
1

Get Started MaESP ESP32 in Arduino

Introduction
The Makerfabs MaESP ESP32 Kit intended to help learners getting started with MicroPython/Arduino on

the ESP32. This Kits includes the most common electronic components and modules, for the starters to

learn the basic knowledge of MicroPython/Arduino, usage of Thonny IDE and usage of Arduino IDE. 12

basic lessons help starters to learn the usage and program skills about MicroPython/Arduino.

The total learning time for this kits& lessons is about 20 hours.

What is Arduino?
Arduino is an open-source electronics platform based on easy-to-use hardware and software. Arduino

boards are able to read inputs - light on a sensor, a finger on a button, or a Twitter message - and turn it

into an output - activating a motor, turning on an LED, publishing something online. You can tell your

board what to do by sending a set of instructions to the microcontroller on the board. To do so you use

the Arduino programming language (based on Wiring), and the Arduino Software (IDE), based on

Processing.

Product List:

2

Makerfabs MaESP ESP32 Pin figure:

3

Directory
I.Arduino Development Tool...4
II.MaESP Lessons in Arduino.. 11
1.Lesson1 LED Control...11
2.Lesson2 Running LED...13
3.Lesson3 Button... 14
4.Lesson4 PWM Control...16
5.Lesson5 Voice Control...19
6.Lesson6 OLED Display..23
7.Lesson7 Temperature Monitor DS18B20...26
8.Lesson8 Digital LED WS2812..28
9.Lesson9 Pulse Sensor...31
10.Lesson10 AnalogRead.. 34
11.Lesson11 Ultrasonic Ranging.. 37
12.Lesson12 WiFi.. 40

III.Troubleshooting... 49

4

I. Arduino IDE Development Tool

Install Arduino IDE
For this tutorial, we use Arduino IDE, which is the most simple& easy way for starts to skip into Arduino.

You can learn more about Arduino IDE on their GitHub repository or explore the Arduino IDE source code.

Click this link to download Arduino IDE 1.8.19 for Windows: https://www.arduino.cc/en/software.

After downloading and unzipping, you should see the arduino.exe in your Downloads folder.

Download the Arduino demo code, and double-click that file to open the Arduino IDE. Running the

Lesson 1 LED Arduino demo.

Code download link:
https://www.makerfabs.com/Makepython-esp32-starter-kit.html.

https://www.arduino.cc/en/software
https://www.makerfabs.com/makepython-esp32-starter-kit.html

5

A Simple code for blinking an LED on ESP32 as follows:

Get Start with Arduino IDE

Open Arduino IDE. Let's learn how to run C/C++ programs on Arduino IDE:

1. Establish a communication with the board
After unpacking the MaESP ESP32, connect it to the PC with a Type-C USB cable.

2. Installed the USB driver

• Go to Tools > Port：
select the port your MaESP ESP32 connected (the like for downloading the USB driver is:

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers)

3. Open the Arduino IDE, add the ESP32 development environment.
• Click the ‘File’ ,choose the Preferences, to add the ESP32 manager URLs:

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers)

6

• Click the square box, copy the following URL in it.
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json

• Click ‘OK’ button to save the configuration.
• Open the Boards Manager. Go to Tools > Board > Boards Manager.

• Search for ESP32 and press install button for the “ESP32 by Espressif Systems“, and choose the 2.0.5
version to click the ‘Install’ .

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json

7

• If it downloaded successfully, can see the board manager as follows.

• Users can find the ESP32 board compiler environment in ‘Tools’.

8

4. Start the first Arduino Program.
• Click the ‘new’ , the IDE will setup a new sketch in Arduino

• A new sketch display as follows

The ‘Void setup()’ function is used to initialize variables, pin modes, libraries, and other settings required

for the Arduino to work correctly. This function runs only once when the board is powered on or reset.

The ‘Void loop()’ function is the main function of the Arduino code, which continuously executes the block

of code placed inside it. The loop() function runs indefinitely until the board loses power or is reset. The

code inside loop() typically reads sensor inputs or performs some other action based on the input

received from the user.

• How to verify and upload the code in MaESP ESP32, for example running a function of serial print the
character string.

9

• Click the , the Arduino will verify the code, check the grammar error

• If the code checks well, users can click the upload-button to upload the code to the MaESP ESP32.

• Choose‘Tools’, open the serial monitor, can see the“Hello world”is printed in it.

10

5. How to install Arduino library.
• Open the Arduino IDE and choose the tools in the menus, click the manage libraris.

• search the Arduino library and install, for example install the Adafruit_SSD1306.

• Select the library version and install it. When the library is installed, it will be displayed as follows.

11

II. MaESP Lessons in Arduino

1. Lesson1: LED Control

This is the most basic lesson, in which we will learn how to control the digital output pins with Arduino, by

control the lighting of an LED.

Material:
 1*LED;

 Resistor: 1*330R;

 Jump wires;

Instructions: The short pin on the left is negative and the long pin on the right is positive.
The purpose of resistor is to limit the current, avoid burning LED lamp with too much current.

Wiring: Connect the long LED pin to the end of the 330R resistor, the other end of the resistance is
connected to 3.3v, the short pin of the LED lamp is connected to the IO5 of ESP32. As follows:

Create a file：Open the Arduino IDE and click the “File>>New”, and Put the following code into the new

sketch, check the demo code formatting and grammar. Then save the new sketch file in the computer

path, and verify and upload the code.

12

Code and comments:
void setup() {

// initialize digital pin LED_BUILTIN as an output.

pinMode(5, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

digitalWrite(5, HIGH); // turn the LED on (HIGH is the voltage level)

delay(500); // wait for a second

digitalWrite(5, LOW); // turn the LED off by making the voltage LOW

delay(500); // wait for a second

}

Grammar explanation:
 pinMode(5,OUTPUT);

Create an LED object and set it to output mode

 digitalWrite(5, HIGH);
Set the led pin value to high level. Since the other pin is connected to 3.3v, there is no voltage difference

between the two pins.

 digitalWrite(5, LOW);
Set the pin value to low level, there is a voltage difference between two pins, there is a current through,

the LED light is on.

 delay(500);
Delay 0.5 seconds, in this time the control will be sleep and do nothing.

