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This paper describes an investigation of the natural resonant frequencies of vessels such as
wineglasses. Measurements on a number of glasses are interpreted with the help of theoretical
predictions based on the analysis of vibrating systems by means of the energy method. Results and
analysis are given for empty glasses and for glasses containing different amounts of liquid.
Evidence for vibrational modes above the lowest is presented.

L. INTRODUCTION

The pure tones emitted when one rubs a moistened finger
around the rim of a wineglass must have been a subject of
informal experiment at countless dinner tables. The quan-
titative study of this phenomenon contains some instruc-
tive physics. The present paper is based on observations
and related analysis stemming from a high school science
project undertaken by the author and his son about 15
years ago.

The theoretical analysis of the vibrational motion pro-
vides a nice illustration of the energy method for calculat-
ing the natural frequencies of a complex vibrating system.

II. BASIC MODE OF OSCILLATION OF A
WINEGLASS

A wineglass typically has a strong, rigid supporting
stem, and a bowl that is rather thick at the base and be-
comes progressively thinner toward the upper rim. Vibra-
tions of this system occur most easily under conditions that
leave the circumferential length of the rim unchanged, be-
cause glass is highly resistant to extension or compression.
This condition is satisfied, to a high approximation, if the
rim deforms from a circle into an ellipse, and back again
through the circle into another ellipse with its major axis at

right angles to the first [Fig. 1(a)]. All other horizontal sec-
tions of the wineglass will go through similar motions, but
with amplitudes that decrease as one goes down from the
level of the rim.

On a simplified view, one might represent the wineglass
as a thin-walled cylinder, attached to a rigid circular base
[Fig. 1(b)]. A vertical section through this cylinder looks
rather like a tuning fork, and the complete glass is generat-
ed by rotating this section about the vertical axis of symme-
try. In oscillation, the condition of constant rim perimeter
forces a definite phase relationship, such that the “tuning
fork” having maximum outward displacement of its
prongs at a particular instant is 90° away in azimuth from
the fork having maximum inward displacement.

Given the above form of the oscillation, its actual magni-
tude can be characterized by the amplitude of oscillation of
any one chosen point. For convenience, let this be an antin-
odal point on the rim at the top of the glass. Its displace-
ment at any instant can then be written

A(t)=4,cos wt. (1)
The displacement of any other point is related to this by a
time-independent geometrical factor that depends on the
azimuth & and the vertical coordinate z. Assuming linear

elastic restoring forces, the total elastic potential energy of
the vibrating wineglass is proportional to 4 ?, and its total
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kinetic energy is proportional to (d4 /dt).” Hence the total
energy of the system can be written

2
E=A(ﬂ) +BA?, 2)
dt

where 4 and B are constants. Ignoring damping, this total
energy is constant. If we substitute 4 = 4, cos wt from Eq.
(1), it can be seen that the requirement E = const leads im-
mediately to the result

w*>=B/A. (3)

Thus the calculation of the natural frequency of vibration
reduces to a matter of evaluating the total kinetic and po-
tential energies of the system in terms of the rim displace-
ment 4. This energy method is of course a well-known
technique for calculating the frequencies of oscillating sys-
tems, and is far more powerful and tractable than the use of
Newton’s law when complicated systems are involved.

For the form of motion that we are assuming, the hori-
zontal radial displacement x of any arbitrary point of the
wall of the wineglass can be written

x{z,0,t) = 4, f(z) cos 26 cos wt, 4)

where fz) rises from zero at the bottom of the wineglass to
unity at the top rim. The cos 20 factor describes the ellipti-
cal distortion from the static circular shape, giving maxi-
mum amplitudes of oscillation along the perpendicular
axes through #=0 and 7/2, and diagonal nodal lines
through 8 = 7/4 and 37/4, as indicated in Fig. 1(a). The
form of this motion, with its nodes and antinodes, can be
made visible if chalk dust or other fine powder is sprinkled
on the liquid surface of a partially filled wineglass that is
being excited into oscillation.

