
 

 

Software Decomposition
Team 3A

Kennedy Houston  
Andre Mbakwe  
Aaron Hoffman

 1

 



Date: January 29, 2021 

Revision Record

Date Author Comments
Jan 29, 2021 Team Document Created

Jan 29, 2021 Team Software Documentation added

Jan 31, 2021 Team Software Documentation updated

Jan 31, 2021 Andre M Software State Machine and Architecture updated 

Feb 2, 2021 Aaron H Block Diagram updated (consolidated digital UI into the 
controller)

Feb 2, 2021 Aaron H Added sub-system input/output table

Feb 3, 2021 Kennedy H Updated Overview sketch and project description

Feb 3, 2021 Aaron H Updated system design description

Feb 3, 2021 Andre M Added team roles  

Feb 5, 2021 Andre M Design sketch updated 

Feb 8, 2021 Andre M Updated Sub-system description (controller)

Feb 18, 2021 Aaron H Updated Block Diagram and Sub-System Input/Output table

Mar 10, 2021 Aaron H Added subsystem block diagrams

Apr 02, 2021 Aaron H Added PCB and schematic board

Apr 05, 2021 Andre M Updated software design

Apr 07, 2021 Andre M Added integration design

Apr 12, 2021 Kennedy H Updated mechanical design and conclusion

 2



Table of Contents
Generating Table of Contents for Word Import ...

 3



System Overview
The CelloBot project will feature a cello shape with a body that rotates on a base and a 
rotating wheel which moves a bow back and forth across its front strings. The on/off 
button will be on the base of the structure, and all hardware will be stored inside. The 
purpose of the robot is to play the tune of "Row, Row, Row Your Boat" through a 
speaker in harmony with a conductor tune which plays preliminary notes to set tempo 
and octave. The device will calibrate to the tempo set by the conductor and keep time 
with other orchestra members. 

 

Figure 1: Robot design sketch

 4



  

 

Figure 2: Final Robot design sculpture

 5



System Design
The inputs of the system include an analog audio source, 120V AC power, and digital input from 
the user. The system outputs are mechanical motion of the robot and audio of the children’s 
song, “Row Row Row Your Boat”. The sub-systems include power, mechanical, Audio, and 
controller blocks. The power block includes a 120V AC/DC converter. The mechanical block 
includes two servos. The audio block includes 0.5W speaker, an audio amplifier circuit, and a 
volume adjustment knob. The controller block contains an Arduino Uno, a digital start/stop 
switch, tempo adjustment knob, and a frequency adjustment switch.

 

Figure 3: System Diagram

Table 1: Sub-System and Inputs and Outputs

 

 6



Sub-System Design
Our design includes four different subsystems: controller, power, audio, and mechanic. The 
controller will integrate all subsystems by converting the user input to signals for the sound and 
movement systems. The power sub-system will convert 120V AC to 9V DC and 5V DC. The 
audio sub-system will process the raw tone signals and convert it to sound, and the mechanical 
sub-system will execute the motion of the cello figure. 

Power Sub-System 
The power sub-system takes in 120V AC which is converted to 9V DC through a 20W 
transformer. Power is then routed through a switch controlled by the user. Next, power is routed 
through a 1 Amp fuse before distributing 9V DC to the microcontroller while another branch 
steps down to 5V DC through a buck converter. The 5V DC is then passed through a 0.75 Amp 
fuse before powering the audio and mechanical subsystems.

 

Figure 4: Power Sub-System

Controller Sub-System 
The controller subsystem will take in 9 Volts DC as input. The Controller will use read input 
signals from the pushbuttons and potentiometer. It will send out digital output signals for the 
servo motors and state LEDs, and 5V signals for the audio digital analog converter.

 7



 

Figure 5: Controller Sub-System

Audio Sub-System 
The audio sub-system has a 5V DC input and digital tone inputs which are processed through 
an audio amplifier. From the amplifier, the signal is transmitted through a speaker to music. The 
volume is controlled through a potentiometer connected to the amplifier.

 

Figure 6: Audio Sub-System

 8



Mechanical Sub-System 
The mechanical sub-system is composed of two servos which are powered by a 5V DC signal. 
The servos are controlled through digital inputs from the controller which dictates their 
movement patterns.