Results:
When verify and upload the code successfully, you will see the LED lights blinks with interval of 0.5

seconds. You can try changing it to other pins yourself. For example, change to pinMode(4,OUTPUT) ,
then connect the wire to IO4, and the light will flash, or the delay is changed to delay(1000),The light
flickers slowly, with interval of 1s. You can also try to increase the number of LED lights and keep them on

and off.

13

2. Lesson2: Running LED

In this experiment, multiple LED lights are controlled to deepen the understanding of board GPIO port,

compilation environment and program framework.

Material:
 4*LEDs;

 resistance:4*330R;

 Jump wires;

Schematic:

Wiring: Connect the short LED pin to the IO15, IO14, IO13 and IO12 of ESP32, and connect the long pin

to one end of the 330R resistor and the other end of the resistor to 3.3V:

Create a new running_LED file with the following code and comments:

const int ledPins[] = {15, 14, 13, 12}; //Create an array of Pin15,Pin14,Pin13,Pin12 leds

int n = 0;

void setup() {

for (int i = 0; i < 4; i++) {

pinMode(ledPins[i], OUTPUT);

}

14

}

void loop() {

n = (n + 1) % 4; //The remainder sign % guarantees that n is between 0 and 3

digitalWrite(ledPins[n], HIGH); //The value of the NTH LED is high level,turn off

delay(30); //Delay of 30 milliseconds

digitalWrite(ledPins[n], LOW); //The value of the NTH LED is low level,turn on

delay(30); //Delay of 30 milliseconds

}

Grammar:
 const int ledPins[] = {15, 14, 13, 12};

Create an object for each LED lamp and control them separately, declaring a list form that is easy to

understand

 n = (n+1)%4;
n represents the current LED and we can get the value of the next n after each loop execution (the

residual symbol % ensures that the value of n is between 0 and 3)

 digitalWrite(ledPins[n],LOW/HIGH;)
The GPIO input high level can make the LED on, low level can make the LED off.

Results:
After running the code, you can see four LED lights go on and off in cycles. You can appropriately create

more LED objects in the list to make the running lights look better. For example, change to const int

ledPins[] = {15, 14, 13, 12,10,9},n = (n+1)%6 . You can see a row of lights dancing. You can even add

more. Try it yourself.

3. Lesson3: Button

The LED light in previous lesson is about the usage of output GPIO port. In the lesson, we will learn how

to input the signals to the board, by learning the usage of input of GPIO port by pressing buttons. The

MaESP ESP32 board will sense the button input, and thus to control the LED ON/OFF.

Material:
 1*Button Module;

 1* LED;

15

 resistance:1*330R;

 Jump wires;

Instructions: When the button is pressed, VCC is connected to OUT, and OUT pin outputs high level;

when the key is released, GND is connected to OUT, and OUT pin outputs low level

Wiring: LED wiring is the same as Lesson1. Button VCC pin connects board 3V3, GND connects board
GND, OUT pin connects IO12:

Create a new Button file with the following code and comments:

const int button = 12;

const int led = 5;

void setup() {

pinMode(button, INPUT_PULLUP); //Set the key pin to input mode and turn on the internal pull-up resistor

pinMode(led, OUTPUT); //Set the LED pin to output mode

}

void loop() {

if (digitalRead(button) == LOW) { //Detects whether a key is pressed?

digitalWrite(led, HIGH);

} else {

digitalWrite(led, LOW);

}

}

Grammar explanation:
 const int button = 12;

 pinMode(button, INPUT_PULLUP);

16

Create a key object and set it to input mode

 if...else:
Statement judge, If true, execute the statement after the if. Otherwise, execute the statement after the

else

Results:
Press the button, the LED light is will be on, while release the button, the LED light is off;

4. Lesson4: PWM Control

Pulse width modulation (PWM) is a method of obtaining artificial analog output on digital pins. It does this

by quickly switching pins from low to high. There are two related parameters: switching frequency and

duty cycle. Duty cycle is defined as the time a pin is at a high level compared to the length of a single

cycle (low level to high level time).The maximum duty cycle is that the guide foot is always at high level

while the minimum duty cycle is always at low level

We will demonstrate how to use the ESP32 board to generate a PWM signal. For example, by changing

duty cycle to reduce the brightness of LED, control steering gear rotation Angle.

Material:
 1*Servomotor;

 1*LED;

 1*330R;

 Breadboard and jump wires;

Instructions: By adjusting the ratio of LED brightness to off in one cycle, the LED brightness can be
adjusted. For example, the control cycle of PWM is 100ms, where 33ms is high level and 67ms is low

level, and the duty cycle is 33/100=33%

17

Wiring: Connect the long LED pin to the end of the 330R resistor, the other end of the resistance is
connected to 3.3v, the short pin of the LED lamp is connected to the IO5 of ESP32. As follows:

Create a new PWM file with the following code and comments:

const int ledPin = 5; // set the led pin number

int frequency = 1000; // set frequency to 1 kHz

void setup() {

pinMode(ledPin, OUTPUT); // set the led pin in OUTPUT Mode

}

void loop() {

for (int dutyCycle = 0; dutyCycle <= 1024; dutyCycle++) { // dutyCycle cycles between 0 and 1024

analogWrite(ledPin, dutyCycle); // change the duty of led

delay(2);

}

}

Grammar explanation:
 const int ledPin = 5; // set the led pin number

 int frequency = 1000; // set frequency to 5 kHz
Create the PWM object and set the default frequency

 analogWrite():
The larger the duty_cycle value of the led, the brighter the led.

Results:
The LED brightness goes from full bright to dark, then full bright again, and the cycle around, like a breath,

which we called “breathing LED”

Servo motor is widely used in robot applications. It is an automatic control system composed of dc motor,

reduction gear, sensor and control circuit, the rotation angle of the output shaft determined by the input

18

PWM signal.

