accumulator sign
is negative.

In addition to being a way of getting out of loops, the conditional transfer is a
means of introducing alternate procedures depending on previously obtained
results. Such alternate procedures are known as branch points. In flow charts, they
are represented by a diamond shaped figure and always indicate the point at which
some decision must he made. To see how they are used, go back to page 6 for
another look at the "tire-changing" flow chart. When you are more experienced,
you can try coding it into machine language for CARDIAC. Till then, you might
give a moment's thought or two to the problem of converting the flow chart's "yes"
or "no" answers into plus or minus signs for a computer's accumulator.

29

SECTION

MULTIPLICATION
There are two ways of achieving multiplication in computers—
expensively, or economically.

This is an oversimplification, of course; but it's true that the cost of a
computer is usually a good indication of how it multiplies. As a rule, the
larger, more expensive machines have built-in hardware that enables them
to multiply (or divide) directly—pretty much the way we do.

Less expensive computers lack such hardware and have to resort to the
more roundabout method of repeated addition. They store the larger of
the two numbers to be multiplied in the accumulator and then repeatedly
add that number to itself "n" times—"n" being equal to one less than the
smaller number.

To multiply 25 by 5, for example; they put 25 into the accumulator and
then, by means of a loop, add four more 25's to it.

Since CARDIAC is patterned after the more economical models, it,
too, multiplies by repeated addition. This method is demonstrated by
Program No. 5 on page 30.

Notice that this program uses op code 8 to generate the addition loop
and op code 3 to get out of it. Notice also that "n" is tested during each
loop, and that the loop is not broken until "n" turns negative. This method
is known as a loop with an index, where the index is equal to "n". The
same method can be used in any program calling for some particular
procedure to be repeated "n" times.

Since "n" is fed in as data, rather than as an integral part of the
program, such programs do not have to be revised when "n" is changed.

You can use any 2~digit number for the multiplicand, but it's best to use
a smaller number for the multiplier, since this will determine how often
you must repeat the loop.

Before beginning, copy the program into the indicated memory cells,
and place the bug in cell 07. Then write the multiplicand on

30

input card number 1 and the multiplier on card number 2. What
would happen if you reversed their order?

Program No. 5: Multiplication by a Single-Digit Multiplier
(multiplier) A x BC (multiplicand)

ADDRESS CONTENTS COMMENT
07 068 Read "BC" into cell 68.

08 404 Clear* acc.
09 669 Store acc. (zero) in cell 69.

10 070 Read "A" into cell 70. This will be "n".
11 170 "n" to acc.
12 700 Subtract 1 from "n".
13 670 Store revised "n".
14 319 Test acc. sign.
15 169 Clear acc. Enter contents of cell 69 (previous

sum).
16 268 Add "BC" to acc.
17 669 Store revised sum in cell 69.
18 811 Jump back to cell 11.
19 569 Print (product of "A" x "BC").
20 900 Halt and reset.

*See Section 12 for explanation of how this instruction clears the
accumulator.

Fig. No. 16. Flow chart of single—digit multiplication.

Clearing cell
69 for future
storage of sum.{

31

SECTION

SHIFTING DIGITS
The Magic "Nines" Trick
Here's a trick you can bedazzle a friend with—provided he hasn't read this far yet.

Ask your friend to write any 3-digit number in which no two digits are
repeated. Don't let him show it to you. Then, tell him to write them in reverse
order. Now, have him subtract the smaller of the two 3-digit numbers from the
larger. Ask him for the last digit of the difference. When he gives it to you, you
immediately tell him the whole number. How? Read on.

It's all very simple. The middle digit will always be a nine, and the two end
digits will always add up to nine. Thus, all you have to do is subtract the given
digit from nine to get the first digit. Naturally, the trick is more impressive when
done quickly and with a little showmanship.

What has all this to do with CARDIAC and computers? Well ..., not much. It's
just a sneaky way of introducing the last of CARDIAC's ten instructions.

Operation Code 4—The Shift Instruction
If you want to use CARDIAC for the "nines" trick instead of a friend, it will have
to be capable of reversing the order of a given number. As the next two programs
will demonstrate, CARDIAC can not only reverse numbers, it can manipulate
them in various other ways, as well. To do so, it uses op code 4—the "shift"
instruction.

We've saved this instruction for last, not because it is the least important, but
because it is probably most alien to your everyday experience.

What it does, in brief, is shift a number in the accumulator to the left "x"
number of places and then to the right "y" number of places. The value of "x" and
"y" is specified by the second and third digits of the shift instruction. This is the
only instruction whose last two digits do not refer to an address in the memory.

