

Joshua Berman 320856

Terry Bugai 364017

ELEN3009: Software Development 2

Project 2013: Galaxian Game

This document contains:

Project Report

Test Report

User Manual

ELEN3009: Software Development II Project – Galaxian Game

Joshua Berman (320856)
Terry Bugai (364017)
September 30, 2013

School of Electrical & Information Engineering, University of the Witwatersrand, Private Bag 3, 2050,
Johannesburg, South Africa

Abstract

The goal of this project is to design a functional Galaxian game for the PC using C++ and the SFML 2.1
library. The domain is broken down into three different parts, each representing a role that is
implemented in its own class and sub-classess. The logic layer consists of the manipulation of all the
visible game objects and their implementation classes. An input/output class is used to interface with
the data layer consisting of a text file containing the game high-score. The visual graphics class is
used to draw game objects to the visual interface of the game. An object-orientated solution using
these classes creates an easily adaptable framework. The main criticism of this solution is that an
inheritance-based design is only used in the graphical layer. Future improvements to the game are
additional spaceship lives, a moving background, extra levels and more powerUps. A smooth running
adaptation of the original Galaxian game is created that functions with two minor bugs; one being
that the game slows down when a collision occurs and the other which causes the brains to jump
when changing direction.

Key words: Software Project, Galaxian, C++, SFML 2.1, Object Orientation

1

1. Introduction
Brain-axian is an adaptation of the original space
shooter game, Galaxian. This version is the story
of a space cadet who encounters a fleet of
enemy Brain ships while flying through space in
his spaceship. The cadet must destroy all enemy
Brains in order to continue on his voyage. The
only way to do this is to fire neurons at the
Brains; the very substance by which they are
made. This project outlines an overview of the
development and testing of this game. An
object-orientated solution in C++ is explored
through abstracting the different parts of the
game into smaller, workable modules. The game
and the design process are critiqued and
improvements to the project are discussed.

2. Project Framework

2.1. The Original Game

The original version of Galaxian is an arcade
game released in 1979 by Namco; Galaxian
expanded on the concept created by Space
Invaders [1]. As in the earlier game, Galaxian
features a horde of attacking aliens firing on the
player’s ship. This version is a modified and more
simplified version of the original game however;
the overall gameplay mirrors that of the original
1979 Namco version.

2.2. Categorisation of Features

The game is broken down into different blocks of
functionality, that is, basic functionality, minor
enhancements and major enhancements. The
basic features which are required include: the
existence of a SpaceShip and its ability to fire
Projectiles; Brain-Aliens and their respective
Neuron-projectiles; the Ship is required to
moves left, right, up and down on command; the
Brains are required to move left and right in
formation firing neurons and individual Brains
are required to dive bomb the player by moving
vertically down the screen; a Brain is destroyed

when it is hit by a projectile of the SpaceShip and
the SpaceShip is destroyed when it is hit by a
neuron of a Brain; both the Brain and SpaceShip
are destroyed when they collide; the game ends
if a collision occurs between the SpaceShip and
another object or when all the Brains are
destroyed.

Minor features included in this version of
Galaxian are: the visually aesthetic graphics; a
scoring system that saves as well as displays high
scores and evolved Brains which dive bomb the
SpaceShip while firing upon it.

The major features included in this version are:
the Brain-Freeze aliens who dive bomb the
player in swooping arcs and then rejoin
formation, as well as more powerful weapons
(capable of destroying more than one Brain at a
time) which become available as the player
collects the PowerUp sphere floating across the
screen.

Additional features which increase the overall
appeal of the game include: a shield which
protects the SpaceShip from Brains and their
neurons and a wraparound powerUp which
allows the SpaceShip to move past the left or
right end of the screen and reappear on the
opposite end. The wraparound feature allows
the ship to tactically evade neurons. An
additional feature is that only one bullet may be
fired by the SpaceShip at a time as a delay is set
between shots. This limits the firing rate and
slows down gameplay in order to make it more
challenging.