Instructions: Orange wire: Signal , Red wire: Power , Brown wire: GND.
Users control the Servo by sending them a fixed frequency square wave signal (usually 50Hz for analog

servers, but digital ones may also accept up to 300Hz). the sg90 is analog servo, we use the duty method

to set the Angle.

Wiring: The orange line is connected to IO14, the red line is connected to 3.3v, and the brown line is

connected to GND：

Create a new Servo_Demo file with the following code and comments:

#include <Arduino.h> // Include the standard Arduino library header.

int servoPin = 14; // Define the signal pin of the servo as digital pin 14.

int frequency = 50; // Set the control frequency of the servo to 50Hz.

void setup() { // Initialization function.

pinMode(servoPin, OUTPUT); // Set the servo signal pin as output mode.

}

void loop() { // Looping function.

for (int angle = 0; angle <= 180; angle++) { // Increase the angle of the servo gradually from 0 degree to 180

degree.

int pulseWidth = map(angle, 0, 180, 500, 2500); // Map the current angle to a corresponding PWM pulse

width value.

19

digitalWrite(servoPin, HIGH); // Turn on the servo signal.

delayMicroseconds(pulseWidth); // Wait for the specified pulse width.

digitalWrite(servoPin, LOW); // Turn off the servo signal.

delay(20); // Delay for 20ms to wait for the servo to rotate to the specified

angle.

}

}

Grammar explanation:
 int servoPin = 14;

 int frequency = 50;
Create the PWM object and set the frequency to 50Hz

 int pulseWidth = map(angle, 0, 180, 500, 2500);:
Map the current angle to a corresponding PWM pulse width value.

Results:
The servo motor keeps turning.

5. Lesson5: Voice Control

This experiment will use the buzzer and sound sensor module to do some experiments on sound.

Instructions: according to the driving mode is mainly divided into active buzzer and passive buzzer,
active buzzer needs dc voltage can drive, passive buzzer needs a specific frequency of vibration signal to

drive.The experiment use an active buzzer.

20

Wiring：VCC is connected to 3V3,GND is connected to GND, and I/O is connected to IO12:

Create a Buzzer file with code and comments:
const int pwmPin = 12;// Define the PWM output pin for the siren

int dutyCycle = 0;// Set the initial duty cycle to 0

void ambulenceSiren() {

ledcWriteTone(0, 400); // Set the tone frequency to 400Hz

ledcWrite(0, 512); // Set the duty cycle to 50%

delay(500); // Wait for 500 milliseconds

ledcWriteTone(0, 800); // Increase the tone frequency to 800Hz

delay(500); // Wait for 500 milliseconds

}

void setup() {

ledcSetup(0, 400, 10); // Configure PWM channel 0 with a frequency of 400Hz and a resolution of 10 bits

ledcAttachPin(pwmPin, 0); // Attach the PWM output to the specified pin

}

void loop() {

ambulenceSiren(); // Call the function to generate the siren sound repeatedly in a loop

}

Grammar explanation:
 void ambulenceSiren()

Define your own functions in ambulenceSiren, followed by the function identifier name and parentheses

(), within which you can pass arguments and arguments.

 ledcWriteTone(0, 400);

21

Set the frequency at 400Hz, different frequencies produce different sounds

Results:
You can hear the sound of an ambulance whistle, but you can also modify pwm.freq() to simulate other
sounds.

With the sound sensor in the kit, we can also make a “sound switch”, that controls an LED On/Off by

single sound:

Instructions: the sound intensity of the surrounding environment can be detected. When the sound of

the external environment fails to reach the set threshold, OUT outputs a high level; when the sound

intensity of the environment reaches the set threshold, module OUT outputs a low level. The blue digital

potentiometer on the module can be used to adjust the sensitivity.

Wiring: VCC is connected to 3V3, GND is grounded, OUT is connected to IO12, and LED is connected

to IO5：

Create Voice files, code, and comments:
int voice = 12; //Define the 12 pin input for the variable "voice"

int LED = 5; //Define the 5 pin output for the variable "LED"

void setup() {

pinMode(voice, INPUT); //Set the "voice" pin as an input.

pinMode(LED, OUTPUT); //Set the "LED" pin as an output.

22

}

void loop() {

if(digitalRead(voice) == 1){ /*Checks if the digital signal received from the "voice" input pin is equal

to 1. */

digitalWrite(LED, 0); //Turns off the LED connected to the "LED" output pin.

delay(1000); // Waits for 1 second

}

else{ // If the digital signal received from the "voice" input pin is not equal to 1.

digitalWrite(LED, 1); // Turns on the LED connected to the "LED" output pin.

}

}

Results:
When you clap your hands or snap your fingers, you'll notice that the light will be on for 1 second.

6. Lesson6: OLED Display

There an on-board OLED 1.3’ OLED module on MaESP board, with 128x64 pixel.One pixel of a

monochrome screen is a light-emitting diode. OLED is "self-illumination", the pixel itself is the light source,

so the contrast is very high. OLED screens have I2C and SPI communication protocols, which are

completely incompatible due to different protocols. In our lesson, the OLED is configured to compatible

with I2C protocol.

Material:
 MaESP ESP32:

23

I2C communication: I2C is widely used for controller communicating with onboard components such as

sensors/ displays. Data transmission can be completed by only two signal lines, respectively clock line

SCL and signal line SDA. There is only one main device Master and several Slave devices on the I2C

line. In order to ensure that both buses are at high level when idle, SDA and SCL must be connected with

the pull resistor. The classical value of the pull resistor is 10K.

Use the OLED Drivers.
In this demo，diver the OLED need a Arduino library，Adafruit _SSD1306. The beginner need to follow
the tutorial(How to install Arduino library) to install the Adafruit_ssd1306 library before verifying the code.

