
Interrupt driven Arduino Stepper Motor Driver.
Note: this document uses a common notation to have a leading '/' to indicate the signal is inverted.
Preface

There are several Arduino bipolar stepper motor drivers , but I couldn't find any that was non-blocking. When one uses a stepper motor, it's - at least to my consideration - the minimal requirement the
motor steps are applied in the background. Reason is that this preserves the non-used core cycles to perform other tasks. Since the AVR is a single core processor, a blocking driver will only be able to
provide motor steps from trajectory A to B, but while that trajectory is controlled, the core cannot do anything else.
Pro's - This motor driver is non-blocking. It interrupts other tasks running on the Arduino to generate the required motor steps.

- A virtual 32bit timer is used to control the motor step frequency. This allows a huge range of step intervals, going from 1 step every 4 seconds to approx. 25000 steps/second.
- In order to support automatic speed increase / decrease, some additional parameters are foreseen for this kind of automation. If unused, fixed motor speeds are obtained.
- The motor end position can be defined as "none", "xxxx steps" or "xxxx milliseconds".
- On Arduino Mega, any 16bit timer may be selected: (TIMER1/TIMER3/TIMER4/TIMER5, hereafter referred to as TIMER1/3/4/5.

Con's - TIMER1 is the only 16bit timer on an Arduino Uno and is used for the stepper pulse interval. One may consider to rewrite to Timer 2, but loss of timer bits will affect RPM accuracy.
- Since AVR has limited computing power, units are steps/s (not RPM). However, there are some provisions to allow for linear speed increase / decrease.- Since AVR has limited computing power, units are steps/s (not RPM). However, there are some provisions to allow for linear speed increase / decrease.
- Although different timers can be assigned to the motor shield on Arduino Mega, it's at present not possible to modify a Motor Shield and drive 2 shields with different timers.
 (however, this is a relative minor change one can implement him/herself).

So it's obvious, no other library should use the active timer in combination with this driver, unless modifications are implemented accordingly.
Taken into account TIMER1 is also used by the Servo driver, it's expected TIMER1 use is not problematic for stepper motor control.
Only for the MEGA, there is option to #define MOTOR_TIMER3, MOTOR_TIMER4 or MOTOR_TIMER5 to select another hardware timer.

1. The bipolar stepper motor and a H-Bridge (ex. the L298 Driver).
The bipolar stepper motor has 2 coils. How it works is explained on Wikipedia: https://en.wikipedia.org/wiki/Stepper_motor
To drive it by a micro controller, one needs to apply a current trough each coil at any time. The current direction for each coil is:

Step Coil A Coil B
0 - -
1 + -1 + -
2 + +
3 - +

The above is repeated in a loop (from step 3 back to step 0) till the desired position is reached.
To revert the motor direction, revert the step sequence from bottom to top.
The rotation speed depends on the amount of steps provided every second. A stepper motors' RPM is typically much lower vs. linear motors, but are better in terms of open-loop positioning.
Common used stepper motor have 1.8 degree rotation per step. That means 1 revolution is made by applying 200 steps.

The L298 looks like this. Clearly visible is there are 2 identical blocks. One around In1, In2, EnA, Out1, Out2; the 2nd around In3, In4 and EnB, Out3, Out4

Called a H-Bridge:
Such bridge can invert the voltage polarity on the load:
To avoid shorts, High side and Low side driver of the same side are never active
together.

LOAD

HIGH SIDE
DRIVER

HIGH SIDE
DRIVER

LOW LOW

For bipolar stepper motor applications, the Arduino motor shield (see further) allows us to use the L298 driver in 3 different states, depending on the Motor Shield inputs.
Option #1: the Ena Pin is Low: the driver is disabled, the coil acts as if it's not connected to anything (inactive driver outputs are removed from the drawing):

Note:
The sense pin is connected by a small resistor to Ground.
To simplify things explained as GND (in reality there is a small voltage vs. the series resistor & the load current)

LOW
SIDE

DRIVER

LOW
SIDE

DRIVER

To simplify things explained as GND (in reality there is a small voltage vs. the series resistor & the load current)

Since the coil is not powered at all, no current flows through the windings.

Since for Bipolar Stepper Motor application, the Arduino Motor Shield always has the even input inverted vs. the odd numbered input, the interter is now place in the schematic:
Option #2. In1 is low. Option #3. In1 is high

In conventional current flow, the coil has now a current from right to left. In conventional current flow, the coil has now a current from left to right.

Since a bipolair stepper motor has 2 coils, we need 2 such drivers as shown above. As a result, the L298 can drive only a single, bipolar stepper motor.

2. Unipolar Stepper Motor and Darlington Driver.
Some stepper motors have 6 wire connection. In such case, the motor can still be considered a bipolar motor with an unused center connection.

Some stepper motors have 8 wires: that's similar to 6-wire, but all coils have individual connections. Those motors are the most flexible to use, but more complex to determine the coil sequence.Some stepper motors have 8 wires: that's similar to 6-wire, but all coils have individual connections. Those motors are the most flexible to use, but more complex to determine the coil sequence.
Other stepper motors may only have a 5 wire connection. In such case, the center taps of both coils are connected together. These motors cannot be driven by the present software for the
Arduino motor shield. However, unipolar stepper motors can be driven by a cheaper darlington or similar driver, like the ULN2003.
The major advantage of this kind of motor is that a ULN2003 or similar driver is cheaper than L298. The major disadvantage is these motors are heavier vs. the provided torque, since only
half a coil is active per step. This is how a 5-wire motor can be connected to an ULN2003 / ULN2004 / ULN2803 etc (the pinout of the driver changes vs. the type, ULN2004 is shown):

Ჶ1-Ჶ4 are some mes also referred to as Phase A-D.