2.3. Assumptions and Constraints

The game is to be programmed in standard
ANSI/ISO C++. The SFML 2.1 graphics library is to
be used, but no additional libraries built on top
of SFML are allowed. Loaded images are
permitted in place of primitive SFML drawn
objects. The game must run on the Windows

http://en.wikipedia.org/wiki/Space_Invaders
http://en.wikipedia.org/wiki/Space_Invaders

2

platform and should have a good object-
oriented design [2].

2.4. Success Criteria

A complete solution requires a user friendly
Galaxian game that is both fun and easy to play.
The game is to have all basic functionality as well
as two major features and two minor features;
this is required to achieve an “exellent” rating. A
complete solution has been built up in small
stages. The first stage includes the basic
functionality and one minor feature. The second
stage includes one major feature to satisfy an
“exellent” rating. Seeing that the basic
functionality was buggy and dive bombing Brains
did not collide correctly with the SpaceShip, the
next step was to improve basic functionality as
well as add one major and one minor feature.
The graphics of Galaxian is not the main purpose
of the game however, an easily adaptable
framework is important. In order to implement
an adaptable framework, the idea of basic
inheritance (with the purpose of role modelling)
is to be explored and the display and logic levels
should not be mixed. Sufficient unit testing is
required to ensure a bug-free solution.

3. System Design Aspects

The conceptual domain of the game is broken
down into thirteen distinct parts, with each part
being modelled by its own class in the games
implementation. These thirteen distinct game
features include: the central Galaxian class which
manages all major events of the game; a
MainMenu class which displays the menu of the
game and sets its ‘clickable’ regions; a
SplashScreen class which solely displays the
splash screen and handles its mouse events; a
SpaceShip class which creates a controllable
ship; a Brain class which creates all Brain objects
and sets the functionality of all the alien Brains;
Projectile classes for both the SpaceShip and
Brains which create bullets for each respectively;

a PowerUp class which controls the functionality
of the PowerUp weapons as well as the shield
and wrapAround function; a StopWatch class
which adds advanced timing for processes; a
Scoring class and a VisibleGameObject class
which controls the manipulations of objects on
the screen.

The player’s goal is to shoot every Galaxian on
the screen and reach a new high score; in order
to do this he needs to avoid getting killed by the
bullets of the Galaxians as well as the Galaxians
themselves.

3.1. Main Menu And Splash Screen

Like many games now days, Brain-axian contains
a startup screen and a main menu; each
requiring their own class. These classes are
completely isolated and do not use or lend any
functions to any other classes. This gives the
programmer the option of adding additional
features without affecting the rest of the
program. An additional feature could be
‘controller-setup’ which allows the user to
choses the control keys.

3.2. Brain-axian

The layout of the displayed sprites and sprite
textures are positioned on an x-y plane using
standard coordinates. The main screen is set to
800x800 pixels and each pixel represents an x-y
coordinate. The SFML library contains some easy
to use functions, such as ‘setPosition()’ which
allows the programmer to use these x-y
coordinates to represent the x-y plane.

3.3. SpaceShip and Brains

In order to display an object on the screen one
can use the Sprite class, create a sprite object
and use its member functions. Sprite objects
themselves are obviously not displayed but
rather ‘Textures’ are displayed on the x-y plane.

3

In this version of Galaxian, textures are created
and images loaded into them. These images
make up that of the SpaceShip, the Brains,
PowerUp sphere and all projectiles.

3.4. Visible Game Objects

The VisibleGameObject class is created in order
to manipulate the game objects that are to be
displayed on the screen. The class is made up of
functions that can be called via objects of its
inheritor classes such as the ones listed in Figure
1 below.

Figure 1: Inheritance Diagram, Doxygen

These functions control the movements and
updates of the objects and Sprite objects such as
setting the position, advancing the formation
and setting imaginary boundries of the textures
displayed. In this way, objects can ‘collide’ when
their x-y points overlap and an event can be
triggered such as a texture overlay or a position
reset.