32

Before you can use the shift instruction correctly, you must understand two
things:

(1) Digits overflowing the accumulator are irretrievable. Let's say you have
132 in the accumulator and the instruction register reads "433." This calls for the
number in the accumulator to be shifted left three places and then right, three
places. Do you finish up exactly where you began? Not at all! When the lefthand
shift pushes the 1 and the 3 out of the accumulator, they are gone for good. During
the righthaud shift, only the 2 is returned to its former location.

(2) There are no such things as "blank" spaces in the accumulator (or in any
other computer register). When a digit is moved out, it is immediately replaced by
a zero. If, for example, the accumulator holds 555, and a four-place shift to the left
and right is called for. the resulting contents will be 0000.

The following program will give you ample practice in the use of the shift
instruction. Write it into the indicated memory cells and then write the 3-digit
number to be reversed on input card number one. Start with the bug in cell 15.

Program No. 6: Reversing the Order of a Number "abc"

ADDRESS CONTENTS COMMENTS
15 039 Read "abc" into cell 39.
16 139 CLA "abc".
17 431 Shift acc. to produce "c00".
18 640 Store acc. in cell 40.
19 139 CLA "abc".
20 413 Shift acc. to produce "00a".
21 240 Add contents cell 40 to produce "c0a" in acc.
22 640 Store acc. in cell 40.
23 139 CLA "abc".
24 423 Shift acc. to produce "00b".
25 410 Shift acc. to produce "0b0".
26 240 Add contents cell 40 to produce "cba" in acc.
27 640 Store acc. in cell 40.
28 540 Print contents cell 40.
29 900 Halt and reset.

33

SECTION

BOOTSTRAPS AND
LOADING PROGRAMS

Up to now, we've had no trouble loading programs into CARDIAC. We've simply
copied them into the indicated memory cells and gone merrily on our way.
Unfortunately, this is not the way it's done with real computers. Programs have to be
loaded through the input, just like data. What's more, each word has to be steered to
the proper address. This calls for a special loading program.

New, or repaired, computers face an additional problem. When a new machine is
first turned on, all of its registers contain garbled nonsense. As we mentioned earlier,
there can be no "blanks" in any computer register. The flip-flop circuits, memory
cores, and other hardware used to store binary one's and zero's must always indicate
one or the other. Which way they flip when a new machine is plugged in is purely
arbitrary, so the resulting word combinations are meaningless.

Before a program can be loaded, the contents of some of the registers must be
organized. Like an infant, the new computer must learn at least a few words before it
can begin to talk coherently. This calls for special hardware.

Some machines have reset buttons for setting the program counter to zero and for
clearing the accumulator. Others have a long row of input buttons for manually
inserting words, bit by bit. But, whatever the method, new computers must, in a very
real sense, lift themselves up by their own bootstraps to get going. Not surprisingly,
the process is called bootstrapping.

In the early days of computers, there were informal competitions to see who could
cut bootstrapping operations to a minimum. CARDIAC would have won any such
contest hands down. The only special "hardware" it uses is the word "001"
permanently stored in cell 00. And its bootstrapping routine consists of only two
words: "002" and "800." We'll see how these manipulate a loading program in just a
moment.

Loading Programs
A loading program is simply the program we wish to get into the memory, interlaced
with suitable input instructions and addresses. In a real computer, it usually takes
other, more efficient, forms. But, for CARDIAC, interlacing loading instructions and
program words is perfectly adequate. The only problem is, "How do you ever get
ahead if you have to repeatedly write a set of instructions for every

34

program word you want to store?" Well, you use a loop, and that's where the bootstrap
routine and the "001" permanently wired into CARDIAC's memory come in.

Using our first addition program as an example, here's how the whole thing looks:

Program No. 7: Bootstrap and Loading Program for Addition

INPUT CARD CONTENTS COMMENTS
001 Bootstrap (already in memory cell 00).

 1 002 "
 2 800 "
 3 010 Addressing instruction.
 4 017 Program word.
 5 011 Addressing instruction.
 6 018 Program word.
 7 012 Addressing instruction.
 8 117 Program word.
 9 013 Addressing instruction.
10 218 Program word.
11 014 Addressing instruction.
12 619 Program word.
13 015 Addressing instruction.
14 519 Program word.
15 016 Addressing instruction.
16 900 Program word.
17 BLANK Signals end of program.
18 --- Data word (number to be added).
19 --- " " " " " "

Fig. No. 17. Flow chart for Program No. 7.

Beginning with the bootstrap routine, write the program on input cards, insert the
bug in cell 00, and begin loading. It probably won't be necessary to load the entire
program to see how it works. Nor will it be necessary to load future programs this
way. As long as you understand that you're taking a short cut, you can keep writing
them directly into the memory.