Create a new ssd1306Demo file, code and comments:
#include <Wire.h>

#include <Adafruit_GFX.h>

#include <Adafruit_SSD1306.h>

#define SCREEN_WIDTH 128 // OLED display width, in pixels

#define SCREEN_HEIGHT 64 // OLED display height, in pixels

#define OLED_RESET -1 // Reset pin # (or -1 if sharing Arduino reset pin)

#define SCREEN_ADDRESS 0x3c

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);

#define I2C_SDA 4

#define I2C_SCL 5

void setup() {

// put your setup code here, to run once:

Serial.begin(115200);

Wire.begin(I2C_SDA, I2C_SCL);

24

if (!display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS)) {

Serial.println(F("SSD1306 allocation failed"));

for (;;); // Don't proceed, loop forever

}

display.clearDisplay();

display.display();

}

void loop() {

display.clearDisplay();

display.setCursor(30, 10);

display.setTextColor(WHITE);

display.setTextSize(1);

display.println("Makerfabs");

display.setCursor(30, 25);

display.setTextColor(WHITE);

display.setTextSize(1);

display.println("time:");

display.setCursor(30, 40);

display.setTextColor(WHITE);

display.setTextSize(1);

display.println("2019-12-5");

display.display();

delay(500);

}

Grammar explanation:
 #define I2C_SDA 4

 #define I2C_SCL 5

 Wire.begin(I2C_SDA, I2C_SCL);
Initialize, configure the SCL and SDA pins

 display.clearDisplay();

 display.setCursor(30, 10);

 display.setTextColor(WHITE);

 display.setTextSize(1);
Something to display,Configure display coordinates, colors ,size and display content.

Results:
Save and click run, and you'll see Makerfabs/time:/2019-12-5; You can also make it display your

own name, etc. Just use the display.println("") statement to write what you want to display.

25

7. Lesson7: Temperature Monitor DS18B20

Instructions: 1:GND; 2:Data(need to connect the pull resistor a 10k resistor to 3.3v);3:VDD

Wiring: The GND pins are connected, VCC pin is connected to 3v3, and the DQ pin is connected to IO12.

26

*when verify the code, and the shell sent the error is no find the Adafruit_SSD1306.h, please downloaAdafruit_SSD1306

library first. Refer to lesson 6

Create a new DS18B20Demo file, code and comments:

#include <Wire.h> // include the Wire library for I2C communication

#include <Adafruit_SSD1306.h> // include the Adafruit SSD1306 library for OLED display control

#include <OneWire.h> // include the OneWire library for DallasTemperature sensor communication

#include <DallasTemperature.h> // include the DallasTemperature library for temperature measurement

#define SCREEN_WIDTH 128 // define the OLED display width in pixels

#define SCREEN_HEIGHT 64 // define the OLED display height in pixels

#define OLED_RESET -1 // define the OLED reset pin number (or -1 if sharing Arduino reset pin)

#define SCREEN_ADDRESS 0x3c // define the OLED screen address

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET); /* initialize the

OLED display*/

#define I2C_SDA 4 // define the I2C SDA pin number

#define I2C_SCL 5 // define the I2C SCL pin number

OneWire oneWire(12); // initialize the OneWire object with data pin 12

DallasTemperature sensors(&oneWire); // initialize the DallasTemperature sensor object with the OneWire object

void setup() {

Serial.begin (115200); // initialize serial communication at 115200 baud rate

Wire.begin(I2C_SDA, I2C_SCL); // initialize I2C communication with the defined SDA and SCL pins

if(!display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS)) { /* check if the OLED display was

successfully initialized*/

Serial.println(F("SSD1306 allocation failed"));

for(;;); // if not, loop forever

}

}

void loop() {

sensors.requestTemperatures(); // send a request to the DallasTemperature sensor to measure temperature

float temperature = sensors.getTempCByIndex(0); // read and store the temperature in degrees Celsius

display.clearDisplay(); // clear the OLED display

display.setTextSize(1); // set the text size to 1

display.setTextColor(WHITE); // set the text color to white

display.setCursor(10, 16); // set the cursor position to (10, 16)

display.println("temperatures:"); // display the text "temperatures:"

display.setCursor(24, 40); // set the cursor position to (24, 40)

display.println(String(temperature)); // display the measured temperature as a string

display.display(); // update the OLED display with the new text

27

delay(1000); // wait for 1000 milliseconds before updating the temperature again

}

Grammar explanation:

 sensors.requestTemperatures();
Start temperature reading

 float temperature = sensors.getTempCByIndex(0);
Read the collected temperature

 display.clearDisplay();
Empty the screen.

Results:
After running, the temperature collected on the display screen appears, which is refreshed every 750ms

8. Lesson8: Digital LED WS2812

WS2812 is an integrated chip low-power RGB trichromatic lamp, chips and full-color legs wrapped

together, only 4 pins, each one chip as a full-color "pixel", each pixel end, DIN client receive the data from

the controller transfer to come over, every pixel of transmission, signal 24 bit to reduce, all the way.

This experiment will teach you how to make colorful LED light rings.

28

Wiring: VDD is connected to 3.3V/5V, VSS is connected to GND, DIN is connected to IO12 of the
board:

*when verify the code, and the shell sent the error is no find the Adafruit_NeoPixel.h, please download Adafruit_NeoPixel

library first. Refer to How to install Arduino Library.

Create a new ws2812Demo file, code and comments:

#include <Adafruit_NeoPixel.h>

// Define the pin number that the LED strip is attached to and the number of LEDs in the strip

#define LED_PIN 12

#define NUM_LEDS 12

// Create an instance of the Adafruit_NeoPixel class with the specified number of LEDs and pin number

Adafruit_NeoPixel strip = Adafruit_NeoPixel(NUM_LEDS, LED_PIN, NEO_GRB + NEO_KHZ800);

// Set up the LED strip by initializing it and showing the initial state (all LEDs off)

void setup() {

strip.begin();

strip.show();

}

// Continuously run the demo function in a loop

void loop() {

29

demo();

}

// A custom function to create a circular effect and a rebound effect on the LED strip

void demo() {

// Circular effect: One pixel runs through all strip positions while the others are closed.

for (int i = 0; i < 4 * NUM_LEDS; i++) { // Loop through four times the total number of LEDs

for (int j = 0; j < NUM_LEDS; j++) { // Turn off all LEDs except for the current one being lit

strip.setPixelColor(j, 0, 0, 0);

}

strip.setPixelColor(i % NUM_LEDS, 255, 255, 255); // Set the color of the current LED

strip.show(); // Show the updated LED state

delay(25); // Wait for a short period of time to create a smooth animation

}

// Rebound effect: The light bounces back and forth across the strip, changing color with each bounce.