III, CALCULATION OF KINETIC AND POTENTIAL
ENERGIES

Most of the basic elements of the detailed theory are to be
found in Rayleigh’s classic Theory of Sound.' However, the
relevant results are scattered through the book, and the
notation is not always perspicuous. It is probably useful,
therefore, to develop the analysis here in a self-contained
way.

A. Kinetic energy

Suppose for simplicity that the wineglass is modeled, as
in Fig. 1(b), as a vertical cylinder of radius R and height H,
with a rigid base and side walls of uniform thickness a. The
mass of an element of the wall, lying between z and z + dz
in height, and between @and 8 + d@in azimuth, is equal to
PgaR d dz, where p, is the density of the glass. Its instan-
taneous radial velocity dx/dt is given, according to Eq. (4),
by

dx

dt

In addition to this radial motion, however, the condition of
fixed perimeter implies tangential displacements also. It is
clear from symmetry that there is no such displacement for
6 = 0, but in general a point that initially has the coordi-
nates R,0 will, when displaced, move to R + x, 8, where

o
J; [R + x(¢ )]dp = R6.

= —wd, f(z) cos 20 sin wt.

The transverse displacement s is thus given by
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s=R(0'—60)= —14,f(2)sin 20 cos ot
and so

g _ lwd, f(z) sin 20 sin wt.

dt
Hence the total kinetic energy K of the vibrating glass at
time ¢ is given by

K =1p,aRe’A ] sin® ot
XJH . :170[}‘"(2)]2(cos2 20 + 1sin’ 26)d0 dz,
which afterz ;he integration over & simplifies to
K =3p,aRa’A} sin’ ot LH [f(2)]* dz. (5)

Because f(z) increases from zero at z = 0 to a maximum at
z = H, the major contribution to K will come from the mo-
tion of the upper parts of the wineglass. This situation will
be further enhanced in a real wineglass by the fact that the
walls of the glass become thicker and less deformable lower
down. In any case, the results of the calculation will be
relatively insensitive to the details of the motion for z¢H.
We shall exploit this fact later.

B. Potential energy

The calculation of the potential energy is somewhat
more complicated. It represents the energy of flexure of the
glass in both horizontal and vertical planes. As a basis for
the calculation, consider a curved segment of material
which, when undeformed, has mean radius r, and radial
thickness a [Fig. 2(a)]. Let its thickness perpendicular to
the plane of the diagram be b. Suppose that the segment has
its mean radius of curvature changed to r, [Fig. 2(b)]. Asin
the usual analysis of bent beams, one can assume that the
length [, of the center line of the segment remains un-
changed. For a filament a distance y from this center line,
we have

initial length = ’Orﬂlo,
0

deformed length = e ¥

o
. 1 1
.". change of length §/=1[,y| ———].
T Yo
If the radial thickness of the filament is dy, and the Young’s
modulus is denoted Y, the force of tension or compression
along the filament is given by
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Fig. 2. (a) Curved section of material in stress-free state. (b) Same section
under stress, with different curvature but same length along center line.
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F=bady Y‘ls—l—bY dy (_~L)

(] 7. 7o

and the stored energy dU = LF 8/
2

U= yobY(-l— _ i) V2 dy.

r 4 Ty
Integrating this between the limits y = + a/2 gives

2

AU_M(.___I.)_ (6)
¥ < L

Let us return now to the elastic deformation of the
wineglass. For flexure in the horizontal plane of a curved
segment lying between z and z + dz and between 8 and
0 + db,we have

Iy=Rdf8, b=dz, r,=R.
The radius of curvature 7, in the deformed state varies with
the azimuthal angle 6:
1 A +2dr/d0) — rd?r/d6?)
r. [P+ dr/dgpr"
where r = R + x, with x as defined in Eq. (4). Since x<R,

the above expression can be approximated by dropping all
terms of higher than first order in x/R; the result is

_1_~_1_(1 _i_iizi)=i 3x

r.” R

Substituting these values in Eq. (6), the elastic energy stored
in a horizontal circular segment is given by

Ay, =Yodzp d0—
2

3 Ya?
T E

Integrating over 6 and z then gives

———A4 cos® wt [f(2)]? cos® 260 dO dz.