35

SECTION

SUBROUTINES
In the early days of computers, programmers had no libraries of taped programs
to turn to. Every time they tackled a new program, they started from scratch.

If part of a program called for sines, cosines, cube roots, or any of a
thousand other common mathematical routines, they had to write every step of
that routine.

Before long, they realized they were tediously recreating the same routines
over and over again. It was an enormous waste of time and creative energy;
and, with that realization, was born the concept of the subroutine.

What They Are
A subroutine is simply a piece of a program—usually stored on magnetic tape
in such a fashion that it can be easily used by any program.

There are subroutines available covering everything from commonplace
sines and cosines to functions so esoteric as the Kramers-Kronig Analysis of
Reflectance. Their beauty lies in the fact that, once written and recorded, they
need never be written again.

Sometimes, a full program proves to be useful in the partial solution of a
larger problem. In such cases, it can be used as a subroutine for the larger
program.

Because subroutines proliferate so quickly, catalogs listing them are
constantly being updated and reissued. For obvious reasons, these are studied
by programmers with the same kind of zealous attention horse players devote to
racing forms—and, usually, with far more profit.

Calling Sequences
Programs involving subroutines are not written with big gaps for the
subroutines to be tucked into. Instead, they make use of calling sequences—
instructions that call for the desired subroutine and

36

then jump the program counter to the subroutine‘s entrance address. The calling
sequence also has provisions for transferring data to and from the subroutine.

Another requirement of the calling sequence is that it note the address to
which the main program will return after the subroutine has run its course.
CARDIAC uses op code 8 to do this. In the next program, you will make full use
of this instruction for the first time —including the part that asks you to "Write
bug's cell No. in cell 99."

Double Precision
The precision of a numerical description (of anything) is a function of the number
of digits used. If you say that something is 3.62958 inches long, you are being
twice as precise as the fellow who limits himself to saying it is 3.63 inches.

Thus, the precision of computers would seem to be limited to the maximum
word length their hardware can handle. Fortunately, this isn't entirely true.
Curiously enough, small computers can be programmed to simulate the greater
capability of their big brothers. But they do so at the expense of speed, because
they must perform many more operations to accomplish the same things.
Naturally, there are practical limits to how far such simulation can be pushed. In
terms of cost per-operation, it is still generally cheaper to solve big problems on
big computers.

Double-Precision Subroutine for CARDIAC
The following program for double-precision addition will illustrate all of the
points made above. It enables you to run 6-digit arithmetic through CARDIAC's
3-digit hardware.*

Basically, the method used to handle 6-digit numbers is to store the three most
significant digits in one location, and the three least significant digits in another.
The two locations will be adjacent, with the most significant digits going into an
odd-numbered cell and the least significant digits going into the following even-
numbered cell. For example 163,742 can be stored by putting 163 in cell 21, and
742 in cell 22. The details of all this bookkeeping will be handled by the
subroutine.

Incidentally, we could write 6-digit subroutines for each of CARDIAC's ten
instructions. If we did, any single-precision program could then be converted to
double-precision by substituting double-precision subroutines for each ordinary
instruction.

*When you get through, compare the time it took to add two 6-digit numbers with the time
it took to add two 3-digit numbers. Only then will you appreciate the true significance of "...
at the expense of speed."

37

Copy the subroutine and main program into the indicated locations. Then write the
two numbers to be added onto input cards 1 through 4. Write the three most significant
digits of numbers A and B on cards 1 and 3, and the least significant digits on cards 2
and 4. Start with the bug in cell 50.

Program No. 8: Subroutine for "A" + "B" = SUM

ADDRESS CONTENTS COMMENT
86 199
87 694
88 196
89 298
90 698
91 403
92 295
93 297

94 8_ _

MAIN PROGRAM

ADDRESS CONTENTS COMMENT
50 095
51 096
52 097
53 098
54 886

55 659
56 559
57 598
58 900

} Prepare exit.

Add least significant digits.

Shift overflow right and add
most significant digits.

Return to program. (_ _ will be the
address of the last instruction plus one.)

}
}
}

Input and calling sequence.

Output.

Halt and reset.

}
}

38

SECTION

DEVELOPING PROGRAMS
Although we have run several programs through CARDIAC,* so far, we've
devoted very little attention to the difficult business of preparing a program. In
this chapter, we will briefly examine some of the steps involved in going from a
problem to a program.

First of all, it is necessary to. determine exactly what the problem is. This
can be done only by stating the problem in precise, unambiguous terms.
Occasionally, a problem never gets past this step, because closer examination
proves it to be too inherently vague for computer solution.

The next step is to analyze the problem with the aim of finding a method of
solution, or algorithm.