 

Figure 7: Mechanical Sub-System

Electronic Design
The electrical design is composed of an Arduino Uno microcontroller, a class D audio amplifier, 
a buck converter, speaker, and two servos which were connected to a custom PCB. A block 
diagram of the system and user controls is shown below, along with schematics for the PCB, the 
second of which contains corrections that were required to get the system to function properly. 
The block diagram contains all the key elements of the final system, including the user 
interfaces used to controller the robot.

 9



 

Figure 8: Electrical Component Block Diagram 

PCB Design
The block diagram was used to design the PCB schematic below. Eagle software was used for 
this process to implement the four sub-systems: controller, power, audio, and mechanical. The 
controller will integrate all subsystems by converting the user input to signals for the sound and 
movement systems. The power block will convert 120V AC to 9V DC and 5V DC. The audio 
block will process the raw tone signals and convert it to sound, while the mechanical block will 
execute the motion of the figure.

 10



 

Figure 9: PCB schematic created in Eagle. This design incorporates an Arduino Uno, buck converter, audio amplifier, 
LEDs, two servos and a speaker.

This second schematic reflects corrections that needed to be made after the board was printed. 
First, the control pins for the servos were not run to any junctions and needed to be white wired. 
Second, the buttons were wired incorrectly such that the input always ran high, so these pinouts 
were corrected. Last, the octave switch was moved to one of the buttons and the sync and reset 
buttons were reprogramed to start and stop Cellobot so their names on the schematic were 
changed to reflect their new functionality.

 11



 

Figure 10: Updated PCB schematic created in Eagle reflecting corrections that were required after the board was 
printed by white wiring new connections. 

 

 12



Figure 11: PCB board view of the Eagle schematic. This board connects directly to the pins of an Arduino Uno and 
includes footprints for a buck converter and audio amplifier.

Mechanical Design
The mechanical design of the CelloBot centers around two servos which are attached to a 
model of a cello and control two dimensions of movement. The cello is a 3D printed model, 
shown in figure 12.

 

Figure 12: OBJ file of the cello to be 3D printed and mounted.

The foundation of the project features a wooden box that contains the printed circuit board, 
connections to the user interface dials and buttons, and the servo that swivels the cello on its 
base. Additional holes were drilled into the side of this box for the user interface dials and 
buttons.

 

Figure 13: SVG file used to laser cut the foundation box for the CelloBot.

 13



 

Figure 14: Laser cut wooden box with uncut wooden panel and acrylic pane for lid.

There is a wooden casing that holds the cello and the smaller servo that controls the rotational 
movement of the cello. This wooden casing is mounted on top of the wooden box and is 
attached to the larger servo, thus allowing the entire casing to rotate via this larger servo. 

 

Figure 15: SVG file used to laser cut the wooden casing that holds the smaller servo and the cello.

 14



The box also features a pane of acrylic and a pane of wood that close the box on the top. The 
wood has a hole cut into the middle to make room for the larger servo. As aforementioned, the 
wooden casing sits atop this larger servo. Figure 13 shows a CAD model of the entire structure.

 

 

Figure 16: 3D rendition of the mechanical design and mounting. There is a removable pane of acrylic that allows for 
viewing and manipulating the contents of the box if necessary.

 15



Software Design
We have two software designs, one includes 6 different states – Setup, Idle, Tempo sync, Time 
sync, Testing and Play/Dance shown in figure 17. Using the state diagram, the software 
architecture was design as shown in figure 18. To read in data, another software architecture 
was designed for this process as shown in figure 19. Our second software design which is our 
manual design includes 4 different states – Setup, Idle, Testing and Play/Dance shown in figure 
20. Using the state diagram, the software architecture was design as shown in figure 21. 

  

Figure 17: State machine diagram with states idle, testing, tempo sync, time sync and play/dance

 16



 

Figure 18: Flowchart detailing the software architecture that includes the states from the state machine

 

Figure 19: Software architecture detailing the algorithm simulator 

 17



 

Figure 20: State machine diagram for the manual design with states idle, testing and play/dance

 

Figure 21: Flowchart detailing the software architecture for the manual software design that includes the states from 
the state machine

 18



Integration Plan 
Each subsystem must be able to integrate and work together with each other. Various 

tests and simulations will be implemented to ensure they work together properly. We will design 
and simulate the software first, and then we can test each sub-system separately. By taking a 
step-by-step approach, we will be able to debug the entire system easily, rather than trying to 
troubleshoot the entire system when it has been fully assembled. 