PhaseA PhaseB PhaseC PhaseD
1 0 0 1 ('1' means the driver is in non-conducting state).
1 1 0 0
0 1 1 0
0 0 1 1

3. The Arduino Motor shield with H-Driver bridge (L298)
As mentioned above, In2 is always the inverted state of In1 (when the motor shield BREAKA is low), and In4 is always the inverted state of In3 (when BREAKB is low)
If either BREAK signal is kept high, the resulting input is always low (since this is a NOR gate).
Connectivity:

L298 Uno Mega Arduino
In1 PB4 PB6 D12 Step D12 D13
In2 /PB4 /PB6 /D12 0 0 0
In3 PB5 PB7 D13 1 1 0
In4 /PB5 /PB7 /D13 2 1 1

En1-2 PD3 PE5 D3 3 0 1
En3-4 PB3 PB5 D11

D9
D8

PWMA
PWMB
BREAKA
BREAKB

Motor Shield
DIRA
/DIRA
DIRB
/DIRB

The above information already made it clear the L298 can only drive a single Bipolar Stepper Motor.
The connectiviy is as shown below (motor winding colors may be different):

Looking it from a "Low Level" perspective, we have this:
- The Arduino is built around an AVR core (the Uno uses ATMega328P; the Mega uses ATMega2560).
- The AVR core has I/O ports. The Uno and Mega may use different I/O ports for the same digital I/O pin.
 If one sticks to Arduino digital numbering, the Arduino software takes care of those different I/Os.
 When using the ports directly, the user has to take care of the different port allocation.
- The Arduino motor shield connects to a number of I/O pins and contains the L298 Driver.
 The L298 has 4 digital output stages. Each stage can drive to either supply or ground level.
 Two stages share one enable pin. If that pin is driven low, the two drivers are disabled.
 An amplifier is typically drawn as a triangle; the enable input is in this case at the bottom.
 Only one amplifier is drawn for simplicity, in reality there are 4, each pair charing 1 enable input.

Arduino did not provide an option to drive the stepper motor in half step mode. The BREAK signals are not used by this driver (according my interpretation there is error in the schematic and the labels
should be moved).
As a result, BREAK pins must remain LOW. If BREAK is high, IC20 no longer functions as an inverter required for stepping motor (I didn't check if playing with BREAK might still enable half-step motor steps).
The PWM named pins (D3 and D11) are in fact the L298 driver enable pins. These must remain HIGH to enable the driver for bipolar stepper motor. When LOW, the motor is not driven at all.
Binary pins D12 and D13 must be driven by the above shown pattern to rotate the motor. If one looks to the Arduino Uno & Mega schematics, different AVR I/O pins are used for the Uno & the Mega.
Considerations:

1 Since the BREAK lines are not used with bipolar stepper motor, consider to cut BRAKE-A_DISABLE and BRAKE-B_DISABLE. This frees up D9 and D8.
This change would allow to drive a 2nd motor shield where pins D12 and D13 are cut and connected to - for instance D9 and D8 (on both PCB the BRAKE-x_DISABLE wires must be cut to
disconnect D9 and D8 from BRAKE-x).

2 To allow half step (requires software modification), consider to remove IC20 and bring pins 3 and 11 (In2 and In4) to other Arduino pins (preferably port B to keep software changes simple.

4. The AVR core, used in the Arduino Uno & Mega.
This documentation only provides the minimal AVR core knowledge to understand the driver software.
For additional AVR core details, consult the AVR datasheet on Microchip website (ATMega 328P for Uno, ATMega2560 for Mega) and the respective Arduino schematics.
All Arduino I/O pins are pins made available by the AVR designers in so called Ports. Since AVR is an 8bit chip, these ports are also 8bit in size. Ports are named A, B, C and so on. The Mega has more
ports vs. the Uno.
A digital I/O pin is basically a set of RAM cells where the state (0 or 1) of one RAM cell chooses between input or output mode. In case of output mode, the 2nd RAM cell drives the output level high or low.
In order to operate, the processor has a clock. The clock is typically generated from an oscillator. Transitions of the clock signal are used to slice time into individual, sequential operations.
Those operations may be instruction execution, counting clocks (to increase the time span), performing serial communications etc. So there's a core clock, I/O clock etc.
So the I/O clock is generated from the oscillator output. On Arduino that oscillator is 16MHz (crystal) although the AVR allows to select also an internal 8MHz or 128kHz oscillator.
The function motorTimerGetIOclocksPerSecond returns the amount of expected IO clocks per second. Most users will not use the CLKPR option nor AVR fuses, so this is expected to be 16000000.
Since the AVR core is also driven by the oscillator and most instructions require a single clock transition to execute, the core is nearly capable of 16MIPs (Million Instructions Per Second), where each
instruction is 8bit. The AVR is an integer processor. These processors are much slower using real numbers vs. integers. For this reason, the motor driver does not use RPM, but pulses per second.
For example, if one uses a motor that requires 200 pulses per rotation, 100 pulses per second equals half a rotation per second, or 30RPM.