Boundaries are imaginary squares around sprites
that enlarge their footprint. A sprite is passed to
a member function with its x-y coordinates. The
upper and lower boundries are set by
subtracting and adding y values. The right and
left side boundries are set by adding and
subtracting x values.
For example: _sprite.setBoundary(x,y)

where x and y both equal 100. The sprite’s upper
and lower boundaries would be 80 and 120 and
the same for the right and left boundaries. Here
the boundary value is set at 40 pixels wide.

Since objects cannot be destroyed, two options
are present when dealing with the deletion of
game objects. Firstly a container can be created
and these objects loaded into the container.
Upon ‘deletion’ of the object, it is simply
removed. The second option is that the position
of the sprite is set beyond the boundries of the
screen or main window; this rendered the object
invisible to the user. The former seems to be a
better option as one would prefer not to have
objects drawn unnecessarily. The latter
however, is far simpler as it only requires a
boolean check for the object to be ‘Alive’ or
‘Dead’ and hence its position redrawn. The
second method saves time and hence is used
throughout the game to display objects.

Most of the game objects are created via their
own class which inherits from
VisibleGameObjects class. The SpaceShip class is
one example which contains no member
functions of its own but rather uses all that of
VisibleGameObjects functions. The Projectiles
and Brains work in a similar manner however,
the Brain class has some of its own member
functions that are specific to it and are not
required by other classes; an example of this is
‘formation()’ which sets the Brain layout. In this
way display logic is isolated to one region of the
project and can be used on multiple objects from
various classes.

Major features such as the implementation of
the swooping arc function can be specific to the
Brain objects but if needed by the PowerUp
sphere it would not have access. For this reason
the ‘arc()’ and ‘dive()’ functions are listed in
VisibleGameObjects class along with the other
manipulation functions instead of in the Brain
class itself. The arc function uses an overly
complicated equation to update the x-y
coordiantes. The equation was devised using the
priciples of exponential functions and the
properties of square roots:

4

x=sqrt(y)*exp(1/2)*sqrt(900-1.3*y)

where x is increased to a point and
then quickly decreased and

y=y+(_elapsedTimeSinceCreated)/20000

where 20000 causes a delay in the
movement.

3.5. Power Up

The PowerUp class is added to improve game
weaponry as the user advances. A sphere is
placed on the mainwindow at a radom position
and slowly updates its position towards the
lower end of the screen. This is done by equating
the y value of the PowerUp sprite to the rand()
function. If the SpaceShip’s boundaries collide
with that of the spheres, the sphere is no longer
drawn and the Select() function is called. This
function again uses the rand() function to
generate a random number moded by 4 to select
one of four PowerUps with a switch-case. The
SpaceShip could theoreticaly never experience
every PowerUp as the selection process is
random. Once a PowerUp is selected, its
designated boolean variable is set to ‘true’ and
the graphical layer of the Galaxian class sets up
the screen accordingly. This could be either
changing the texture of the projectile or adding a
‘Bubble-Shield’ overlayed on the SpaceShip
texture. The logic layer sets the effects of that
PowerUp such that the ship cannot get
destroyed while equiped with the shield. Simply
put, the collision checks do not take place during
that period of time.

If the projectile is changed to ‘ShockTherapy’,
the boundry of the projectile is expanded and
hence the collision area increases causing a
larger area of damage. The ‘Virus’ works
differently however, once a standard projectile
collides with a Brain its position is no longer
updated; rather is it set to an offscreen position
as mentioned earlier. The virus projectile does

not cease to update and continues to collide
with every Brain in its path. This feature makes
the virus the most powerfull weapon in the ships
arsenal.

The wraparound effect is much simpler. When
the function is implemented, the ship’s x
coordinate is changed from 800 to 0 as it
reaches the end of the screen and vice versa.

