
Written by the I in J.I.M

What is AlexNet:
AlexNet is a convolutional neural network (CNN) architecture that played a pivotal role in
advancing the field of deep learning, particularly in the domain of computer vision and image
recognition.

Data collection code:

Figure 1: Data Collection

This code is solely responsible for capturing the hand gesture to train the Alexnet to
recognise it. The code will capture 300 snapshots from the webcam, crop each snapshot to a
specified region, resize it, annotate it with a rectangle, and save it as a BMP file with a unique
filename. [1]: The code starts by clearing the Command Window “clc”, closing all figure
windows “close all”, clearing all variables from the workspace “clear all”, and turning off
MATLAB warnings “warning off”. [7]: Followed by initialising a connection to the webcam
using the webcam function. [10-13]: After initialising, it creates a bounding box with a



Written by the I in J.I.M

defined coordinate and size that was defined. The variable “temp” is initialised as a counter
variable and is set to 0.

[22] It then enters a loop that will continuously run as long as the counter variable “temp” is
less than or equal to 300. Inside the loop, using “e=c.snapshot” it will capture an image
frame from the webcam and annotate the captured frame with a rectangle to highlight the
processing area defined by the bounding box using “IHand =
insertObjectAnnotation(e,'rectangle',bboxes,'Processing Area’)”. The function of the
code “imshow(IHand)” is to display the annotated image in the figure window. In generating
a filename for the image, the filename is created by converting temp to a string
“(num2str(temp))” and concatenating it with the string '.bmp' using strcat(). This results in
filenames such as "0.bmp", "1.bmp", and so on, up to "300.bmp."

As for the code “es=imcrop(e,bboxes)” it crops and stores the captured image to the region
of interest specified by the bounding box and resizes the cropped image to the standard size
of 227x227 pixels by using “es=imresize(es,[227 227])”. The resized and cropped image is
saved with the generated filename in BMP format using “imwrite(es,filename)”. There is
also an increment of 1 in the counter variable temp at the end of each iteration of the loop.
The “drawnow” function is to command MATLAB to update figures and process any
pending callbacks or events in the event queue.



Written by the I in J.I.M

Testing code:

Figure 2: Testing (Data Collection)

This MATLAB code tests whether AlexNet will recognise the hand gesture that was stored
and saved in the previous code. The code continuously captures frames from the laptop
camera and annotates them to highlight a specified processing area. It also crops and resizes
the frames to a standard size. Additionally, it classifies the cropped region using a pre-trained
neural network and displays the annotated frames with classification labels in real time.

Similar to the data collection code, the code starts by clearing the Command Window, closing
all figure windows, clearing all variables from the workspace, turning off MATLAB
warnings, and initialising the webcam. The code loads a pre-trained neural network model
named myNet1 from a file where the hand dataset is stored.



Written by the I in J.I.M

Moreover, it defines a bounding box (‘bboxes’) with coordinates (x, y) at the top-left corner
and dimensions (height, width). This bounding box is used to specify a region of interest in
the webcam feed. In this case, it is set to (0, 0) with a size of 200x200 pixels.

The code then enters an infinite loop "while true" to continuously capture and process frames
from the webcam. Inside the loop, it captures a frame from the webcam, annotates, crops, and
resizes the captured image. The "label = classify(myNet1, es)" classifies the resized image
using the pretrained neural network. "(imshow(IHand))" is responsible for displaying the
annotated frame with the processing area rectangle. As for the line of code
"(title(char(label)))", it sets the title of the displayed frame to the classification label
obtained from the neural network, and "drawnow" updates the figure window to show the
latest frame.

TRAINING:

Figure 3: Training

This code snippet employs transfer learning to fine-tune a pre-trained convolutional neural
network (CNN), specifically the AlexNet architecture, for a custom image classification task.
Initially, it clears the MATLAB workspace, closes any open figures, and suppresses warning
messages to ensure a clean execution environment. The pre-trained AlexNet model is loaded,
and its architecture is modified by replacing the last fully connected layer and classification
layer to suit the new classification task, which involves five output classes. Subsequently,
image data for training is prepared using an imageDatastore, which collects images from a
specified directory, organises them into classes based on subfolders, and assigns labels
accordingly. Training options for the stochastic gradient descent with momentum (SGDM)
optimiser are set, specifying parameters such as initial learning rate, maximum epochs, and
mini-batch size. The network is then trained using the provided image data and training
options, adjusting its parameters to minimise classification error. Finally, the trained network



Written by the I in J.I.M

is saved to a MAT file for future use. This code illustrates the process of leveraging transfer
learning with a pre-trained CNN model to adapt it to a new image classification task
efficiently, benefiting from the learned features of the base model while customising the
output layers to suit the application's specific requirements.

Code 4:

% main Code
clc;
close all;
clear all;
warning off;

% Initialize Raspberry Pi connection and camera module
rpi = raspi();
cao = cameraboard(rpi, 'Resolution', '640x480'); % Adjust resolution as needed
load('myNet1.mat'); % Load trained network

gestures = {'MR1', 'ML1', 'HR1', 'HL1'}; % List of gestures in your dataset

while true
% Capture an image from the webcam
e = cao.snapshot;

% Resize the image for classification
es = imresize(e, [227 227]);

% Classify the resized image using the trained model
label = classify(myNet1, es);

% Display the image with gesture recognition result
imshow(e);
title(char(label));
drawnow;

% Check if the recognized gesture is in the dataset
if ismember(label, gestures)
% Take a snapshot
snapshot = e;

% Apply a filter to the captured image (e.g., convert to grayscale)
grey_frame = rgb2gray(snapshot);

% Apply bilateral filtering to the grayscale image



Written by the I in J.I.M

filtered_image = imbilatfilt(grey_frame);

% Display the filtered image
figure;
subplot(1, 2, 1);
imshow(snapshot);
title('Original Snapshot');

subplot(1, 2, 2);
imshow(filtered_image);
title('Filtered Image');
drawnow;

% Pause to prevent continuous snapshots for the same gesture
pause(2);

end
end