First implemented our software on Arduino IDE, we then integrated our design on a 
breadboard with the Arduino Uno microcontroller to test out the LEDs, speakers, mic, servos, 
the pushbuttons, and potentiometers. Then next step was to solder all the electronic 
components to the PCB and test it out to ensure it meet all the requirements. Lastly, we 
integrated our hardware and software all together on our PCB.

Software Risk Parts:

• The time sync and tempo sync implementation are both medium-risks parts of our design 
because the system will not be able to operate as expected. To reduce such risks, we will first 
design a system that works manually with the use of pushbuttons and potentiometer.

• The Arduino Uno is the most high-risk part of our design because the entire system will not 
function if the Arduino Uno fails. To deal with this potential issue we will test the microprocessor 
with each sub-system before implementing it with the whole design. By testing on a bread 
board, the risk of failure is reduced when integrating these parts on the PCB.

Hardware Risk Parts:

• The PCB integration is another high-risk part of the design. All the electronics connected to the 
PCB will need to be appropriately powered so it does not cause a blowout. To mitigate this risk, 
we simulated our design on a breadboard before permanently fixing components. We measured 
the voltage level of all the components on the PCB and compared results to its expected results. 
We also added two fuses for circuit protection. 

Mechanical Risk Parts:

• The servo implementation of the design is high risk since we have two servos moving 
rotationally. To

reduce this risk, we tested the servos on our breadboard simulation using potentiometer to test 
the

speed of which in rotates. 

Verification Plan 
Table 2: Test matrix showing which sub-system requirements are verified by each test 

 19



  
Test 1   
This will be an external inspection of the machine to verify system meets requirements.  
  

Table 3: Description and procedure of sub-system verification provided by Test 1.

  
Test 2   
This will be an internal inspection of the machine to verify system requirements.  
  

Table 4: Description and procedure of sub-system verification provided by Test 2.  

    Sub-System Requirement Number 

    1.1  1.2  2.1  2.2  2.3  3.1  3.2  3.3  3.4  4.1  4.2 

Test 
Numbe

r 

1  De
m 

De
m 

Dem
s     

Dem
s       

Dem
s 

 

2                       

3            Insp   
Ins
p 

Ins
p 

   

4        Test
 

Test
 

          Test 

  5             
Ins
p     

  Insp 

Procedure  System Requirement  Pass/Fail Criteria 

Use measuring tape of to find 
the dimensions of the PCB. 

Sub 3.4   Must be within W x L: 15cm x 
15cm 

Use measuring tape to find 
length, width, and height of 
machine with power turned 
off 

Sub 3.2  Must fit within a W x L x H: 
35cm x 35 cm x 35 cm space 

Use measuring tape to find 
length, width, and height of 
machine when power is 
turned on at full extension. 

Sub 3.2  Must be confined within a 
space of W x L x H: 75cm x 
75 cm x 75 cm 

Use scale to find the weight 
of the system  

Sub 3.2  Must weigh less than 20 lbs  
 

Inspect that the system has 
two distinct motions 

Sub 3.1   Must have two separate 
elements each having one 
motor/actuator controlling 
movement in one spatial axis 

Procedure  System Requirement  Pass/Fail Criteria 

 20



  
  

Test 3   
This will demonstrate the proper operation of the system.  
  

Table 5: Description and procedure of sub-system verification provided by Test 3.  

  
  

Test 4  
 Test the microcontroller processing and memory to verify it allows for the machine to 
meet system requirements.   

Inspect that no exposed 
120VAC conductors 
permitted anywhere in the 
circuit 

Sub 3.2  No exposed 120AVC  
  conductors  

Inspect AC power wiring 
must conform to U.S. 
National Electrical Code 
(NEC) standard  
 

Sub 4.2   

Inspect that input power (AC 
or DC) are fused or short-
circuit protected  
 

Sub 4.2  Must have fuses/circuit 
protection 

Inspect that there is a name 
place on the box with voltage, 
current, and polarity 

Sub 3.2   

Procedure   System Requirement  Pass/Fail Criteria  

Use power switch to turn 
system on and machine 
functions.  