31rYa

U = A2 cos a)tJ’ [f(2)]* dz (7a)

In the vertical plane, we can consider a segment of length
I, = dz and width b = R d#. Its radius of curvature in the
deformed state is given by

1__ dwd?
[1+ (dx/dz)]>"?

Under the assumption of small deformations, this can be
approximated simply as d *x/dz*. For these vertical seg-
ments we are assuming r, = co; hence we have

1_ -l—zAO cos wt cos 26 f"(z)

r c g 0
and so, for the energy of flexure of this segment in the verti-
cal plane,

Ya? dz

r,

c

AU, = R d6 A% cos® ot cos® 20 [f"(2)]%

Integrating over 6 and z then gives

a¥a®, 2 w2
U,= RAZ cos’wt | [f"(2)]° 4z (7b)
24 0
Combining Eqgs. (7a) and (7b), we thus get the following
expression for the total elastic potential energy at a given

instant:
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ﬂ'Ya
"~ 24R°3

+R“fo [f”(z)]zdz). (8)

If each vertical strip of the wineglass can be considered
as a uniform bar, free at the top and clamped at the bottom
end, then, as Rayleigh? has shown, the form of f'(z) is given
by

fz) = A4 (cosh Bz — cos Bz) + B (sinh Bz —sin Bz), (9)
where 4, B, and S are constants. However, as Rayleigh also
shows,” it is a property of all of the flexural modes that the

integral of [ /" (z)]° over the whole length is just a multipie of
the integral of [ f(2)])*:

H H
fo [f"(znZdz=B“fo (2)]? dz. (10)

For the lowest ‘“‘fixed/free” mode, B~ 1.875/H. Since
(1.875)*= 12, Eq. (8) can for this mode conveniently be re-
written, to a very good approximation, in the following
simplified form:

U~3;’;“Ag cos wt[1+ ( )4]J;H[f(z)]2dz. (11)

42 cos wt(9f [f(z)]* dz

IV. FREQUENCIES OF EMPTY WINEGLASSES

Using the values of total kinetic energy from Eq. (5) and
total potential energy from Eq. (11) we deduce that the
values of the constants 4 and B in Eq. (2) are

A= —SipgaR f [f(2)]* dz,

=220

It follows from Eq. (3) that the natural angular frequency of
oscillation in the assumed (lowest) mode of vibration is giv-
en by

,_B_3 Ya[ 4(R)‘]
°" 4 5p, Rl 3\H (12

The fundamental frequency vy = wy/27) in hertz is thus
given by

1/2 431/2
Vo= 1(3Y) [1+i(§)] . (13)
2r\5,) R*L T 3\H

This relatively simple equation can then be tested against
observed values. However, as mentioned earlier, there are
complications arising from the fact that the wall thick-
nesses of real wineglasses increase downwards. To accom-
modate this fact, we shall take a in Eq. (13) to be the wall
thickness near the upper rim, and use for H an equivalent
height H * for an idealized cylindrical wineglass of constant
wall thickness. One way of inferring H * involves observa-
tions on partially filled glasses and will be discussed later
(Sec. VI). For the moment let us just verify that Eq. (13)
gives reasonable values for the vibration frequencies.

Consider a typical wineglass of radius, say, 3 cm and
depth 5 cm, with a wall thickness of 1.5 mm. Rcasonable
approximate values for Young’s modulus and density are*
Y=6x10" dyn/cm ,pg =3 g/cm’. Substituting these val-
ues into Eq. (13) gives v,= 1000 Hz, which is certainly of
the correct order.
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V. SOME OBSERVATIONS WITH EMPTY
GLASSES

The procedure for making measurements was simple,
indeed rather primitive. A microphone connected to one
input of a dual-trace oscilloscope was suspended close to
the wineglass under investigation. An audio generator was
connected both to the second input to the oscilloscope and
to a small speaker placed near the microphone. A combina-
tion of aural and visual observation made it easy to judge
when the frequency from the audio generator was equal to
that from the wineglass when the latter was rubbed or
tapped to stimulate it into vibration. Table I shows data for
a mixed bag of glasses from the author’s household. The
observed values of frequency are compared with values v
calculated from Eq. (13} but omitting the uncertain factor
depending on the ratio R /H, i.e.,

3Y 172
vl
° 277(5/?3) R?