// The wait time determines the speed of the bouncing effect.

for (int i = 0; i < 4 * NUM_LEDS; i++) { // Loop through four times the total number of LEDs

for (int j = 0; j < NUM_LEDS; j++) { // Set all LEDs to a dark blue color

strip.setPixelColor(j, 0, 0, 128);

}

if ((i / NUM_LEDS) % 2 == 0) { // If the current bounce is going right

strip.setPixelColor(i % NUM_LEDS, 0, 0, 0); // Turn off the current LED

}

else { // Else, the current bounce is going left

strip.setPixelColor(NUM_LEDS - 1 - (i % NUM_LEDS), 0, 0, 0); /* Turn off the mirror LED on the other

end of the strip*/

}

strip.show(); // Show the updated LED state

delay(60); // Wait for a longer period of time to create a slower bouncing effect

}

}

Grammar explanation:
 #include <Adafruit_NeoPixel.h>

Include the necessary library for controlling NeoPixel LED strips

 #define LED_PIN 12

 #define NUM_LEDS 12
Create the NeoPixe object from pin12,set LED quantity

 strip.show();
Use the show() method to output the colors to the LED

Results:

30

Running the code, you can see the brightest white light in the loop, followed by the half-bright blue light

bouncing back and forth. You can make colored lights by changing the r,g, and b values of np[i] to get

different colors and brightness.

9. Lesson9: Pulse Sensor

The Pulse Sensor is a photoelectric reflex analog sensor for pulse and heart rate measurement. Wear it

on finger, earlobe and so on, make use of the body tissue in the vascular pulse caused by different

transmittance to measure pulse. The sensor filters and amplifies the photoelectric signal, and finally

outputs the simulated voltage value. Then the heart rate value can be obtained by simple calculation.

In this experiment, ADC will be learned through the Pulse Sensor module, and the results will be

displayed on the OLED screen.

Instructions: On the left is the s-pin of the signal output, in the middle is the positive power supply
VCC (3.3v ~5V), and on the right is the negative power supply GND.

On the ESP32 ADC functionality is available on Pins 32-39. Note that, when using the default

configuration, input voltages on the ADC pin must be between 0.0v and 1.0v (anything above 1.0v will

just read as 4095). Attenuation must be applied in order to increase this usable voltage range.

Wiring: The s-pin is connected to IO32, the middle pin is connected to 3V3, and the "-" pin is connected
to GND:

31

*when verify the code, and the shell sent the error is no find the Adafruit_SSD1306.h, please downloaAdafruit_SSD1306

library first. Refer to lesson 6

Create a new pulse file, code and comments:
#include <Wire.h>

#include <Adafruit_GFX.h>

#include <Adafruit_SSD1306.h>

#define SCREEN_WIDTH 128 // OLED display width, in pixels

#define SCREEN_HEIGHT 64 // OLED display height, in pixels

#define OLED_RESET -1 // Reset pin # (or -1 if sharing Arduino reset pin)

#define SCREEN_ADDRESS 0x3c // Communication address for the OLED screen

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);

#define I2C_SDA 4 // SDA pin for I2C communication

#define I2C_SCL 5 // SCL pin for I2C communication

const int analogInPin = 32; // Analog input pin for reading sensor data

void drawCircle(int x, int y, int r, int color, int fill=0); // Function to draw a circle on the OLED screen

void setup() {

Serial.begin(115200); // Begin serial communication

Wire.begin(I2C_SDA, I2C_SCL); // Begin I2C communication

if (!display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS)) { // Initialize the OLED screen

Serial.println(F("SSD1306 allocation failed")); // If initialization fails, print an error message

for (;;); // Don't proceed, loop forever

}

pinMode(analogInPin, INPUT); // Set analog input pin as input

display.clearDisplay(); // Clear the OLED screen

32

display.display(); // Display the cleared screen

}

void loop() {

int adcValue = analogRead(analogInPin); // Read the analog value from the sensor

float radius = ((float)adcValue / 4095.0) * 64.0; //Map the range of adc values to the range of circle radius (0-32)

display.clearDisplay(); // Clear the OLED screen

drawCircle(64, 32, (int)radius, WHITE, 1); // Draw a circle on the OLED screen with specified parameters

display.display(); // Display the circle on the OLED screen

delay(500); // Wait for 500 milliseconds

}

void drawCircle(int x, int y, int r, int color, int fill) {

if (fill == 0) { // If fill parameter is 0, draw only the outline of the circle

for (int i=x-r; i<=x+r; i++) {

display.drawPixel(i, y-sqrt(r*r-(x-i)*(x-i)), color); // Draw the upper half of the circle

display.drawPixel(i, y+sqrt(r*r-(x-i)*(x-i)), color); // Draw the lower half of the circle

}

for (int i=y-r; i<=y+r; i++) {

display.drawPixel(x-sqrt(r*r-(y-i)*(y-i)), i, color); // Draw the left half of the circle

display.drawPixel(x+sqrt(r*r-(y-i)*(y-i)), i, color); // Draw the right half of the circle

}

}

else { // If fill parameter is 1, fill the circle with color

for (int i=x-r; i<=x+r; i++) {

int a = sqrt(r*r-(x-i)*(x-i));

display.drawFastVLine(i, y-a, a*2, color); // Fill the vertical column of pixels within the circle

}

for (int i=y-r; i<=y+r; i++) {

int a = sqrt(r*r-(y-i)*(y-i));

display.drawFastHLine(x-a, i, a*2, color); // Fill the horizontal row of pixels within the circle

}

}

}

Grammar explanation:
 int adcValue = analogRead(analogInPin):

Set a integer variable to store the analog Pin value

 float radius = ((float)adcValue / 4095.0) * 64.0;
Set a Floating variable to Map the range of adc values to the range of circle radius (0-32)

Results:
Touch the side printed with the heart with your finger, the screen will display your heart rate beat line,

the module contact instability or vibration, will affect the measurement data, please save the static

33

measurement.