The first connection between the AVR and the motor shield is via the digital I/Os. The motor shield is just an amplifier, because the digital I/O is unable to drive the bipolar stepper motor directly.
Accessing AVR ports via Arduino commands is much slower vs. driving the ports directly. A direct drive has the disadvantage the code is no longer universal / portable. So we make a tradeoff:
Where possible, Arduino I/O is used, for motor steps, the ports are directly addressed.
As a result: if another Arduino board is targetted, one has to check if the I/O ports are covered by existing code or modify it accordingly.

If we visualize the hardware of interest, it comes to this:
Note the real AVR connectivity is more complex vs. what is shown here, but the intent is to simplify. 7

6
5
4
3

motorTimerGetIOclocksPerSecond 2
1

Port B

1
0

(most likely 1) Interrupt motorTimerCalcPerSecond computes the interrupt frequency

Used & controlled
by this driver

The 3 possible oscillators are selected by AVR fuse bits. On Arduino, it's expected the 16MHz is always selected, but the existing code checks the appropriate fuses to allow any of the 3 options.
The CLKPR register allows to divide the oscillator by 1, 2, 4, 8, 16, 32, 64 or 256. On Arduino, this divider is expected to be 1 at any time. Any value other than 1 makes the AVR slower, but it also reduces

16MHz
Oscillator

AVR Core (CPU)

16bit TIMER1/3/4/5Pre
Scaler

8MHz RC
Oscillator

128kHz
Oscillator

CLKPR
Fuse Bit

Driven Matrix

The CLKPR register allows to divide the oscillator by 1, 2, 4, 8, 16, 32, 64 or 256. On Arduino, this divider is expected to be 1 at any time. Any value other than 1 makes the AVR slower, but it also reduces
power consumption (that's the only reason why one may select a divider other then 1).
The motorTimerGetIOclocsPerSecond function typically will return 16 million since most users are not expected to use the CLKPR feature.
Suppose we want to rotate the motor by 2 revolutions / s and it requires 200 steps per revolution. In that case, the motor stepping pattern (chapter 1) must be changed every

0.0025 seconds or every 2.5 ms
What we don't want is that the Arduino is "delay"-ing 2.5ms and applies another step. The driver aims to interrupt the AVR core every step, let it change the I/O pins (spin
the motor 1 step) and return to what it was doing before. In other words: the driver should be non-blocking. Remind the AVR core can only perform 1 task at any time.
The solution: interrupt. Just like a phone call interrupts a person from the work one was doing, interrupts stop the AVR core from what it was doing, store it's operating state, perform
the interrupt (like human example: the phone call) and when ready, return to the work one was doing.
The AVR has timers on board to achieve this. The ATMega328 is a scaled down ATMega2560, so common available hardware is used. TIMER1/3/4/5 is a 16bit timer that has a pre-scaler.
The timer has 15 possible configurations, but we use only one: the FAST PWM mode. What happens is:

1. The IO clock is divided by TIMER1/3/4/5 pre-scaler. This divider can be 1, 8, 64, 256 or 1024. So the timer input is the CLKPR output additionally divided by the timer prescaler.
2. The counter counts up at the rate of the prescaler output. When it reaches the "TOP" register, the following events are done by AVR hardware:

- The timer overflow interrupt (TOIF) flag bit is set in a register called TIFR1 (TO = Timer Overflow, IF = Interrup Flag).
- The timer is cleared but counting continues by AVR hardware. So no matter how long the core needs to react, the next motor step occurs at exact the same interval.
- If TOIE was set (TOIE: IE = Interrupt Enable) in the TIMR1 (MR = Mask) register and the AVR core allows interrupts, the function performed by the AVR
 is interrupted just as a human phone call. The core stores it's present operational data to be able to continue that work later on and jumps to a
 function called ISR (TIMER1/3/4/5_OVF_vect). This driver uses that function to advance the motor stepping pattern.
 If TOIE was not set, or TOIF is not set because the counter did not time out yet, the AVR core performs the usual code (the one in your Arduino loop function).

In a graphic representation, the timer counts as shown here:

Notes
- Since the TIMER1/3/4/5_OVF_vect takes some time to execute, the minimal timer top value is defined as 640 (this allows up to 25000 steps/s at 16MHz, most likely out of reach for most stepper motors.
- This driver uses often uint8_t, uint16_t and uint32_t. This stands for "unsigned integer", the 8, 16 or 32 is the amount of bits. Since unsigned, it means the value can be 0 up to (2^bitsize) - 1.
 For example, uint16_t has range 0 … 65535.
- In a few cases, the leading 'u' is missing. These are signed values. Since the highest bit is reserved for the sign, the range is from negative (-2^(bitsize - 1) up to positive ((2^(bitsize - 1) - 1).
- A few additions where made to the software: the motor driver can pay attention to so called "update events". This is either an elapsed time (in ms) or amount of moving steps sent to the motor.
 When an update event occurs, the present virtual 32bit TOP value is increased or decreased by another value. An increase makes the time between steps larger, leading to slower rotation. A decrease
 speeds up the motor rotations.
 When a time-out event occurs, the motor is stopped. This can be used when for instance the speed was gradually decreased. When a time-out event occurs, the motor is stopped. This can be used when for instance the speed was gradually decreased.
Specific details about how the software uses the 16bit timer.
Note: as mentioned before, the UNO only one 16bit timer (1). The Mega has four such timers: 1, 3, 4 and 5
(x = 1, 3, 4 or 5 - depending on what's available)
The timer is used in Fast PWM mode. That means the timer counter (TNCT, split in a high and low byte) just counts at a pace controlled by the timer pre-scaler.
The 16bit OCR register (output compare) defines the TOP value at wich 2 operations are performed automatically by the AVR hardware:

1 TCNT (the whole 16bit timer) is reset. So the timer re-starts counting from zero. That ensures the timer interval will re-occur at the same rate (unless a speed change has changed OCRx)
2 The TOVx flag (this is just a 1bit memory cell) is set in a register called TIFR (Timer Interrupt Flag Register). This flags the system the timer had reached the end point.
3 Since we use interrupts, the corresponding TIMR bit is also set once the motor stepping is initialized. The TIMR is the Timer Interrupt Mask register: it enables or prevents that the flag generates

a real interrupt to the AVR.
4 The AVR hardware performs a logic AND function between TOVx (in the TIFR register) and TOVx (in the TIMSK register). Since both bits are set at the same time, the logic AND output is high.
5 If the AVR core has interrupts enabled (the default case on Arduino, since it uses interrupts already for USB transmission and it's own millis timer), the TIMERx_OVF_vect function gets called in

the software.

All are identical

(This bit is located in the TIFRx register)

AVR Interrupt

As mentioned above, the Timer also has a pre-scaler, but in the above drawing it's kept out for simplifcation reasons.
Since the AVR is an 8bit core, it cannot access the 16bit timer at once. The AVR designers have foreseen a solution (this bit is located in the TIMSKx register)

8 highest timer bits

OCRxAH OCRxAL

Compares if these 8 bits are identical Compares if these 8 bits are identical

8 highest timer bits

TCNTxLTCNTxH

Reset TCNT
Set TOVx Flag

TOVx Enable
Since the AVR is an 8bit core, it cannot access the 16bit timer at once. The AVR designers have foreseen a solution (this bit is located in the TIMSKx register)
for this: in reality, the highest 8-bit must be accessed first when written and last when read. Why:

- Ones the software writes to the high byte, it does not write to that part of the timer. These 8bits are stored in a latch. This is just an 8bit memory that preserves the information for now.
- When the software writes the low byte, the AVR hardware writes the 8bit latch and the lower 8bit in one cycle. So the whole 16bit are written in one operation.
- For read operations, a similar operation occurs: if the 8 lowest bits are read, at the same time the 8 upper bits are copied to the latch. This ensures the read operation has the entire 16bit
 at once. After that, the high byte can be read. It will not return the real upper 8bit, but the latch instead.

This has a reason. Suppose the timer is counting up and the prescaler is set to 1 (it counts every clock cycle of the 16MHz oscillator). The present timer value is 0x12FE. Without the latch, the
following can happen:

1 - The software reads the lower byte. This is 0xFE.
2 - Suppose the software writes this result to RAM. That may require 2 clock cycles. So when it has finished the RAM write, the timer has also continued to count up. At this time, timer is 0x1301.
3 - The software reads the upper byte. This is now 0x13 and writes to RAM.

Conclusion: the software would incorrectly assume the 16bit value from the timer is 0x13FE. Now we repeat these steps with the latch:
1 - The software reads the lower byte. This is 0xFE. At the same time, the AVR hardware design copies the timer upper byte to the latch. So the latch contains 0x12.
2 - The software stores again the result in RAM. After it has finished, the real Timer TCNT value is still 0x1301.2 - The software stores again the result in RAM. After it has finished, the real Timer TCNT value is still 0x1301.
3 - The software reads the upper byte. But since it reads the latch, it reads 0x12, not the real value of the timer upper byte (that is already 0x13).

This way, the AVR design prevents software from making the wrong assumption the timer was 0x13FE. Thanks to the upper timer latch, the correct value is read by software.

If the AVR interrupt becomes active, basically the following actions happen:
1 - The processor finishes the instruction it was doing.
2 - The processor status is saved on a special memory, called the stack. This allows the processor to continue the next instruction after the interrupt is processed.
3 - The processor jumps to a software function - in this case TIMERx_OVF_vect that has to process the reason of interrupt. In this case, apply another step pattern to the motor.
4 - Typical for AVR core, the bit that indicated a timer compare match occurred (how the timer is used: this is called the Timer Overflow Flag (TOVx) is cleared without software intervention.
5 - When the interrupt handling is finished, the processor state is restored.
6 - The processor continues what it was doing in step 1 as if it was never interrupted.

Some considerations.
1 - If the processor was doing something that is time-sensitive (for instance, waiting for an I/O line to become low or high), that work may still be affected by the interrupt. 1 - If the processor was doing something that is time-sensitive (for instance, waiting for an I/O line to become low or high), that work may still be affected by the interrupt.

If a specific job is time sensitive, that job should temporary disable interrupts and re-enable as soon as possible when the timing critical function has finished. Note Arduino ms timer
uses Timer0. If one disables interrupts overall, the ms timer registration will also be stopped (Arduino timer will not be accurate anymore). Also motor pulses will be stopped.