The dictionary defines algorithm as "a rule of procedure for solving a
recurrent mathematical problem ...," but computer people use the word in a
more general sense. They think of an algorithm as a precisely stated set of rules
for accomplishing any task. By precisely stated, they mean step-by-step rules
that can be followed without intuition or overall understanding - like
CARDIAC's opcodes.

The statement must also take into account the nature of the device that will
respond to the rules. An algorithm adequate for humans is rarely precise
enough for a computer. A flow chart is an example of an algorithm that can be
followed by a human; a program is an algorithm for a computer.

Flow charts are written in plain language. Programs are written in machine
language (as are CARDIAC's), or in any one of the many higher-level
computer languages now available.

Hence, language is the third basic ingredient of program development. In
order to talk about a problem, we must use some kind of language. If a
computer is to solve the problem, that language must be one the computer can
"understand." The machine language used by CARDIAC looks a little strange

* If you have executed all the previous programs, it may not be necessary to run any
more through CARDIAC. By now, it should be sufficient to write a program in
CARDIAC's memory and run through it mentally. A list of op codes has been printed
next to the memory to facilitate this kind of procedure.

39

to us (so strange, we need an instruction-decoder) but it is perfectly clear to
CARDIAC.

To sum up, the three major steps in developing a program are (1) precisely
defining the problem, (2) finding the right algorithm, and (3) expressing the
algorithm in the correct language for the computer that will execute the program.

Developing a Program to Play Single-Pile Nim
Much of the foregoing can be illustrated by our development of a program to
play Single-pile Nim.

We've chosen this game, because, like most games, it can be clearly defined.
Its rules, strategies and moves can all be precisely spelled out. In addition, it's
not so large a problem that the whole of it can't be seen fairly easily. Finally, we
chose single-pile Nim, because it is a game in which numbers occur naturally.
This makes it relatively easy to invent a simple language for CARDIAC.

We will analyze the game and then write a series of programs that permit
CARDIAC to play as our opponent. Each new program will enable CARDIAC
to perform a different job called for by the game. Some of these jobs are not
covered by CARDIAC's ten instructions. This means we'll have to use some
ingenuity in devising the programs.

Rules of Single-Pile Nim
Ten pebbles are placed in a single pile between the two players. During a player's
turn, he may remove one, two, or three pebbles - provided that his opponent has
not removed a similar number of pebbles during his turn. In other words, if your
opponent (CARDIAC) has just taken two pebbles, you may take one or three,
but not two.

A player loses when he cannot move because:
(1) There are no pebbles left for him to remove.
(2) There is only one pebble left, and his opponent has just taken one
pebble.

The Strategy
Any move can be defined by a two-digit number, such as 3,4. The first digit
represents the number of pebbles taken during the move, and the second digit
represents the number of pebbles left in the pile. For example: If the first player
to move takes one pebble (from the original ten), the move is defined as 1,9. If
the second player now takes two pebbles (leaving seven), his move is defined as
2,7.

The game ends with any of four final winning moves: 1,0; 2,0; 3,0; and 1,1.

40

Analysis
To eliminate ambiguity, one seemingly obvious point must be stressed: A
move must be either a winning move or a losing move. If a move leaves
either player with a choice of only losing responses, this is clear enough.
But, if a move leaves either player with a choice of losing or winning
responses, we will assume (for purposes of this analysis) that the correct,
winning choice will always be made.

From this assumption and our knowledge of the previously stated rules,
we can now work backwards from the four final winning moves to identify
every possible move as a winner or a loser.

Thus, just as 1,0 is a winning move, because it leaves the opponent
without a permissible move, 2,1 and 3,1 are losing moves because they
permit the next player to make the winning 1,0 move.

Similarly, we can work backwards from winning move 2,0 to derive the
losing moves 1,2 and 3,2. We can also work backwards from winning move
3,0 to losing moves, 1,3 and 2,3. And, finally, we can work back from
winner 1,1 to losers 2,2 and 3,2.

Since it will be necessary to define all possible moves, it's best we begin
tabulating our results:

WINNING MOVES LOSING MOVES
1,0 2,0 3,0
1,1 2,1 3,1

1,2 2,2 3,2
1,3 2,3

Still working backwards (this time, from losing moves to winning moves),
we can derive five more winners: 3,3; 1,4; 2,4; 3,4; and 1,5. We can
continue working back from these five new winners to derive seven more
losers: 2,5; 3,5; 1,6; 2,6; 3,6; 1,7; and 2,7. And, finally, working back from
these losers, we come up with five more winners to complete our table as
follows:

WINNING MOVES LOSING MOVES
1,0 2,0 3,0
1,1 2,1 3,1

1,2 2,2 3,2
 3,3 1,3 2,3

1,4 2,4 3,4
1,5 2,5 3,5

1,6 2,6 3,6
 3,7 1,7 2,7

1,8 2,8
1,9

Close examination of our table shows that the first player to go should win,
since all three possible opening moves (1,9; 2,8; 3,7) are in the winning
column.