Since the glasses were of different kinds, the actual values
of the ratio Y /p, probably vary from one to another; both
Y and pg can have wndely different values according to the
composition of the glass.” However, it can be seen that in all
cases the quantity v is less, as it should be, than the ob-
served frequency v,. From their ratio one can deduce the
value of the ratio R /H in Eq. (13) and hence the effective
height H * of the wineglass modeled as a cylinder of uni-
form wall thickness. These values are listed in the next to
last column of Table I; although no great significance
should be attached to them they do appear quite reasonable
in order of magnitude.

(14)

VL. FREQUENCIES OF PARTIALLY FILLED
WINEGLASSES

It is easy to verify by direct observation that the pitch of
the note from a filled wineglass is Jower than that of the
same glass when empty. This is readily understandable in
very general terms. The added liquid is forced to partici-
pate in the vibrational motion, so the total kinetic energy
for a given motion of the glass itself is increased. The poten-
tial energy of elastic deformation, however, remains un-
changed. Thus, in Eq. (2) the constant 4 increases, the con-
stant B remains the same, and the value of »” in Eq. (3)
consequently goes down.

To make the calculation quantitative, let us suppose that
our idealized cylindrical wineglass is filled up to a height A
from the bottom. An element of liquid, distance r from the
axis, will in general undergo both radial and transverse
displacements. A reasonable simplification is to assume

8, = y.(r/R )4, f(2) cos 26 cos wt,
8, = 7,(r/R )4, f(z)sin 28 cos wt,

where ¥, and ¥, are factors of the order of unity Constancy
of volume of an element of liquid would require ¥, = ¥,/2,
just as for the displacement of the material of the wineglass
itself.

Under these assumptions, the kinetic energy of an ele-
ment of the liquid of volume r dr d6 dz and density p, can
be written

dK, =} p,(r dr d0 d2)*/RHA 2 [f(2)]?
X w? sin® wt (3 cos® 20 + y; sin” 20).

Integrating over #,6, and z then gives the following equa-
tion for the total kinetic energy of the liquid:

h
K, = a%p,R 20?A } sin? cotJ. f2)]% dz,
0

wherea =93 + 73.

To this we add the kinetic energy of the glass itself, as
given by Eq. (5). Hence the total kinetic energy of the
wineglass when filled up to the level z = / can be written

(15)

H
K = A2 sin? ot (-Sg-’pxaR f [f(2)]? dz
0

+ a%p,R Zfoh 212 dz).

It then follows that the frequency v, of the partially filled
wineglass should be related to its frequency v, when empty
through the relation

(’:hi) +5 p’ f L) dZ/ [fi2)])2dz. (17)

The form of, f (z) isin principle given by Eq. (9}—a compli-
cated mixture of hyperbolic and trigonometric functions.
However, for the lowest flexural mode, which we are as-
suming, f(z) is a monotonically increasing function that
happens to be excellently fitted by a simple power of the
dimensionless variable z/H:

fe)=@/H)" (18)

Figure 3 shows this function as a smooth curve, together
with values of the exact form of f(z) as given by Rayleigh.’
For z/H ? 0.4 the fit is almost perfect; moreover, the inte-
gral of [ f(z))* according to Eq.(18) over all z from zero to H
is equal to H /4, which is precisely the result of integrating
[ f(z))? in its exact form.® Taking advantage of these simpli-
fications, we can rewrite Eq. (17) as

(16)

that these displacements are proportional to 7 and can be (ﬁ) ~14 &P R ( h ) ) (19)
written Vi 5 pgal\H

Table 1. Frequencies of empty glasses.