Sub 4.1  Red LED will activate  

Press “PLAY” button   Sub 1.1  The Green LED will activate, 
and Cello stick will move to a 
specific position 

Generates the audio 
sequence and moves 
mechanical elements in 
rhythm with the music 

Sub 1.2 / Sub 2.1 / Sub 3.1  No excessive vibration or 
jerky motions. Smooth 
transitions from one 
movement to next Musician should play some 

“musical instrument” in time 
to the music 

Sub 1.1/Sub 2.2  No excessive delays (>0.25 
sec) from start of note.  

Rotate potentiometer to 
control volume 

Sub 1.1  Volume speaker level will be 
adjusted by the user   

 21



  
Table 5. Description and procedure of sub-system verification provided by Test 4. 

Table 6:  Description and procedure of sub-system verification provided by Test 4.  

Test Report 
Results for Test 4 – Test  
Setup: The purpose of this test is to measure the voltage of the power supply being used, the 
voltage going out of the LM2596 Buck Converter and compare them with the expected values to 
ensure accuracy it is within to .2V of the expected value. To perform this test, test lead probes 
were connected in a multimeter. The multimeter was used to take the measurements, with the 
signal probe attached to one of the test pins to read the voltage and the other grounded with 
PCB board ground. A picture of the test setup is in Figure 21. 

Procedure   System Requirement  Pass/Fail Criteria  

Use power switch to turn the 
system on 

4.2  Red LED will activate 

Double tap the “PLAY” button 
to enter test mode  

1.2  Both Red and Green LED will 
be activated to indicate it is in 
test mode 

Use multimeter to probe each 
rail of the PCB and measure 
voltage  

3.2  Voltage readings are within 
.2V of expected value  

Use thermal imager to take 
temperature of component 
when on 

4.2  No component exceeds 80 
degrees Celsius  

Operate completely in stand-
alone mode, with no external 
PC/phone control or 
connections 

4.2  Must function without external 
connections 

Use oscilloscope to probe the 
audio output signal and 
record the measured value in 
Table 6 

2.3  Measured values must fall 
between the max and min 
threshold values 

 22



  
Figure 21: A picture of the actual test setup. The PCB powered by a 9V power supply. The buck converter output is 

being measured.

 Measurements: To measure the voltage, the PCB was connected the 9V power supply. The on 
the multimeter the voltage going into the PCB was measured to make sure it was within 6V – 
12V to power the Arduino uno. Then the voltage output of the block up converter was measured 
and adjusted to ensure it had an output voltage of 5 ± .2V.  
Procedure:   

1. Procedure: Connect PCB to power supply. Connect multimeter test probes to the 
“high” and “low” of the input of the LM2596 Buck Converter.  

Expected Output: 6V – 12V   

Requirements Tested: 8.7265V  

Results: Voltage reading was within .2V of expected value. PASS.  

2. Procedure: Connect multimeter test probes to the “high” and “low” of 
the output of the LM2596 Buck Converter. Adjust the output to 5V.  

Expected Output: Output voltage is 5V   

Requirements Tested: 5.0336V  

Results: Voltage reading was within .2V of expected value. PASS. 

 23



   
Figure 22: A picture of the input voltage of the LM2596 Buck Converter being measured. The display of multimeter 

shows the voltage reading.

   
Figure 23: A picture of the output voltage of the LM2596 Buck Converter being adjusted. The display of multimeter 

shows the voltage reading.

 24



Conclusion
Over the course of the semester, our team was able to design and construct a 

functioning project with complex electrical and mechanical details. This was a rather daunting 
project, and our ideas changed from the beginning to the end. We took some time to realize the 
realities of our circumstances, and in doing so we decided to deviate from our original design 
and the project that resulted was successfully implemented. 

Delegating tasks between team members and breaking the system into sub-systems 
also helped us finish this project in an efficient manner and ensured that every team member 
was able to contribute something unique to the overall project. Each team member was able to 
focus on their individual tasks without any redundancy or overlap. This helped us avoid being 
stretched too thin as our schedules and to-do lists grew more involved while allowing us to work 
in parallel and come together at the end to produce a complete product.  