Because we now know the value of every possible move, we can store
this information in CARDIAC's memory and devise a simple

41

program to look up the information as needed. This is known as a table look-up
program.

CARDIAC, as we know, responds to three digit instructions. We use the first
digit of each instruction to identify the player. Zero will represent CARDIAC,
and 5 will represent CARDIAC's human opponent.

The second digit of each instruction will specify how many pebbles are
taken, and the third digit, the number of pebbles left in the pile. As examples,
here are five moves of a typical game:

028 CARDIAC takes two pebbles,
leaving eight in pile.

517 Player takes one pebble,
leaving seven.

034 CARDIAC takes three,
leaves four.

513 Player takes 1, leaves
three.

030 CARDIAC takes three, leaves
none—wins.

Using these conventions and table look-up allows us to devise what may be
the shortest game program ever written. Here it is in its entirety:

Program No. 9: Single-Pile Nim (Ten Pebbles)

ADDRESS CONTENTS COMMENT
00 001 Read an input card (this instruction is

wired in).
01 529 This is used only when CARDIAC plays

first. Cell 01 must be reset to 529 for each
new game.

02 900 Halt and reset.

The following look-up table must be entered in CARDIAC's memory.

ADDRESS CONTENTS ADDRESS CONTENTS
10 000 24 013
11 001 25 014
12 020 26 015
13 030 27 034
14 022 28 017
15 023 29 019
16 033 30 000
17 034 31 010
18 026 32 020
19 027 33 012
20 000 34 013
21 010 35 014
22 011 36 024
23 030 37 025

42

To play the game, write each of your moves on an input card. CARDIAC
will respond by printing its moves out on an output card.

If you are to go first, begin with the bug in cell 00. If CARDIAC is to
make the first move, begin with the bug in cell 01. When CARDIAC goes
first, it is unbeatable. You'll probably win if you go first, but a bad play
could cost you the game.

Improving the Game
Knowing that the first player to move was unbeatable must have taken
some of the joy out of the game. You may even have felt a little like the
gambler who was hailed by a friend on his way to the local casino.

"Where you headed?" asked the friend.
"Oh, I figure to try my luck at the Silver Dollar Casino."
"You danged fool, don't you know the game is crooked"
"Sure I do," said the gambler, without missing a stride, "but what can I

do? It's the only game in town!"

Well, now we'd like to make it possible to beat the first player—though
not by lowering the quality of CARDIAC's play. CARDIAC should still be
programmed to always make the best move possible. And, to increase the
element of chance, it should also be programmed to give its opponent the
greatest opportunity to make a bad move.

In addition, we'd like to make CARDIAC work a little harder— perhaps
by doing the arithmetic necessary to determine how many pebbles are left
in the pile after each move.

How can we do all this? Well, for a start, we can extend our table of
winners and losers beyond the previous limit of ten.

Extended Table at Moves

WINNING LOSING
1,0 2,0 3,0
1,1 2,1 3,1

1,2 2,2 3,2
 3,3 1,3 2,3

1,4 2,4 3,4
1,5 2,5 3,5

1,6 2,6 3,6
3,7 1,7 2,7

1,8 2,8 3,8
1,9 2,9 3,9

1,10 2,10 3,10
3,11 1,11 2,11

1,12 2,12 3,12
1,13

Our new table reveals two interesting things: First of all, we can see that
raising the initial number of pebbles makes it possible to

43

make an opening move that is a loser. With 13 pebbles, for instance, an unwary first
player has an opportunity to make either of two wrong moves: 2,11 or 3,10. Thus,
raising the initial number of pebbles will accomplish one of our purposes.

The second thing we notice about our new table is its periodicity, which shows up
at first as a geometric pattern:

XXX XXX XXX
XXX XXX XXX

XXX XXX XXX
XXX XXX XXX

XXX XXX XXX
XXX XXX XXX

XXX XXX XXX
XXX XXX XXX

XXX XXX XXX
XXX XXX XXX

XXX XXX XXX
 XXX XXX XXX
XXX XXX XXX
XXX

Closer examination reveals that the table is periodic in fours. That is, adding or
subtracting multiples of four to the pile doesn't affect the results of any play. For
example, the moves, 2,1; 2,5; 2,9; 2,13; etc. are all losers. The proper reply to each of
them is to take one pebble, making for the winning moves 1,0; 1,4; 1,8, and 1,12.