2 An interrupt function must be as short as possible and it should never block operations (for instance, start waiting for something else to occur). The AVR only allows one interrupt to be
processed at any time (or one really has to foresee that software function it can be interrupted once more). So while a motor step function is performed by TIMERx_OVF_vect function,
no other interrupt will be accepted. For instance: the Arduino millis timer will not be serviced while a motor step is executed but delayed till that motor step function has finished.

3 Since the OCRx register (as a 16bit value) can be modified at any time, it may occur the present TCNT register was already higher than the updated OCRx value. This may happen when the
motor RPM is supposed to accelerate. In such cases, it will take a - to computers considerable - amount of time before the TOV event occurs. This may result the motor - when accelerating
makes one slower step and than speeds up again to the normal step rate. However, this behavior is not often seen in real life but occurs most if the complete timing is handled by the
interrupt routine. The only way to improve this would be to:

1 - Always call the function motorTimerUpdateCheck from the main function.
2 - Change that function so that it does not write directly to OCRxA, but instead write the two bytes to two RAM parameters (except the 1st time when the timer is initialized).
3 - OCRxA is always updated in the TIMERx_OVF_vect function from these 2 RAM parameters.

This change would make the TIMERx_OVF_vect function very short, with low probability any updates to OCRxA register in sync with the TCNT reset (so low probability it counted much
up from zero).

All the used timer registers listed (only used bits are explained). Bits not explained are written zero.
D7 D6 D5 D4 D3 D2 D1 D0

COMxA1 COMxA0 COMxB1 COMxB0 COMxC1 COMxC0 WGMx1 WGMx0 Timer Counter Control Register A
These 2 bits must be '1' to select the FAST PWM mode used by this software.

ICNCx ICNSx - WGMx3 WGMx2 CSx2 CSx1 CSx0 Timer Counter Control Register B
These 2 bits must be '1' to select the FAST PWM mode used by this software.

FOCxA FOCxB FOCxC - - - - - Timer Counter Control Register C

Register Name
TCCRxA

TCCRxB

TCCRxC FOCxA FOCxB FOCxC - - - - - Timer Counter Control Register C

D15 D14 D13 D12 D11 D10 D9 D8 Upper byte of Timer Counter.

D7 D6 D5 D4 D3 D2 D1 D0 Lower byte of Timer Counter.

D15 D14 D13 D12 D11 D10 D9 D8 Upper byte of Output Compare A

D7 D6 D5 D4 D3 D2 D1 D0 Lower byte of Output Compare B
These 2 registers are programmed with the step motor interval.

There are OCR registers B and C as well, but we don't use. Also, ICR (input capture register) is not used.

- - ICIEx - OCIExC OCIExB OCIExA TOIEx Timer Interrupt Mask Register
When this bit is '1', TOV interrupt is enabled (used to advance the stepper motor by 1 step).

OCRxAH

OCRxAL

TIMSKx

TCCRxC

TCNTxH

TCNTxL

When this bit is '1', TOV interrupt is enabled (used to advance the stepper motor by 1 step).

- - ICFx - OCFxC OCFxB OCFxA TOVx
This bit is set by the AVR hardware, when TCNTx matches OCRxA.

The WGM bits select the pre-scaler output. Possible options are: WGMx3 WGMx2 WGMx1 WGMx0
1 1 1 1 Fast PWM Mode

CSx2 CSx1 CSx0
0 0 0 No Timer Clock Source (does not count)
0 0 1 IO_CLK / 1
0 1 0 IO_CLK / 8
0 1 1 IO_CLK / 64
1 0 0 IO_CLK / 256

TIFRx

1 0 0 IO_CLK / 256
1 0 1 IO_CLK / 1024
1 1 0 External clock - cannot be used
1 1 1 External clock - cannot be used

CS selects the step motor interval.

Example how we fit a 32bit virtual timer in the 16bit hardware timer.
For example, we select a step interval of 0x12345.

AVR clock: 16000000 Hz
Virtual 32bit 0x000E2345
Decimal = 926533
Steps/revolution 200
Steps per second: 17
Expected RPM: 5.1

This is part of the motorTimerUpdateCheck function
Result of the "if" test: cs value

unsigned char cs = (1 << CS10); 1 << CS10 (prescaler = 1)
if ((timTop32 & 0xFFFF0000UL) != 0) 926533 000E2345 000E
{ Since the result is not zero, this step is executed.

115816 0001C468

timTop32 Value

 timTop32 >>= 3; 115816 0001C468
 cs = (1 << CS11); 1 << CS11 (prescaler = 8)
}
if ((timTop32 & 0xFFFF0000UL) != 0) 115816 0001C468 0001
{ Since the result is not zero, this step is executed.
 timTop32 >>= 3; 14477 0000388D
 cs = (1 << CS11) | (1 << CS10); 1 << CS11 + 1 << CS10
} (prescaler = 64)
if ((timTop32 & 0xFFFF0000UL) != 0) Result is now zero, step is not executed. Value written to the timer.
{
 timTop32 >>= 2; So the wanted interval was 000E2345 926533
 cs = (1 << CS12); But in reality, it will be 000E2340 926528
} 99.999% accurate
if ((timTop32 & 0xFFFF0000UL) != 0) Since the result is now zero, this step is not executed.if ((timTop32 & 0xFFFF0000UL) != 0) Since the result is now zero, this step is not executed.
{
 timTop32 >>= 2;
 cs = (1 << CS12) | (1 << CS10);
}
if ((timTop32 & 0xFFFF0000UL) != 0) This is only there to detect a virtual timer value exceeds 1024 * 65536.
{… Since this is not the case, this code is skipped.
}
unsigned char lo = (unsigned char) (timTop32); The low byte of the 16bit timer value is stored in lo.
TCCR1B = (1 << WGM13) | (1 << WGM12) | cs; WGMx3 + WGMx2 are set to '1' (half the init for FAST PWM mode) / prescaler is set.
timTop32 >>= 8; timTop is now only the upper byte of the remaining 16bit value
cs = (unsigned char) (timTop32); This 8bit top value is preserved in cs.
OCR1AH = cs; Here we write the timer output compare register. The high byte is written first.
 OCR1AL = lo; Followed by the low byte. OCR1AL = lo; Followed by the low byte.