No. R (cm) alcm) vo(Hz) vy (Hz) R/H* H*cm) H *(Sec. VI}

1 2.0 0.14 4600 2200 1.26 1.6 2.6cm

2 2.5 0.17 1700 1640 0.48 52 72cm

3 3.4 0.12 1570 620 1.42 24 55cm

4 4.0 0.13 1260 500 1.41 2.8

5 4.0 0.16 1020 600 1.09 3.7

6 4.7 0.22 1590 600 1.46 3.2
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Fig. 3. Circles show relative transverse deformations as calculated by
Rayleigh? for flexure of a bar fixed at one end and free at the other. Full
line is the curve f{z/H ) = (z/H)"’.

As with empty glasses, we run into the difficulty that the
value of H is not really known. However, we can use obser-
vations on v, to deduce the effective value of H that we
have called H *. Instead of measuring the height of liquid
from the bottom of the glass, we can use as variable the
distance d of the liquid surface down from the top of the
glass; this is a distance that can be unambiguously deter-
mined. Then, putting 4 = H * — d, we can rewrite Eq. (19)

as
2 R 4
(&) z1+-‘ip’—(1— d ) (20)
vy 3 pea H*
For d < H *, this can be written
(ﬁ)ﬁ(wﬁﬂ)_ﬁﬂ_d_, 1)
ve )~ 5 pga 5 p,a H*

“dlem)
(a)

From a graph of (v,/v,)* against d, we can read off the
intercept y, and the initial slope y;:

::1+— ,

Yo 5 pya
, 4a piR 1

Vo= ———
5 pa H*

From these we can get H* = — 4y, — 1)/y;. Using this
value of H * we can then test the complete relation, Eq.(20),
over all values of d /H *. Figures 4(a) and 4{b) show how
remarkably well this analysis works for one particular
wineglass for which the relevant data are tabulated in Table
II; the resulting graph of (v,/v,)* against (1 — d /H *)*is a
good straight line. Similarly good results were obtained for
several different types of wineglass. The value of the pa-
rameter a was found to be about 1.4 in each case. Values of
H * deduced by this method are shown in the last column of
Table I for comparison. Since they do not depend on as-
sumed values of Y'and p, for the glass, they should be more
meaningful than the values listed in the preceding column;
the differences do, however, seem rather large.

VII. EXCITATION OF HIGHER MODES

We return now to the problem of the empty wineglass.
Our discussion so far has been limited to the mode that
involves the lowest-order deformations in both vertical and
horizontal planes. One can of course envisage higher
modes. These can in principle arise in two ways. The first is
that the flexure of a vertical section could have one or more
nodes between the fixed bottom and the free top rim. The
form of f(z) is still given by Eq. (9), but the quantity § takes
on higher values, which can be written ,, = m/H, where
m takes on the successive values 1.875 (lowest mode),
4.694, 7.855, ... (Rayleigh?). The other way of obtaining
higher modes is for the shape of a horizontal section of the
vibrating glass to be modified by radial displacements pro-
portional, not to cos 26, but to cos n6 with n > 2. It is not

A

1.0

o] 0.2 0.4 0.6

(b) (1- djﬁl')‘

Fig. 4. (a) Data on dependence of frequency of a particular wineglass on distance d of liquid surface below top rim. The ordinate is (vo/v, )2, where v, is the
frequency when empty. (b) Same data—values of (vo/v, J*—plotted against (1 — d /H *)*, for which a linear relation is predicted.
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difficult to verify that Eqgs. (5) and (11) for the total kinetic
and potential energies are replaced by the following more
general expressions:

H
K,,= %pgasz(l + lz)A 2 sin? wtf [fn(2)]% dz, (22)
n 0

S+ (28
><f: [fm(2)]? dz (23)

From these we would deduce a frequency spectrum given
by

1 (3Y)"2 a [(n2—1)2+(mR/H)4]1/2, (24)

vmn=—— ey
" 12w\ p, R? 14+ 1/n?