We can take advantage of this periodicity to program CARDIAC to play with any
number of pebbles up to 999. What we'll do is have CARDIAC play as though it
could subtract a sufficient number of four's from the pile until the pile is reduced to a
number smaller than four. CARDIAC will then select its move as though the pile
contained only this number of pebbles. In other words, regardless of how large the
pile really is, CARDIAC will always move as though it contains three pebbles or less.
This procedure will eliminate the need for storing 999 replies in CARDIAC's
memory. We will, in fact, need only sixteen entries in CARDIAC's look-up table of
plays.

Strategy
In developing our strategy, we must take the following three considerations into
account:

1. Determining CARDIAC's reply when its opponent makes a losing move that
leaves an odd number of pebbles.

Our table shows us that, of the two possible replies to losing moves that leave an
odd number of pebbles in the pile, one is always a winner, and the other is always a
loser. In all such cases, CARDIAC's choice of reply will, of course, always be the
winner. For example, the two possible replies to the losing move 2,11 are 3,8 (a
winner) and 1,10 (a loser). CARDIAC's reply will be 3,8.

44

2. Determining CARDIAC's reply when its opponent makes a losing move that
leaves an even number of pebbles. Further examination of our table shows us
that, when there are two possible replies to losing moves that leave an even
number of pebbles, both are always winners. The only instances in which two
replies aren't possible are those contained in the first group of losing moves. Two
replies aren't always possible here for the simple reason that most of the moves
don't leave enough pebbles. A move like 2,1, for example, permits only one reply
—1,0.

This first group, then, is a special case. To keep things simple, and to reduce
the strain on CARDIAC's memory, we will determine its replies on the basis of
this special group. Because of the table's periodicity, we can then use these same
choices for all subsequent groups. For example, the only possible reply to the
losing move 1,2 is 2,0. Hence, CARDIAC's reply to all periodically equivalent
moves such as 1,6; 1,10; 1,14 etc. will be to take two pebbles.

3. Providing CARDIAC's opponent with the maximum opportunity for making
a bad move. Suppose CARDIAC's opponent makes a winning move.
CARDIAC's choice of reply should give him the greatest opportunity to make a
losing move the next time. If the player's move is 1,8, for example, we can reply
with either 2,6 or 8,5. If we choose 2,6, the player's subsequent move must be a
winner, regardless of whether he chooses to reply, 1,5 or 3,3. On the other hand,
if our reply is 3,5, the player has a chance to make a losing move, (2,3), as well
as a winning move, (1,4). Hence, 3,5 is our best move. We will choose our replies
to the player's winning moves in the same way, wherever possible.

Table of Moves with CARDIAC's Replies
With our strategy established, we can decide CARDIAC's reply to every move.
Parenthetically adding these replies to our tables of moves will make it that much
more complete and informative.

WINNING LOSING
1,0(*) 2,0(*) 3,0(*)
1,1(*) 2,1(1) 3,1(1)

1,2(2) 2,2(1) 3,2(2)
3,3(2) 1,3(3) 2,3(3)

1,4(3) 2,4(1) 3,4(1)
1,5(2) 2,5(1) 3,5(1)

1,6(2) 2,6(1) 3,6(2)
3,7(2) 1,7(3) 2,7(3)

1,8(3) 2,8(1) 3,3(1)
1,9(2) 2,9(1) 3,9(1)

1,10(2) 2,10(1) 3,10(2)
3,11(2) 1,11(3) 2,11(3)

1,12(3) 2,12(1) 3,12(1)
1,13(2)

*Game over.

45

Developing the Flow Chart
Now that we've determined our strategy and CARDIAC's replies, we're ready to
work up a flow chart. We can do this in two stages —the first showing what
CARDIAC is to do in broad outline; and the second filling in some of the details of
how it is to do it.

Broadly, some of the things we want CARDIAC to do are
1. Read the number of pebbles taken by the player. We will call this number

"P".
2. Keep track of the pile's residue—that is, the number of pebbles that

would be left in the pile if the highest possible multiple of four were
subtracted from it. We will call this residue "R".

3. Keep track of the actual number of pebbles in the pile and print that
number after every move. We will call this number "N".

4. Print the number of pebbles CARDIAC takes. We will call this
number "C".

We can now draw up our first broad, or macro flow chart:

Fig. No. 18. Macro flow chart
for improved Nim game.

Converting most of the steps of our flow chart into program instructions will be
a pretty straightforward procedure. "Read P," for example, will obviously dictate
the use of an input instruction followed by the address of whatever cell P is to be
read into.