5 How to use with a Unipolar Motor Driver.
As shown in section 2, a unipolar stepper motor driver has 4 individual outputs (as is the case with Arduino motor shield). For that reason the software setup is different.
In this case, any I/O can be assigned to the motor driver, all motor driver pins must belong to the same AVR I/O Port (see also section 4). These I/O Ports are available:
For instance, one can consider to use D4, D39, D40 and D41, since all belong to port G.
Not all pins are available on each AVR processor. The amount of available ports on the Arduino Mega 2560 is considerable higher vs. the Arduino UNO.

AVR Port Pin Uno Mega AVR Port Pin Uno Mega AVR Port Pin Uno Mega AVR Port Pin Uno Mega
0 - D22 0 D0 D21 0 - D41 0 - A8
1 - D23 1 D1 D20 1 - D40 1 - A9
2 - D24 2 D2 D19 2 - D39 2 - A10
3 - D25 3 D3 D18 3 - - 3 - A11
4 - D26 4 D4 - 4 - - 4 - A12
5 - D27 5 D5 - 5 - D4 5 - A13

K
G

A D

5 - D27 5 D5 - 5 - D4 5 - A13
6 - D28 6 D6 - 0 - D17 6 - A14
7 - D29 7 D7 D38 1 - D16 7 - A15
0 D8 D53 0 - D0 2 - - 0 - D49
1 D9 D52 1 - D1 3 - D6 1 - D48
2 D10 D51 2 - - 4 - D7 2 - D47
3 D11 D50 3 - D5 5 - D8 3 - D46
4 D12 D10 4 - D2 6 - D9 4 - D45
5 D13 D11 5 - D3 7 - 5 - D44
6 - D12 6 - - 0 - D15 6 - D43
7 - D13 7 - - 1 - D14 7 - D42
0 A0 D37 0 - A0 2 - -
1 A1 D36 1 - A1 3 - -
2 A2 D35 2 - A2 4 - -

LB

H

J

E

2 A2 D35 2 - A2 4 - -
3 A3 D34 3 - A3 5 - -
4 A4 D33 4 - A4 6 - -
5 A5 D32 5 - A5 7 - -
6 RESET D31 6 - A6
7 - D30 7 - A7

To disable the Arduino Motor Shield, comment out the #define ARDUINO_MOTOR_SHIELD statement in the header file.
Further, one has to define the I/O Port and the Data Direction Register (to make sure the driver sets the correct pins as output):

MOTOR_IOPORT_? This can be MOTOR_IOPORT_A … MOTOR_IOPORT_L (any of the above ports that has sufficient pins available to drive the motor).
MOTOR_PATTERN0 Contains the motor pattern (the 7th bit on the left, the 0th bit on the right). For instance B00110000 ->In this case, bit 5 and 4 are driven high (when set in DDR)
MOTOR_PATTERN1
MOTOR_PATTERN2
MOTOR_PATTERN3

C F

MOTOR_PATTERN3
MOTOR_OUTPUTS Each bit output to a driver pin has to be set in this pattern. For example (B11110000) sets the upper 4 bits in the port as output.

6. Software to compensate AVR hardware restrictions.
From the above, we know the hardware timer is 16bit and two divider stages affect the speed it counts (CLKPR and TIMER1/3/4/5 prescaler).
What I didn't want is to hardcode the prescaler for maximal flexibility. For example, at 16MHz, using a fixed prescaler of 1 would result:

highest step rate 25000 steps/s
lowest step rate 244.140625 steps/s

This would result a 200 step/revolution motor would spin at a minimal of 1.5 rotations/s (~90RPM) at lowest possible speed.
We could also use the prescaler of 8 hardcoded, but that would still lead to 12RPM as minimal speed. Bottom line: using a fixed prescaler is not flexible.
I did not want to limit the steps this way by software, because that would make the software too much depending on the hardware. Instead, I defined a virtual 32bit TOP register.
Using a 32bit virtual TOP register, the maximal step rate is still the same as above. The lowest step rate however becomes (under the same conditions):

lowest step rate 0.238418579 steps/s
The result comes from the hardware timer prescaler (1024) and the 16bit range of the timer. So in theory, about every step rate between 25000 and 0.24 steps/s is possible from software point of view.
If we consider the 2nd timer (Timer2): this is only an 8bit hardware timer. Without additional software to deal with this restriction, the minimal step rate would be:

IO Clock 16000000 PrescaleMax 1024 Tim2HW 255 61.27451 steps/s On a 200 step/revolution motor this is minimal of 18.38235 RPM
A 200 step/revolution motor would need 838.8608 seconds for one rotation!A 200 step/revolution motor would need 838.8608 seconds for one rotation!
A function called timerUpdate is provided for this. The function:

- Set TIMER1/3/4/5 prescaler to 1
- If the virtual 32bit timer fits in 16bit, use as-is.
- else divide the virtual 32bit timer by 8 and select the hardware timer prescaler = 1/8th.
- if the remaining virtual 32bit timer result still doesn't fit in 16bit, perform additional division by 8 (so original is now divided by 64)
- select timer prescaler 1/64th.
- if the remaining virtual 32bit timer result still doesn't fit in 16bit, perform additional division by 4 (so original is now divided by 256)
- select timer prescaler 1/256th.
- if the remaining virtual 32bit timer result still doesn't fit in 16bit, perform additional division by 4 (so original is now divided by 1024)
- select timer prescaler 1/1024th.
- if the remaining virtual 32bit timer result still doesn't fit in 16bit, set timer error detected.

This way, the software selects the best possible pre-scaler vs. the actual virtual 32bit timer value. The timer hardware 16bit TOP register is loaded vs. the best fitting virtual 32bit timer TOP.
Examples can be computed filling in the yellow fields. The Excel formula act as the real software implementation; the 1st allows calculation based on step rate, the 2nd based on RPM.Examples can be computed filling in the yellow fields. The Excel formula act as the real software implementation; the 1st allows calculation based on step rate, the 2nd based on RPM.

Wanted step rate 180 steps/s
Oscillator 16000000 Hz (This is most likely fixed on your Arduino)
Steps/revolution 200 (Motor specific)
CLKPR 1 (use only 1, 2, 4, 8, 16, 32, 64 or 256)
IO Clock 16000000 Hz
32bit Virtual TOP 88888 (when the result no longer fits in 16bit hardware, the foreground color changes to red; this means the prescaler kicks in).
16bit Timer TOP 11111 (0 means the timer top cannot be computed)
16bit Timer Prescale 8 (0 means the timer divider cannot be computed)
Real steps 180.0018 steps/s
Deviation Real-Wanted 0.00100%
RPM: 54.00054001
Rotations/s 0.900

Wanted RPM: 10
Oscillator 16000000 Hz (This is most likely fixed on your Arduino) Deviation Real-Wanted 0.00010%
Steps/revolution 200 (Motor specific) RPM: 9.9000099
CLKPR 1 (use only 1, 2, 4, 8, 16, 32, 64 or 256) RPM Deviation -0.999901%
Needed step rate 33 steps/s Rotations/s 0.165
IO Clock 16000000 Hz
32bit Virtual TOP 484848 (when the result no longer fits in 16bit hardware, the foreground color changes to red; this means the prescaler kicks in).
16bit Timer TOP 60606 (0 means the timer top cannot be computed)
16bit Timer Prescale 8 (0 means the timer divider cannot be computed)
Real steps 33.000033 steps/s

If we put the RPM input back in the above diagram: Step Coil A Coil B Direction depends on sequencer: 10 RPM
0 - -
1 + - or
2 + +
3 - +

Note the MEGA and UNO I/O pins are different for the Arduino Motor Shield

7 MEGA
6 MEGA
5 UNO
4 UNO Driver4 UNO
3
2
1

Oscillator AVR 0

200 steps per revolution
CLKPR 33.00003 steps per second

16000000

33.00003 interrupts per second

TOP Register

Driver
Port B

16000000

Fuse Bit
Driven
Matrix

8MHz RC
Oscillator

1 AVR Core (CPU)

128kHz
Oscillator

60606

Virtual 32bit TOP register
Converted to Pre-Scaler & TOP for

TIMER1/3/4/5

Pre-Scaler
2000000

Timer1/3/4/5
7. Software functions

motorTimerCalcPerSecond
Calculates the 32bit virtual TOP timer, required to apply motorPulses per second
Argument: uint16_t motorPulses The amount of pulses one wants to apply every second. The amount of pulses per revolution is motor dependent.
Return value uint32_t
The motor speed is expressed in pulses per second. As shown in the calculations above, if one knows the amount of
steps the motor requires for one revolution, the RPM is ((steps_per_second) / (steps_per_revolution) * 60).
Example 200 steps/Revolution 100 steps/s = 30 RPM

TCNT

Compared

8

60606

Example 200 steps/Revolution 100 steps/s = 30 RPM

motorShieldInit
Requires no arguments, returns nothing. Must be called once to bring the motor outputs in a known state; preferably in the Arduino setup function.

motorTimerGetIOclocksPerSecond
Returns the amount of I/O clocks per second. This is the clock after being optionally divided by the CLKPR settling.
Return value uint32_t

motorTimerUpdateCheck
This function is only required if the motor speed has to be altered during stepping. It must either be called by the user about every 2-50ms (the faster the motor turns, interval becomes shorter)
No arguments are required, no arguments are returned. If needed, it modifies the 32bit virtual TOP register and updates TIMER1/3/4/5 settling to vary the rotation speed of the motor.

motorReadStatus
The return value is unsigned and combines one or more from these bits:
Return value uint8_t

MOTOR_STAT_FAULT A faulty condition is discovered (ex. TIMER1/3/4/5 TOP value out-of-bounds.
MOTOR_STAT_FAULT_CALLED Indicates the error callback function was executed (it will be executed only once per motorSetSpeed function call).
MOTOR_STAT_TIMER_DIV_ERROR Virtual timer does not fit in TIMER1/3/4/5 hardware.
MOTOR_STAT_TIMER_DIV_CALLED Error function has been called for TIMER1/3/4/5 hardware limit (prevents it's called again till new event occurs).
MOTOR_STAT_REACHED The motor end position has been reached / is nog longer spinning.
MOTOR_STAT_REACH_CALLED The user defined callback function for motor position reached has been called once (prevents called again till new event occurs).
MOTOR_STAT_SPIN_FIXED Motor spins at a fixed RPM.MOTOR_STAT_SPIN_FIXED Motor spins at a fixed RPM.