3.6. Scoring

The input/output layer of Brain-axion consists of
the scoring class. This gives the user the ability to
track his/her overall advancement in the game
as well as compare his/her score to the highest
score achieved. This is done using the fstream
library. The score saved in a textfile called
‘Highscore.txt’ is read in; this score is then
compared to the user’s current score. If the
score in the text file is higher than the user’s
score, it remains the ‘High Score’; else it is
replaced with the user’s current score. Currently,
only one high score can be saved, but the class is
easily adaptable and would allow multiple
highscores in future versions.

This class also provides the text displays. It is
used to notify the user upon receiving a
PowerUp as well as the game state such as
‘Game Over’ and ‘You Win’.

4. Implementation

As with many software implemented designs,
the final solution is not without its flaws and
shortcomings; this project is no different. In this
section, the implemented design solution will be
critiqued and its flaws will be identified along
with possible solutions to correcting these
problems.

From a programming practice or “code smells”
standpoint, the implemented design is identified
to have some areas that these “smells” or poor
design aspects are present. There are some

5

areas where code is duplicated, violating the
DRY principle. There are one or two long
functions that could be broken down into
smaller segments of functionality. In some cases
there is inappropriate intimacy between classes
as well as variables which are available to all
classes.

Suffitient ‘Structs’ are not put in place where it
would seem neccesary. This is a result of
unplanned features. These ‘structs’ could be
used in the setup of the formation of the Brains.
In that way, if new levels are created a slight
change to that struct would render an entire
new level. Since levels are not required for this
version, this is not entirely necessary but would
add to the overall design structure.

The DRY principle is violated by the brainArmy()
function in the galaxion class. The function
should be setup in a way that allows all Brain
objects to be passed in and setup accordingly
(similar to that of the crash() function) unlike the
current setup where each Brain array is setup
individualy. Instead of repeating the same body
of code in each function, the code should be
placed in it own function or class and simply
called by the Brain object as required.

The brainArmy() function that creates the Brain
layout, as well as sets their position and checks
their status, is a long function that could be
broken down into smaller segments of
functionality. The status checks could be
performed in its own function and simply called
by the brainArmy() function when needed. The
position setting of the Brains could also be
placed in its own function. The “current event”
function that checks for keyboard input from the
user is also a long function. This could be
improved by creating a separate function for
each movement as well as a function which
controls the wraparound feature.

Class invariants are maintained well throughout
the program but the degree of information
hiding or intimacy between classes is poor.
Additionally, the use of global variables should
be avoided since it allows access of these
variables to all functions.

In many cases it is unavoidable to provide get
and set functions for some data members of the
class; an example of this would be the
getPosition() function which would give the
programmer the ability to change the position of
the ship from outside the class. However in
other cases a different approach to object
communication can solve this problem.
Intermediate classes, that facilitate object
conversations, could be introduced which could
hide the information of the interacting classes
from one another.

The data, logic and display layers of the code are
not completely separated; this causes difficulty
when changing the means of display libraries.
For example, if Allegro were to be used instead
of SFML, it would not be an easy task to adapt
the classes.

The current code solution contains two minor
bugs. The game slows down when the ship
collides with a bullet or a Brain; this problem is
most likely caused by an unforeseen logic error
involving the collision. The second bug occurs
when the Brains change direction while in
motion; this causes them to jump before
continuing in the new direction. This could be
due to the update function where the reverse
motion occurs. These two bugs could be further
explored and corrected in future game versions.

An overall critique on the code implemented is
that inheritance could be used more since it
encourages greater game abstraction which
reduces bad coding practices such as violating
the DRY principle, having longer functions and
object type data members. As a result the

6

success criteria of implementing an inheritance-
based, highly abstracted solution are only
partially met. The data, logic and display layers
of the code could be separated more in order to
allow a simpler testing framework.

5. Improvements

Above and beyond the game’s current
functionality, many additional features and code
improvements can still be implemented to
further increase the quality of the final object-
orientated solution.