46

Similarly, the first "Revise N" step simply calls for a CLA instruction to put N
into the accumulator; then, a SUB instruction to subtract P from that N; and,
finally, a STO instruction to store the revised N in some specific address.

However, the method of implementing the two steps, "Find R" and
"Determine C" is neither simple nor obvious. Hence, a detailed or micro, flow
chart covering both these steps will be necessary.

Fig. No. 19. Micro flow chart finding R and C.

Program and Directions
With our flow charts thus worked out, it is now only a matter of mechanically
coding them into program instructions for CARDIAC and then choosing
suitable locations in which to store them. Similarly, since our strategy has
enabled us to determine CARDIAC's best replies, we have only to choose
some other locations in which to store these.

NOTE: If all of the foregoing has seemed rather lengthy and involved for
what may appear a relatively short progam, we can only say that that's the way
it is with programming. Almost all of the work and creative agony is expended
in analyzing the problem, determining a method of solution, and resolving it
into computer digestible fragments.

47

Program No. 10: Improved Nim Game
(If player is to move first, start with bug in cell 52. If

CARDIAC moves first, start with cell 53)

ADDRESS CONTENTS COMMENTS
52 015 Read P
53 114
54 715 Revise N
55 614
56 514 Print N
57 718 Subtract 4
58 361 Acc. negative?
59 617 Store
60 857 Jump
61 115 Load P (00P in acc.)
62 410 Shift left (0P0 in acc.)
63 217 Add R (0PR in acc.)
64 219 Add 100 (1PR in acc.)
65 666 Store (1PR in Cell 66)
66 100 Load C (CLA contents of Cell PR)
67 616 Store C
68 516 Print C
69 114
70 716 Revise N
71 614
72 514 Print N
73 952 Halt (Return to 52)

All moves will be indicated by a three-digit number 001 to 003 stating the
quantity of pebbles removed from the pile. The player will write his moves on the
input cards. CARDIAC will print its moves on output cards in the same way. Its
moves should now be entered into the memory locations shown below.

Table of CARDIAC's Moves

ADDRESS CONTENTS
 00 001
 01 001
 02 002
 03 003
 10 003
 11 002
 12 002
 13 003
 20 001
 21 001
 22 001
 23 003
 30 001
 31 001
 32 002
 33 002

FIND R

}

}

}

48

Table of Constants and Variables

ADDRESS CONTENTS DESCRIPTION
 14 N (start) N = number of pebbles in pile
 15 000 P = number of pebbles player takes
 16 000 C = number of pebbles CARDIAC takes
 17 N (start) R = residue
 18 004 The quantity 4 to be subtracted
 19 100 Op code 1, CLA

Directions

(1) Load the program and the table of CABDIAC's moves into the memory.

(2) Load the table of constants and variables into the memory. Note that the
starting quantity, N, is loaded into the residue cell 17 as well as cell 14. This
enables the program to work even for starting quantities of N which are less
than four.

(3) Start with the bug in cell 53, if CARDIAC is to go first. If the player is to
go first, start with the bug in cell 52. The player is to write the number of
pebbles he takes (001, 002, Or 008) on input cards.

49

SECTION

ASSEMBLERS AND
COMPILERS... PROGRAMS
FOR WRITING PROGRAMS

It takes only a glance at CARDIAC's list of op codes to see that they are arithmetic
oriented. Even so, we managed to program it to do something as non-arithmetical as
play a game. With enough ingenuity, we could have programmed it to do almost any
of the much more complex tasks being done by real computers.

However, writing such programs for CARDIAC—let alone executing them—
would he exceedingly tedious. As shown by our program for improved Nim, one of
the major problems is to keep track of where things are stored. We have to remember
not only what N and P and C and R represent, but also where they are stored. This
kind of internal bookkeeping can be very difficult to keep straight—particularly with
involved programs.

In our last program, for example, revising N required three instructions that
caused (1) N to be put into the accumulator, (2) P to be subtracted from N, and (3)
the result to be stored. To write those instructions, it was necessary to remember
what addresses had been assigned to N and P, as well as the necessary op codes.
Once we got all that straight, we wrote the instructions 114, 715, 614.

Now, if computers could somehow be persuaded to do such bookkeeping for
us, programming would be much simpler. In place of 114. for example, we could
simply write CLA N, and let the computer worry about where N was located and
what the op code for CLA was.

Fortunately, computers can be programmed to do just that. The programs
used to do so are called assemblers. Actually, there is considerably more to what
assemblers do than we've been able to go into here. Among other things, they also
attend to subroutines and calling sequences. All in all, they are a tremendous aid to
programmers—so much so, that they are usually left in a computer's memory
permanently.