One thing that we could have done better from the beginning is create a more detailed 
weekly schedule.
Our existing schedule does not include much in terms of explicit tasks and having something 
more detailed would have alleviated some of the stress relating to deadlines and time 
constraints that we experienced. Our design notebook was also more actively updated during 
the former part of the semester. If we were to do this project again, we would also make the 
notebook more detailed in order to help us keep track of the path of ideas and plans that we 
had. We also faced roadblocks along the way that caused us to halt our linear progression. One 
such challenge was getting the software to function properly 100 percent of the time without 
significant user interaction and manual manipulation needing to be applied. Despite these 
challenges, we were able to produce a finished product of which we are very proud.  

Overall, we are proud of the progress we were able to make as a team, and our project 
turned out to be a successful endeavor. We faced challenges along the way, but we were 
eventually able to end the project with positive attitudes.

Role Leader

Team Lead Aaron Hoffman

Power sub-system Kennedy Houston 

Mechanic sub-system Kennedy Houston 

Audio sub-system Aaron Hoffman

Controller sub-system Andre Mbakwe

 25



Appendix: SW 
SOURCE CODE FOR THE CELLOBOT SIMULATION WITH VARIOUS USER INPUT DEVICES

 26



#include <Servo.h>  
 
#include <stdio.h> 
 
#include <math.h>  
 
#define TempoCal 512 
 
#define TempoPotMax 1023 
 
#define PwmMax 255 
 
#define TempoResolution 0.5 
 
#define rest 0 
 
#define speakerPin 6 
 
#define baseServoPin 7 
 
#define armServoPin 8 
 
#define ANALOG_PIN A1  
 
#define MIC_PIN A2 
 
#define TONE_PIN 2 
 
#define NUM_STATES 3 
 
 
int Octive = 2; 
 
//Music Notes based on Octive-- 
 
double C,D,E,F,G,A,B, high_C; 
 
// the pin that the pushbutton is attached to 
 
const int  Start = 4;     
 
const int  Stop = 3; 
 
// the pin that the LED is attached to 
 
const int idlePin = 13;   
 
 
const int testPin = 11;  
 
const int playPin = 9;  
 

 27



 
unsigned long timePress = 0; 
 
unsigned long timePressLimit = 0; 
 
int clicks = 0; 
 
int song_tempo = 250; 
 
int baseIncrement = 1; 
 
int armIncrement = 0; 
 
int basePos = 0;  
 
int armPos = 90;  
  
//setup the servo output 
 
Servo baseServo; 
 
Servo armServo; 
 
/******************************************************************* 
 
  Function Prototypes 
 
*******************************************************************/ 
 
void IDLE_STATE(void);    // State IDLE 
 
// void TEMPO_STATE(void);   // State TEMPO 
 
void TEST_STATE(void);    // State TEST 
 
// void TIME_STATE(void);    // State TIME 
 
void PLAY_STATE(void);    // State PLAY 
 
 
/******************************************************************* 
 
  State Machine Skeleton 
 
*******************************************************************/ 
 
 // enum of each state 
 
 typedef enum 
 
 { 
 
     STATE_ONE, 
 

 28



     // STATE_TWO, 
 
     STATE_THREE, 
 
     // STATE_FOUR, 
 
     STATE_FIVE 
 
 }StateType; 
 
 // define state machine table structure 
 
 typedef struct 
 
 { 
     StateType State;       // Define the command 
 
     void(*func)(void);     // Defines the function to run 
 
 }StateMachineType; 
  
// Table of valid states of the sm and function to be executed for  
 
StateMachineType StateMachine[] = 
 
 { 
 
     {STATE_ONE, IDLE_STATE}, 
 
     // {STATE_TWO, TEMPO_STATE} 
 
     {STATE_THREE, TEST_STATE}, 
 
     //{STATE_FOUR, TIME_STATE} 
 
     {STATE_FIVE, PLAY_STATE} 
 
 }; 
 
// Store current state of state machine 
 
StateType SM_STATE = STATE_ONE; 
 
/******************************************************************* 
 
  Initialization 
 
*******************************************************************/ 
 
void setup() 
 
{ 
  pinMode(Start, INPUT);  
 