.

10. Lesson10: AnalogRead

ADC is an Analog/Digital Converter that converts Analog signals into Digital. In the front control LED on,

PWM inside, we know the difference between digital signal and analog signal. The signals we use in

everyday life, such as light intensity, sound waves, and battery voltages, are all analog values. If we want

to measure the analog signal (voltage, light intensity, sound wave) through the single-chip

microcomputer and express it by digital signal, then we need ADC analog digital signal converter

Instructions: Potentiometer is an adjustable resistor with three leading ends and resistance values
that can be adjusted according to a certain variation law. A potentiometer usually consists of a resistor

body and a movable brush. When the brush moves along the resistance body, the resistance value or

voltage in relation to the displacement is obtained at the output end.

Wiring : The pins on the left and right sides are connected to 3.3V and GND of the plate respectively,
the middle pin is connected to IO32:

34

*when verify the code, and the shell sent the error is no find the Adafruit_SSD1306.h, please downloaAdafruit_SSD1306

library first. Refer to lesson 6

Create a new ssd1306_adc file, code and comments:
#include <Wire.h>

#include <Adafruit_GFX.h>

#include <Adafruit_SSD1306.h>

#define SCREEN_WIDTH 128 // OLED display width, in pixels

#define SCREEN_HEIGHT 64 // OLED display height, in pixels

#define OLED_RESET -1 // Reset pin # (or -1 if sharing Arduino reset pin)

#define SCREEN_ADDRESS 0x3c

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);

#define I2C_SDA 4

#define I2C_SCL 5

int counttime = 0;

void setup() {

pinMode(32, INPUT); // set pin 32 as input

Serial.begin (115200); // initialize serial communication at 115200 bits per second

Wire.begin(I2C_SDA, I2C_SCL); // initialize I2C communication using SDA and SCL pins

35

if(!display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS)) { // check if OLED display is

connected

Serial.println(F("SSD1306 allocation failed")); // print error message to serial monitor

for(;;); // Don't proceed, loop forever

}

}

void loop() {

int adcValue; // declare variable to store ADC value

adcValue = analogRead(32); // read value from pin 32, 0-4095 across voltage range 0.0v - 1.0v

adcValue = map(adcValue, 0, 4095, 0, 1023); // convert ADC value to a 10-bit value

display.drawLine(counttime, 40, counttime, adcValue-420, WHITE); // draw the heart rate on OLED display

display.display(); // display the heart rate on OLED display

Serial.println(adcValue); // print the heart rate to serial monitor

delay(1); // delay for 1 millisecond

counttime++; // increment counttime

if (counttime > 127) { // if counttime is greater than 127

counttime = 0; // reset counttime to 0

display.clearDisplay(); // clear the OLED display

display.display(); // display the cleared OLED display

}

}

Grammar explanation:
 adcValue = analogRead(32);

Set a adcValuer variable to store the analog Pin32 value

 adcValue = map(adcValue, 0, 4095, 0, 1023);
The adc sampling bit of esp32 is 12 bits, which is converted to 10-bit data.

Results:
By rotating the potentiometer, the circle on the OLED display becomes larger or smaller.

36

11. Lesson11: Ultrasonic Ranging

The ultrasonic module is for obstacle& distance measurement. It has stable performance, accurate

measurement distance and high precision. The module includes ultrasonic transmitter, receiver and

control circuit. Application: robot obstacle avoidance, object ranging, etc

Sequence diagram:

Ranging principle: to module 1 at least 10 us high level, began after launch eight modules receive the

high level of 40 KHZ sound waves, echo the feet will be changed from 0 to 1, MCU start timing, when the

ultrasonic module receives the returned acoustic echo from 1 to 0, MCU stop timing, this time is the total

time range, in a voice the speed of 340 m/SEC, in addition to 2 is distance.

Wiring: VCC is connected to 5V, GND is connected, Trig is connected to IO13, and Echo is connected to

IO12:

37

*when verify the code, and the shell sent the error is no find the Adafruit_SSD1306.h, please downloaAdafruit_SSD1306

library first. Refer to lesson 6

You can review how this module works. Step 1: you need to give the Trig pin a high level of 10us, step 2:

calculate the time when the Echo pin is in the high level, and step 3: calculate the distance according to

the time.

Create a new Ultrasonic Ranging file, code and comments:

#include <Wire.h>

#include <Adafruit_GFX.h>

#include <Adafruit_SSD1306.h>

#define SCREEN_WIDTH 128 // OLED display width, in pixels

#define SCREEN_HEIGHT 64 // OLED display height, in pixels

#define OLED_RESET -1 // Reset pin # (or -1 if sharing Arduino reset pin)

#define SCREEN_ADDRESS 0x3c // I2C address of the SSD1306 OLED display

// Initialize the SSD1306 OLED display object with the specified screen width, height, I2C bus, and reset pin

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);

#define I2C_SDA 4 // Pin number for the I2C Serial Data (SDA) line

#define I2C_SCL 5 // Pin number for the I2C Serial Clock (SCL) line

#define TRIGGER_PIN 13 // Pin number for the ultrasonic sensor trigger

#define ECHO_PIN 12 // Pin number for the ultrasonic sensor echo

void setup() {

Serial.begin(115200); // Initialize serial communication with a baud rate of 115200 bits per second

Wire.begin(I2C_SDA, I2C_SCL); // Initialize the I2C bus with the specified SDA and SCL pins