50

Compilers
Assemblers, then, are programs for writing programs. They take a
program written in assembly language and rewrite it in the more
fundamental alphabet of machine language. Thus, assembly language is
on a higher level than machine language in the sense that its meaning is
more easily understood by humans. Happily, the process of writing a
program to translate a higher into a lower level language can he carried
one step further with compilers.

Compilers are used to rewrite programs of a still higher level than
assemblers into assembly language. They go considerably further than
assemblers towards eliminating programming drudgery. Whereas
assembler programs necessitate writing a separate instruction for each
machine-language instruction to be produced, compilers can translate. one
compiler-language instruction into several assembly-language
instructions. Thus, the number of statements a programmer must write is
vastly reduced.

One of the best known and most widely used compilers is FORTRAN
—short for FORmula TRANslator. It is mathematically oriented, and its
language resembles that of algebra.

With FORTRAN, a programmer wishing to solve an equation such as J
= K + M - N + 2 would write the equation exactly that way: J = K + M - N
+ 2. The FORTRAN compiler would then translate that statement into
suitable assembly-language instructions. For CARDIAC, these
instructions would be:

CLA K
ADD M
SUB N
ADD 2
STO J

The assembler would next translate these into machine-language
instructions and assign them locations in the memory like. this:

ADDRESS CONTENTS
20 151
21 252
22 753
23 270
24 650

At this point, the computer would cause a set of punched cards containing
the complete program to be produced. If requested to do so, it woold
simultaneously print out the program in all three languages so the
programmer could check it. The printout would also include a table of
temporary storage assignments and a table of literals as follows:

51

Table of Temporary Storage Assignments

ADDRESS CONTENTS
50 J
51 K
52 M
53 N

TABLE OF LITERALS
70 002

If any routine errors were made, diagnostics might also be included in the
printout. These are comments on commonplace programming errors such as
the omission of brackets, or the use of undefined symbols.

Now that the programmer knows where things are and, to some extent,
what (if anything) is wrong, he can go to work debugging his program. Once
he locates his errors, he simply pulls the bad cards out of his deck, has new
ones punched, and then slips the edited program into a card reader. He may
have to repeat this process two or three times before all the bugs are gone, but,
once they are, the computer will execute his program with the incredible speed
and accuracy that makes this, indeed, the Age of the Computer.

52

Selected General Bibliography on Computers

ADLER, I. Thinking Machines. John Day, New York, 1961.

ARDEN, B.W. An Introduction to Digital Computing. Addison-Wesley.
Reading, Mass., 1963.

BERKELEY, E.C. The Computer Revolution. Doubleday. New York, 1962.

BEHNSTEIN, JEREMY. The Analytical Engine. Random House. New York.
1963.

ENGLEHART, STANLEY L. Computers. Pyramid. New York, 1962.

HOLLINGDALE, S.H., and TOOTILL, G.C. Electronic Computers. Penguin
Books Ltd., Baltimore, 1965.

LEEDS, HERBERT D., and GERALD M. WEINBERG. Computer
Programming Fundamentals. McCraw-Hill, New York, 1961.

McCORMICK, E.M. Digital Computer Primer. McGraw-Hill, New York,
1959.

McCRACKEN, DANIEL D. A Guide to Fortran. John Wiley and Sons, New
York, 1961.

MORRISON, PHILIP, and MORRISON, EMILY, Ed. Charles Babbage and
His Calculating Engines. Dover, New York, 1961.

ORGANICK, ELLIOTT I. A Fortran Primer. Addison-Wesley, Palo Alto,
Calif., 1963.

PFEIFFER, J.P. The Thinking Machine. Lippincott, Philadelphia, 1962.

D. W. Hagelbarger was born in Kipton,
Ohio. He received an A.B. degree from
Hiram College in 1942 and a PhD.
(Physics) from the California Institute of
Technology in 1947. From 1946 to 1949,
he was Lecturer in Aeronautical
Engineering at the University of
Michigan. Since 1949 he has been at the Bell Telephone Laboratories
where he has done work on special purpose computers, electron
dynamics, zone melting, magnetic designs, error correcting codes, and
information retrieval. Dr. Hagelbarger is currently a member of the
Computing and lnformation Research Center.

The Authors

Saul Fingerman joined the Public
Relations and Publication Division of the
Bell Telephone Laboratories in 1964
after several years at sea as a merchant
marine radio officer.

He has written many materials for the
Bell System Aids to High School
Science Program, including the film,
The Thinking??? Machines.

A native New Yorker. Mr. Fingerman attended the Bronx High
School of Science and, in 1960, received the B.S. degree magna cum
laude, from Columbia University.

Bell Laboratories