 29



  pinMode(Stop, INPUT_PULLUP); 
 
  attachInterrupt(digitalPinToInterrupt(Stop), IDLE_STATE, CHANGE); 
 
  pinMode(ANALOG_PIN, INPUT); 
 
  pinMode(MIC_PIN, INPUT); 
 
  pinMode(TONE_PIN, INPUT); 
 
  Serial.begin(9600); 
 
  //set up outputs 
 
  pinMode(idlePin, OUTPUT);  
 
  pinMode(testPin, OUTPUT); 
 
  pinMode(playPin, OUTPUT); 
 
  pinMode(speakerPin, OUTPUT); 
 
  baseServo.attach(baseServoPin); 
 
  armServo.attach(armServoPin); 
 
  //set the servo to zero initial condition. 
 
  baseServo.write(0); 
 
  armServo.write(80); 
 
} 
 
/******************************************************************* 
 
  Main Loop 
 
*******************************************************************/ 
 
void loop() 
 
{ 
 
  // Start the state machine 
 
  RUN_STATEMACHINE();  
 
} 
 
 
 
/******************************************************************* 
 

 30



  IDLE STATE: 
 
  • Reset memory  
 
  • Hit start to begin tempo sync  
 
  • Double tap start to go into the TEST state 
 
*******************************************************************/ 
 
void IDLE_STATE(void) 
 
{ 
 
    digitalWrite(idlePin, HIGH); 
 
    noTone(speakerPin); 
 
    baseServo.write(basePos); 
 
    armServo.write(armPos); 
 
    /*if (digitalRead(tempoPin) == HIGH) { 
 
      
 
      digitalWrite(tempoPin, LOW); 
 
      SM_STATE = STATE_ONE; 
 
       
 
    } 
 
    */ 
 
    if (digitalRead(testPin) == HIGH){ 
 
      digitalWrite(testPin, LOW);       
 
      SM_STATE = STATE_ONE; 
 
       
    } 
 
    /*else if (digitalRead(timePin) == HIGH) { 
 
      digitalWrite(timePin, LOW); 
 
      SM_STATE = STATE_ONE; 
 
    }*/ 
 
    else if (digitalRead(playPin) == HIGH) { 

 31



 
      digitalWrite(playPin, LOW);      
 
      SM_STATE = STATE_ONE; 
 
    } 
    if ( digitalRead(Start) == HIGH) { 
 
      delay(200); 
 
      if (clicks ==0) { 
 
        timePress = millis(); 
 
        timePressLimit = timePress + 1000; 
 
        clicks = 1;  
 
       } 
 
      else if ( clicks == 1 && millis() < timePressLimit) { 
 
        // Button pressed twice  
  
        //set variables back to 0 
 
        timePress = 0; 
 
        timePressLimit = 0; 
 
        clicks = 0;    
         digitalWrite(idlePin, LOW); 
 
        SM_STATE = STATE_THREE; 
 
      }     
 
    } 
 
      if (clicks == 1 && timePressLimit != 0 && millis() > timePressLimit){ 
 
        // Pressed once  
 
        timePress = 0; 
 
        timePressLimit = 0; 
 
        clicks = 0; 
 
        digitalWrite(idlePin, LOW); 
 
        SM_STATE = STATE_FIVE; 
 
       } 

 32



 
        
 
} 
 
      
 
 
 
 
 
/******************************************************************* 
 
  TEMPO STATE: 
 
  • Write function to read in audio and determine octive level tempo  
 
  • Go to IDLE when stop is hit  
 
 
 
 Write code to determine tempo sync 
 
  
 
*******************************************************************/ 
 
/* void TEMPO_STATE(void) 
 
{ 
 
    digitalWrite(tempoPin, HIGH); 
 
    
    if (digitalRead(Sync) == HIGH){      
 
      digitalWrite(tempoPin, LOW); 
 
      delay(1000); 
 
      SM_STATE = STATE_FOUR; 
 
    }
 
} 
 
*/ 
 
/******************************************************************* 
 
  TEST STATE: 
 
  • PLay default audio sound  
 

 33



  • Make Robot move  
 
  • Go to IDLE when stop is hit 
 
 
 
  write code for robot movement and audio out  
 
*******************************************************************/ 
 
void TEST_STATE(void) 
 