// If the SSD1306 OLED display fails to allocate memory, print an error message to the serial monitor and enter

an infinite loop

if(!display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS)) {

Serial.println(F("SSD1306 allocation failed"));

for(;;); // Don't proceed, loop forever

}

pinMode(TRIGGER_PIN, OUTPUT); // Set the trigger pin as output

pinMode(ECHO_PIN, INPUT); // Set the echo pin as input

display.clearDisplay(); // Clear the OLED display

display.display(); // Update the OLED display with the cleared buffer

}

38

void loop() {

digitalWrite(TRIGGER_PIN, LOW); // Set the ultrasonic sensor trigger pin to low

delayMicroseconds(2); // Wait for 2 microseconds

digitalWrite(TRIGGER_PIN, HIGH); // Set the ultrasonic sensor trigger pin to high

delayMicroseconds(10); // Wait for 10 microseconds

digitalWrite(TRIGGER_PIN, LOW); // Set the ultrasonic sensor trigger pin to low again

long duration = pulseIn(ECHO_PIN, HIGH); // Measure the time it takes for the echo signal to return

float distance_cm = duration / 58; // Convert the duration to centimeters using the speed of sound

Serial.print("Distance (cm): "); // Print a label to the serial monitor

Serial.println(distance_cm); // Print the measured distance in centimeters to the serial monitor

delay(500);

display.clearDisplay(); // Clear the OLED display

display.setCursor(30, 20); // Set the cursor position to (30, 20)

display.setTextColor(WHITE); // Set the text color to white

display.setTextSize(1); // Set the text size to 1x

display.println("Distance:"); // Print a label to the OLED display

display.setCursor(30, 40); // Set the cursor position to (30, 40)

display.setTextSize(1); // Set the text size to 1x

display.println(distance_cm); // Print the measured distance in centimeters to the OLED display

display.display(); // Update the OLED display with the new buffer

delay(500);

}

Results:

Point the module at objects in different directions and the OLED displays the distance.

39

12. Lesson12: WiFi

MaESP ESP32 devices have built-in Wifi, which enables us to access it via Wifi, or connect to your home

Wifi network. In this lesson, users can remote control/upload MaESP, without the need for a USB cable,

and also how to make the MaESP a web server, with socket communication.

1. WiFi connection

 STAMode:
Each terminal connected to a wireless network can be called a site. Arduino need to call the WIFI library

to setting the the MaESP ESP32 inter STAmode.

 Connect to Internet(STA):
#include <WiFi.h>

const char* ssid = "Makerfabs"; // Local network name

const char* password = "20160704"; // Local network password

void setup() {

Serial.begin(115200); // Initialize serial communication at baud rate 115200

WiFi.mode(WIFI_STA); // Set WiFi mode to station (client)

WiFi.begin(ssid, password); // Connect to WiFi network using given SSID and password

while (WiFi.status() != WL_CONNECTED) { // Wait until connection is established

delay(1000);

Serial.println("Connecting to WiFi...");

}

Serial.println("WiFi connected"); // Print message once WiFi is connected

Serial.print("IP address: ");

Serial.println(WiFi.localIP()); // Print the IP address obtained from DHCP server

}

void loop() {

// put your main code here, to run repeatedly:

}

Grammar explanation:
 const char* ssid = "Makerfabs"; // Local network name

 const char* password = "20160704"; // Local network password
Put the loacl wifi configration in the code.

 WiFi.mode(WIFI_STA);
Set the WiFi inter the STAmode.

40

 Serial.println(WiFi.localIP());
Print the WiFi ip address in the serial monitor.

2. Socket communication

Socket communication is the basis of Internet communication. It is the basic operation unit of

network communication that supports TCP/IP protocol. To establish Socket communication requires a

server side and a client side. This routine will use Python ESP32 as the client and computer browser as

the server side. Both sides will use TCP protocol to transmit and receive data from each other.

Example_1: Socket Communication LED Remote control

In this example, we will make the MaESP as a server with LED, so the users can assess the LED control

remotely with any computer, as they get the right IP address.

The Socket_LED source code:

#include <WiFi.h> // Library for connecting to WiFi network

#include <WebServer.h> // Library for creating a web server and handling HTTP requests

// Set up WiFi network credentials

const char* ssid = "Makerfabs";

const char* password = "20160704";

// Create a WebServer object, listening on port 80

WebServer server(80);

// Set LED pin number and initial state

int ledPin = 5;

bool ledState = LOW;

41

void setup() {

Serial.begin(115200);// Start serial communication at 115200 baud rate

// Set LED pin mode as output and initial state as low

pinMode(ledPin, OUTPUT);

digitalWrite(ledPin, ledState);

// Connect to WiFi network and wait until connected

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(1000);

Serial.println("Connecting to WiFi...");

}

// Print the IP address once connected to WiFi

Serial.print("Connected to WiFi, IP address: ");

Serial.println(WiFi.localIP());

// Set up root webpage that displays ON/OFF buttons to control LED

server.on("/", HTTP_GET, {

String html = "<html><head><meta name="viewport" content="width=device-width,

initial-scale=1"></head>";

html += "<body><h1>Makerfabs Web Server</h1><button>ON</button> ";

html += "<button>OFF</button></body></html>";

server.send(200, "text/html", html);

});

/ / Handle ON button click by turning LED off and redirecting to root webpage

server.on("/on", HTTP_GET, {

ledState = LOW;

digitalWrite(ledPin, ledState);

server.sendHeader("Location", "/");

server.send(303);

});

// Handle OFF button click by turning LED on and redirecting to root webpage

server.on("/off", HTTP_GET, {

ledState = HIGH;

digitalWrite(ledPin, ledState);

server.sendHeader("Location", "/");

server.send(303);

});

42

// Start the web server

server.begin();

}

void loop() {

// Handle incoming client requests

server.handleClient();

}

Grammar explanation:
 WebServer server(80);

Create a WebServer object, listening on port 80

 server.on("/on", HTTP_GET, []()):
Create the socket object,AF_INET->IPV4,SOCK_STREAM->TCP

 server.begin();
Start the web server

The experimental results:
Change SSID and Password to local network name and Password. The LED wiring is the same as

Lesson1. When connecting to the router, you can see the IP address printed out of the serial port:

Enter the IP address printed from the serial port in any browser, with any computer/phone in the same

WIFI, to control the LED on/off:

43

Example_2: Socket Communication Remote Monitoring

In addition to sending command and control LED lights, MaESP ESP32 can also receive

measurement data. The DHT11 module is used in this experiment. With the Socket communication, the

MaESP can be also a server to detect environment and report to the Internet for sharing. In this example,

the MaESP be a temperature& humidity server, so any PC/Phone could assess it to get the related info.