From a code standpoint, changes could be made
that would produce a sleeker, more efficient and
soundly structured solution. The conceptual
model could be abstracted even further to more
accurately model the domain. To aid such
abstraction, a solution is preferred which is
solely based on inheritance. This would assist
the program in adhering to the DRY principle.

Classes and class interactions could be improved
by adding classes that model and facilitate these
interactions. This would improve the degree of
information hiding in the solution. One such
class could be a collision class that manages the
collisions between various game objects. The
display class could consist of overloaded versions
of the same draw function so, depending on
what the draw functions are sent, depends on
what is drawn. This makes the interface of the
display class more intuitive. Increasingly
sophisticated player tracking algorithms could be
implemented to improve the ability of the
enemy to find and shoot the SpaceShip, making
the game more challenging overall.

There is also a vast amount of additional
functionality that could be included into this
game if time permitted. A file controller class
could be made to store player names, as well as
dates with the scores, making the high scores
unique to the player that achieves them.

Different levels could be made which become
increasingly difficult as one advances in the
game. An additional feature could be
implemented where the enemy needs to be shot
several times before it is destroyed; the colour
of the enemy could change after each shot in
order to tell the player its status. The game
design could be extended to allow for a second
player to join the action as well.

From a graphical point of view, the background
of the game could change as a player advances
in a game. The Galaxip could also be given flying
animations when it moves around the screen.

Furthermore audio effects can be added to aid
the game in captivating the user. The sound of
an explosion when the ship is destroyed or a
theme song would truly take Brain-axian to the
next level.

6. Conclusion
The final solution implements an object-oriented
approach using stand alone classes to model the
game’s domain and functionality. The
responsibilities of the classes are outlined by the
brief description of how the classes operate. The
solution contains two major and two minor
features and several additional features beyond
the basic functionality as specified in the project
framework. The features include Brain-Aliens
which dive bomb the player in swooping arcs
and then rejoin the formation, more advanced
weapons which become available as the player
advances through the game, good graphics, a
scoring system, different coloured Brains, a
shield which protects the SpaceShip and a wrap
around power. The design process and resulting
product is critiqued, with the major shortcoming
being the undivided logic and graphic layer and
that minor bugs still exists in the game’s
functionality. Improvements to the design, such
as using better coding practise and aditional
features are explored. In conclusion, an

7

enjoyable smooth running Galaxian based game
is created that functions with two minor flaws.

References

[1] M. Amis. Invasion of the Space Invaders.
Hutchinson, 1982.

[2] Software Project Brief-2013,
https://cle.wits.ac.za/portal/site/ELEN3009_2
013_Software%20Development%20II%20201
3

Appendix A
SpaceShip

Figure 1: SpaceShip

Power Ups:

 Figure 2: Virus Figure 3: Shock-Therapy Figure 4: Bubble-Shield

Reference

[1] SpaceShip: http://www.freedigitalphotos.net/images/search.php?search=spaceship

[2] Virus: http://www.freedigitalphotos.net/images/search.php?search=virus&cat=

[3] Shock-Therapy: http://www.freedigitalphotos.net/images/Energy_and_Environme_g160.html

[4] Bubble:http://www.freedigitalphotos.net/images/search.php?search=blue+bubble&cat=&gid_
search=&photogid=0&page=4

http://www.freedigitalphotos.net/images/search.php?search=virus&cat

Appendix B
“Ideal” Class Hierarchy Diagram

Figure 1: UML class diagram, “ideal layout”, Doxygen adaptation.

Appendix C
StartUp Screens

Figure[1]: Galaxian Splash Screen Figure[2]: Main Menu

References

[1] SplashScreen, http://mixxi-spacesynth-4ever.blogspot.com/2010/11/galaxion-around-you.html

http://mixxi-spacesynth-4ever.blogspot.com/2010/11/galaxion-around-you.html

Appendix D
Figure 1: Class Diagram , ArgoUML

Appendix E
Game Screen Caps

 Figure 1: In game Screen Figure 2: In Game PowerUp shield equipped

Figure 3: In game Screen collision, Game Over