{ 
 
    digitalWrite(testPin, HIGH);   
 
    int duration;                   
 
    int tempo; 
 
    int tempo_pot; // default 
 
    int toneSelector; 
 
    int speed;  
 

    //play the song 
 
    int i_note_index = 0; 
 
    
    while (digitalRead(testPin))  
 
    { 
 

      // Change octive  
 
      if (digitalRead(TONE_PIN)  == HIGH){ 
 
        Octive ++; 
 
      } 
 
      if ((Octive > 9) && (digitalRead(TONE_PIN) == HIGH)){ 
 
        Octive = 2;  
 
      } 
 
       
 
       

 34



 
       
 
      //Music Notes based on Octive-- 
 
      C = 16.3516*pow(2,Octive); 
 
      D = 18.35405*pow(2,Octive); 
 
      E = 20.60172*pow(2,Octive); 
 
      F = 21.82676*pow(2,Octive); 
 
      G = 24.49971*pow(2,Octive); 
 
      A = 27.5*pow(2,Octive); 
 
      B = 30.86771*pow(2,Octive); 
 
      high_C = 32.70320*pow(2,Octive); 
 
 
 
      //Row Row Row Your Boat 
 
      int songLength = 54;   
 
      double notes[] = {C, rest, C, rest, C, rest, D, rest, E, rest, E, rest, 
D, rest, E, rest, F, rest, G, rest, high_C, rest, high_C, rest, high_C, rest, 
G, rest, G, rest, G, rest, E, rest, E, rest, E, rest, C, rest, C, rest, C, 
rest, G, rest, F, rest, E, rest, D, rest, C, rest}; 
 
      int beats[] = 
{2,1,2,1,2,1,1,1,2,1,2,1,1,1,2,1,1,1,6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,2,1,1,1,2,1,1,1,5,1}; 
 
       
 
      tempo_pot = analogRead(ANALOG_PIN); 
 
      tempo = song_tempo*float(tempo_pot)/TempoCal; //read the tempo POT 
 
       
 
       
 
      //set the Servo speed 
 
      speed = (1 - float(tempo_pot)/TempoPotMax)*PwmMax; 
 
       
 
      // Base servo movement 
 

 35



      if (basePos >= 180)  
 
      { 
 
        baseIncrement = 0;  
 
      } 
 
      else if ( basePos <= 0){ 
 
        baseIncrement = 1; 
 
      } 
 
       
 
      if ( baseIncrement == 1)  
 
      { 
 
        basePos ++;   
 
      } 
 
      else  
 
      { 
 
        basePos --; 
 
      } 
 
       
 
      baseServo.write(basePos); 
 
      delay(speed / 10); 
 
       
 
      // arm servo movement 
 
      if (armPos <= 0)  
 
      { 
 
        armIncrement = 1;  
 
      } 
 
      else if ( armPos >= 180){ 
 
        armIncrement = 0; 
 

 36



      } 
 
       
 
      if ( armIncrement == 0)  
 
      { 
 
        armPos --;   
 
      } 
 
      else   
 
      { 
 
        armPos ++; 
 
      } 
 
      armServo.write(armPos); 
 
      delay(speed / 10); 
 
          
 
      // Play song  
 
      duration = beats[i_note_index] * tempo; 
 
      tone(speakerPin, notes[i_note_index], duration); 
 
      delay(duration); 
 
       
 
      //increment the note counter 
 
      ++i_note_index; 
 
      if(i_note_index >= songLength)  
 
      { 
 
        i_note_index = 0; 
 
      } 
 
       
 
    } 
 
} 
 

 37



 
 
/******************************************************************* 
 
  TEMPO STATE: 
 
   • Write function to read in audio and sync the time  
 
   • Go to IDLE when stop is hit  
 
 
 
  Write code to determine time sync 
 
*******************************************************************/ 
 
/*void TIME_STATE(void) 
 
{ 
 
    digitalWrite(timePin, HIGH); 
 
    if (digitalRead(Sync) == HIGH){ 
 
       digitalWrite(timePin, LOW); 
 
       SM_STATE = STATE_FIVE; 
 
    } 
 
} 
 
*/ 
 
/******************************************************************* 
 
  PLAY STATE: 
 
  • Audio out and robot dance for certain amount of time 
 
 
 