If the ratio R /H is of the order of unity, the increase in
frequency in going from the vertical mode of lowest m to
the next higher mode s likely to be far greater than in going
from the lowest azimuthal mode {n =2) to n =3, for
(n? — 1)*> changes from 9 to 64, but m* jumps from about 12
to 484. Thus one would in general expect that it might be
hard to excite any mode having m greater than the lowest.
This does not, however, seem inevitably to be the case, as
illustrated by the following observations.

One set of glasses in the author’s possession, having un-
usually thin walls, appeared to vibrate readily in the second
vertical mode, and to exhibit resonances for several differ-
ent azimuthal vibrations associated with this mode. For
any reasonable assumption about the value of the ratio R /
H * the frequency of the lowest mode should have been
about 400 Hz. No such frequency was present in any per-
ceptible strength. Every glass in the set had an apparently
lowest frequency of between about 1400 and 2000 Hz, and
a well-defined second frequency usually between about a
semitone and a full tone higher. More detailed observations
on one glass arbitrarily chosen from the set showed strong
resonances at about 1950, 2340, 3850, and 4850 Hz.

According to Eq. (24), a graph of (1 + 1/n*v* against
(n? — 1) for a particular value of m should be a straight
line. The intercept on the vertical axis, divided by the slope,
should beequal to(mR /H *)*. Figure 5 shows such a graph,
based on the assumption that the lowest observed frequen-
cy belongs to n = 2 or 3, and that the others belong succes-
sively to n =4, 6, and 7 (n = 5 was apparently missed).
This identification can be only tentative, but it has a mea-
sure of plausibility. The ratio of intercept to slope is about
530, giving R /H * =~ 1.02 (which is reasonable) if we assume
m = 4.694 (second vertical flexural mode). Furthermore,
the slope itself is about 8.7 X 10>, According to Eq. (24), we

Table I1. Frequency variation for partially filled glass (#1).

dcm) v,(Hz) (vo/v,f d/H* (1—d/H* (1 —d/H*"
0.1 3100 220 0038 0962 0.844
02 3260 199 0077 0923 0.718
0.3 3420 181  0.115 0.885 0.607
05 3575 1.65 0.192 0.808 0.421
0.7 3800 146 0270 0.730 0.282
1.1 4100 126 0424 0576 0.110
L3 425 117 0500 0.500 0.062
1.6 4450 107 0616 0.384 0.022
20 4500 104 0770 0230 0.003
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Fig. 5. Higher resonances of a particular wineglass. Azimuthal modes
belonging to n = 2 (or 3), 4, 6, and 7 are indicated (all for the second mode
of vertical flexure). The lowest two points belong to the same measured v,

but plotted for both of the possibilities » = 2 and 3.

should have

slope = J_(l)(i)z
487\ p, /\R?

For this glass, direct measurement gave ¢~0.07 cm,
R =3.8cm. If we put Y=~6X 10" dyn/cm?, p, =3 g/cm®,
this theoretical slope would be equal t0 9.9 X 10°; the agree-
ment can be considered remarkably good in view of the
many uncertainties in the analysis. And it seems possible
that the upper of the pair of fairly close frequencies for
every glass in the set could be attributed to n = 3 or 4, and
the lower to n = 2 or 3, or some mixture thereof.

It may seem surprising that no mention has been made
throughout this paper of the possibility of simple torsional
oscillation of the wineglass about its vertical axis. The pro-
cess of rubbing around the rim of the glass to excite its
oscillations would be expected to be particularly favorable
to the excitation of this type of vibration. The frequency of
such a torsional vibration would, however, be far higher
than the modes we have discussed. If a wineglass is again
modeled as a thin-walled cylinder of radius R and height H,
rigidly fixed at its base, it is easy to verify that its natural
frequency of torsional vibration would be given by

1 ( 3Es )1/2 1
Viors = T Ty
27\ p, H

(independent of wall thickness a), where E, is the shear
modulus of the glass. This frequency will be greater, by a
factor of the order of R /a, than the basic elliptical mode
frequency of Eq. (13). This means in practice a factor of at
least 10 in frequency, i.e., into the range of about 10 kHz or
more, toward the upper limit of audible vibrations.