Instructions: DHT11 digital temperature and humidity sensor is sensor containing calibrated digital
signal output. It applies special digital module acquisition technology and temperature and humidity

sensing technology. The sensor consists of a resistive moisture sensor and an NTC temperature sensor.

Its precision humidity +-5%RH, temperature +-2℃, range humidity 20-90%RH, temperature 0~50℃.VCC

power positive pole : 3V~ 5.5v,GND: power negative ground, DATA: serial DATA pin;

Wiring: VCC is connected to 3.3v, and DATA is connected to IO14:

44

Socket_DHT11 Sample code:

#include <WiFi.h>

#include <WiFiClient.h>

#include <WebServer.h>

#include "DHT.h"

const char* ssid = "Makerfabs";

const char* password = "20160704";

#define DHTPIN 14

#define DHTTYPE DHT11

DHT dht(DHTPIN, DHTTYPE);

WebServer server(80);

float temp, hum;

String webPage;

void setup() {

Serial.begin(115200);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(1000);

Serial.println("Connecting to WiFi...");

}

45

Serial.println("Connected to WiFi");// Print a message indicating a successful connection to the WiFi network

// Define the behavior of the root URL ("/") when accessed with an HTTP GET request

server.on("/", handleRoot);

server.begin();

Serial.print("Server address: ");

Serial.println(WiFi.localIP());

}

void loop() {

// Handle incoming client requests

server.handleClient();

// Read the temperature and humidity values from the DHT sensor

readSensor();

}

// Generate an HTML response with two progress bars showing the temperature and humidity readings

void handleRoot() {

// Generate an HTML response with two progress bars showing the temperature and humidity readings

String html = "<html><head><meta name=\"viewport\" content=\"width=device-width, initial-scale=1\">";

html += "<style>body{padding: 20px; margin: auto; width: 50%; text-align: center;}";

html += ".progress{background-color: #F5F5F5;} .progress.vertical{position: relative;";

html += "width: 25%; height: 60%; display: inline-block; margin: 20px;}";

html += ".progress.vertical > .progress-bar{width: 100% !important;position: absolute;bottom: 0;}";

html += ".progress-bar{background: linear-gradient(to top, #f5af19 0%, #f12711 100%);}";

html += ".progress-bar-hum{background: linear-gradient(to top, #9CECFB 0%, #65C7F7 50%, #0052D4

100%);}";

html += "p{position: absolute; font-size: 1.5rem; top: 50%; left: 50%; transform: translate(-50%, -50%); z-index:

5;}</style></head>";

html += "<body><h1>Makerfabs DHT Sensor</h1><div class=\"progress vertical\">";

html += "<p>" + String(temp) + " C<p>";

html += "<div role=\"progressbar\" style=\"height: " + String((temp+6)/(40+6)*(100)) + "%;\"

class=\"progress-bar\"></div></div><div class=\"progress vertical\">";

html += "<p>" + String(hum) + "%</p>";

html += "<div role=\"progressbar\" style=\"height: " + String(hum) + "%;\" class=\"progress-bar

progress-bar-hum\"></div></div></body></html>";

server.send(200, "text/html", html);// Send the HTML response with a status code of 200 (OK)

}

void readSensor() {

temp = hum = 0;

delay(2000);

46

dht.begin();

float tempRead = dht.readTemperature();

float humRead = dht.readHumidity();

if (isnan(tempRead) || isnan(humRead)) {

Serial.println("Failed to read from DHT sensor!");

return;

}

// Update the temperature and humidity variables

temp = tempRead;

hum = humRead;

// Print the temperature and humidity readings to the serial monitor

Serial.println("Temperature: " + String(temp) + " °C");

Serial.println("Humidity: " + String(hum) + "%");

}

Results:
Modify SSID and PASSWORD in the code and restart. If the program runs and connects to the

router, the serial port can be seen to print out the IP address:

Open your IP with any computer in the WIFI could access this temperature& humidity monitor now, by

entering the IP address in any browser:

47

48

III. Troubleshooting

Here are some common troubleshooting issues when developing ESP32 using Arduino:

1.Connection issue: If you cannot connect to the ESP32 board, you need to check if the USB

cable is plugged in properly, if the correct serial port is selected, etc.

2.Compilation issue: If errors occur during compilation, you need to make sure that the library files
are installed correctly;

3.Burning issue: If burning fails, you need to check whether the correct board and UART port are

selected;

4.Power supply issue: If the ESP32 board does not work properly, it may be due to insufficient or
unstable power supply. You can use a higher quality power supply/cable;

5.Sensor issue: If there are problems when using sensors, you need to check whether the sensor
is connected correctly and authorized, and whether the code for reading data is correct, etc.

About Makerfabs

Makerfabs is open hardware facilitator based on Shenzhen, China, We make open
hardware projects and help our customers project prototyping& small batch production,
includes PCBA/ Molding/ OEM. Contact service@makerfabs.com for more info.

mailto:service@makerfabs.com

	Introduction
	What is Arduino?
	Product List:
	Makerfabs MaESP ESP32 Pin figure:

	Directory
	I.Arduino IDE Development Tool
	Install Arduino IDE
	Get Start with Arduino IDE

	II.MaESP Lessons in Arduino
	1.Lesson1: LED Control
	2.Lesson2: Running LED
	3.Lesson3: Button
	4.Lesson4: PWM Control
	5.Lesson5: Voice Control
	6.Lesson6: OLED Display
	7.Lesson7: Temperature Monitor DS18B20
	8.Lesson8: Digital LED WS2812
	9.Lesson9: Pulse Sensor
	10.Lesson10: AnalogRead
	11.Lesson11: Ultrasonic Ranging
	12.Lesson12: WiFi
	1.WiFi connection
	2.Socket communication

	III.Troubleshooting