  Write code to play audio and move robot  
 
*******************************************************************/ 
 
void PLAY_STATE(void) 
 
{ 
 
   
 
    digitalWrite(playPin, HIGH); 
 

 38



    int duration;                   
 
    int tempo; 
 
    int tempo_pot; // default 
 
    int toneSelector; 
 
   
 
    int speed;  
 
     
 
    //play the song 
 
    int i_note_index = 0; 
 
     
 
     
 
    while (digitalRead(playPin))  
 
    { 
 
      // Change octive  
 
      if (digitalRead(TONE_PIN)  == HIGH){ 
 
        Octive ++; 
 
      } 
 
      if ((Octive > 9) && (digitalRead(TONE_PIN) == HIGH)){ 
 
        Octive = 2;  
 
      } 
 
       
 
       
 
       
 
      //Music Notes based on Octive-- 
 
      C = 16.3516*pow(2,Octive); 
 
      D = 18.35405*pow(2,Octive); 
 
      E = 20.60172*pow(2,Octive); 
 

 39



      F = 21.82676*pow(2,Octive); 
 
      G = 24.49971*pow(2,Octive); 
 
      A = 27.5*pow(2,Octive); 
 
      B = 30.86771*pow(2,Octive); 
 
      high_C = 32.70320*pow(2,Octive); 
 
 
 
      //Row Row Row Your Boat 
 
      int songLength = 54;   
 
      double notes[] = {C, rest, C, rest, C, rest, D, rest, E, rest, E, rest, 
D, rest, E, rest, F, rest, G, rest, high_C, rest, high_C, rest, high_C, rest, 
G, rest, G, rest, G, rest, E, rest, E, rest, E, rest, C, rest, C, rest, C, 
rest, G, rest, F, rest, E, rest, D, rest, C, rest}; 
 
      int beats[] = 
{2,1,2,1,2,1,1,1,2,1,2,1,1,1,2,1,1,1,6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,2,1,1,1,2,1,1,1,5,1}; 
 
       
 
      tempo_pot = analogRead(ANALOG_PIN); 
 
      tempo = song_tempo*float(tempo_pot)/TempoCal; //read the tempo POT 
 
       
 
       
 
      //set the Servo speed 
 
      speed = (1 - float(tempo_pot)/TempoPotMax)*PwmMax; 
 
       
 
      // Base servo movement 
 
      if (basePos >= 180)  
 
      { 
 
        baseIncrement = 0;  
 
      } 
 
      else if ( basePos <= 0){ 
 
        baseIncrement = 1; 

 40



 
      } 
 
       
 
      if ( baseIncrement == 1)  
 
      { 
 
        basePos ++;   
 
      } 
 
      else  
 
      { 
 
        basePos --; 
 
      } 
 
       
 
      baseServo.write(basePos); 
 
      delay(speed / 10); 
 
       
 
      // arm servo movement 
 
      if (armPos <= 0)  
 
      { 
 
        armIncrement = 1;  
 
      } 
 
      else if ( armPos >= 180){ 
 
        armIncrement = 0; 
 
      } 
 
       
 
      if ( armIncrement == 0)  
 
      { 
 
        armPos --;   
 
      } 

 41



 
      else   
 
      { 
 
        armPos ++; 
 
      } 
 
      armServo.write(armPos); 
 
      delay(speed / 10); 
 
          
 
      // Play song  
 
      duration = beats[i_note_index] * tempo; 
 
      tone(speakerPin, notes[i_note_index], duration); 
 
      delay(duration); 
 
       
 
      //increment the note counter 
 
      ++i_note_index; 
 
      if(i_note_index >= songLength)  
 
      { 
 
        i_note_index = 0; 
 
      } 
 
       
 
    } 
 
} 
 
 
 
/******************************************************************* 
 
  Run State Machine 
 
*******************************************************************/ 
 
void RUN_STATEMACHINE(void) 
 
{ 

 42



    // Make Sure States is valid 
    if (SM_STATE < NUM_STATES) 
    { 
        // Call function for state 
        (*StateMachine[SM_STATE].func)(); 
    } 
    else 
    { 
        // Code should never reach here 
        while(1) 
        { 
            // Some exception handling. 
        } 

    } 

} 
 

 

 43