VII. CONCLUDING REMARKS

Obviously the observations and analysis described in this
paper cannot be regarded as very fundamental physics. The
subject of classical mechanical vibrations has no mysteries,
but even so a serious test of its predictions would call for
better defined physical systems than a random set of ordi-
nary wineglasses. Nonetheless, it is satisfying to see how
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physical analysis can be applied, with some success, to real
wineglasses and other such vessels that can be found in any
household. The analysis is, to be sure, rather unreasonably
heavy in relation to the importance (or lack of it) of the
specific topic, but it does exemplify the power of the energy
method for the analysis of relatively complex vibrating sys-
tems.

One interesting feature is the way in which seemingly
identical glasses (such as the set mentioned in Sec. VI) have
distinctive and widely different frequencies of vibration.
The natural frequency could well be used as an identifying
label or “signature” for a glass or other vessel in cases
where the original was rare and valuable and one wanted a
simple noninvasive test to distinguish it from copies.
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An easy and intuitive introduction to the regularization and renormalization techniques in
elementary particle physics is given. It is based on the use of a simple electrostatic problem.

I. INTRODUCTION

High-energy physics needs by its very nature an elabo-
rate relativistic quantum field theory. In quantum electro-
dynamics the successes of this theory are remarkable.
However, in all its perturbative aspects it has heavy diver-
gence problems. We would like to show schematically what
these problems are and how to solve them. We illustrate
this last point precisely with an electrostatic example
which shows the same type of divergence. The method used
is dimensional regularization.' Since 1973, it is most used
in applications. This example allows us to show the simpli-
city and the elegance of dimensional regularization. More-
over, it illustrates the crucial role played by dimensional
analysis especially for any problem in which there is no
fixed length (or energy) scale. We show that renormaliza-
tion implies the introduction of a scale and therefore breaks
the so-called scale invariance. We study in Sec. V the be-
havior of renormalized quantities such as an electrostatic
potential and a dimensionless quantity of high-energy
physics called R. By doing this, we illustrate a few aspects
of the renormalization group techniques, which are com-
monly used in elementary particle physics.

I1. DIVERGENCES IN QUANTUM FIELD THEORY

Every quantum field theory is basically of perturbative
character. Without going into more details, we can say that
it is most useful whenever we deal with a physical quantity
which can be expressed as a truncated series. Every cross
section and every decay width are of that type. The devel-
opment parameter of this series is the coupling constant. It
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measures the intensity of the interaction under study. In
quantum electrodynamics, this constant is’

a=e*/dr =1/137

{the fine structure constant).

To be specific, let us consider the scattering between two
particles interacting electromagnetically such as Compton
scattering (e~ y—e ™ 7), electron scattering (¢ ¢ -»e e”)
or the annihilation process e “e*->2y. The cross section is
proportional to the square of the scattering amplitude. It is
this last quantity that quantum electrodynamics deter-
mines as a development in powers of a. Each term of this
development can be calculated directly, but it is more con-
venient to write it as a sum of algebraic quantities repre-
sented by the so-called Feynman diagrams. These dia-
grams have a much more intuitive interpretation than the
corresponding algebraic quantities. In the case of e e~
scattering the first nontrivial order (Born approximation) is
represented by the very simple diagram of Fig. 1. With this
diagram we can calculated its cross section. {Analogously
for e~ y—e~yand e "e*—2y.) The agreement with experi-
ment is very good.

However, experimental data have sometimes such an ac-
curacy that we must calculate the next-order corrections.
These correspond to more complicated diagrams [with

Fig. 1. Two electrons interact by
exchanging a virtual (nonphysical,
nonobservable) photon.
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