One can perform the following to check if the motor has reached the end position:
if (motorReadStatus () & MOTOR_STAT_REACHED) { /* the motor has reached the end position */ }

Another example may be if the motor RPM exceeds the lowest possible value (the virtual 32bit TOP register is equal or above 1024 * 65536).

motorSetSpeed
The major function that initiates all the motor stepping related work. Therefore, it has may arguments. Some are optional.
Return value int8_t Returns an error code (negative), warning (positive value) or zero if no errors nor warnings are detected.
Arguments: uint8_t control Control information for the driver.

MOTOR_CTRL_DRV_EN Sets the L298 PWM pins of the motor driver shield HIGH, otherwise LOW (and no motor
drive is performed).
If not included in the control byte, all parameters below have no effect.

MOTOR_CTRL_DIRECTION When used, the motor direction is inverted by playing the port bit sequence in the MOTOR_CTRL_DIRECTION When used, the motor direction is inverted by playing the port bit sequence in the
reversed order.

MOTOR_CTRL_ENDPOINT_MILLIS limit is ms relative from the start of the motorSetSpeed function (default is motor steps),
including eventual motor start-up.

MOTOR_CTRL_SPEED_VARIABLE When used, the motor speed is changed by the driver on the fly. This bit can be combined
with other bits:
If not included in the control byte, all parameters below have no effect.

MOTOR_CTRL_FASTER Every update event, timerModification is deducted from timerTop32virtual
If not set combined with MOTOR_CTRL_SPEED_VARIABLE, every update event
timerModification is added to timerTop32virtual, increasing the timer interval period.

MOTOR_CTRL_SLOWER Dummy declaration to make code more read-able (if MOTOR_CTRL_FASTER is not set,
SLOWER is default).

MOTOR_CTRL_VARIABLE_PWR Modifies timerModification in such way that motor RPM changes become linear.
MOTOR_CTRL_IRQ_TIMING If not set, the user has to call motorTimerUpdateCheck at least every 20ms.MOTOR_CTRL_IRQ_TIMING If not set, the user has to call motorTimerUpdateCheck at least every 20ms.

Note: multiple arguments can be given separated by pipe (OR). For instance: MOTOR_CTRL_DIRECTION | MOTOR_CTRL_DRV_EN.
uint32_t timerTop32virtual The initial 32bit timer interval register. On a 16MHz AVR, one step is applied every 16000000 divided by this value (in seconds).
uint32_t limit if MOTOR_CTRL_ENDPOINT_MILLIS is not used, the driver stop sending step pulses when the total amount of steps equals or exceeds this

value (0 = never stop).
if MOTOR_CTRL_ENDPOINT_MILLIS is set, the driver stops sending motor pulses this amount of ms after this function was called.
Set this value to 0 if one does not want the motor pulses to stop (continuous run).

uint32_t timerModification Only required if above mentioned MOTOR_CTRL_SPEED_VARIABLE is included in the control settling.
uint16_t timerUpd_ms Sets the amount of ms (accuracy depends on calling the motorTimerUpdateCheck) interval to compute the virtual 32bit Timer TOP register.

This parameter is only used if MOTOR_CTRL_SPEED_VARIABLE is used in the control settling.
uint16_t modCounts After this amount of timerTop32virtual update has been counted, the update event is suppressed (*)

This parameter is only used if MOTOR_CTRL_SPEED_VARIABLE is used in the control settling.
(*) whoever comes first suppresses update events.

Note: red parameters are optional in the function call. Default values are zero. When a fixed motor speed is required, one can skip these parameters in the function call.
Examples:
motorSetSpeed (MOTOR_CTRL_DRV_EN, 32000UL); //On a 16MHz AVR runs the motor at a fixed interval of 500 steps/s (on a 200 step/revolution motor this is 150RPM).
motorSetSpeed (MOTOR_CTRL_DRV_EN, 64000UL, 20000UL); //On a 16MHz AVR runs the motor at a fixed interval of 250 steps/s (on a 200 step/revolution motor this is 75RPM) and stops after

100 revolutions (=20000 steps).
How to calculate things:

The arduino runs at 16000000 Hz
We have motor requiring 200 steps per revolution. We want to start at 2 RPM and increase 4 time per second, up to 120 RPM

Start with motor = 6 steps/s 29 updates 800 steps/s
We need one update event every 250 ms Real: 1.8 RPM 240 RPMWe need one update event every 250 ms Real: 1.8 RPM 240 RPM
The initial virtual 32bit timer TOP register 2666666
The final virtual 32bit timer TOP register 20000 Modify: 91264

motorSetSpeed (MOTOR_CTRL_SPEED_VARIABLE //uint8_t control - The speed is not constant
| MOTOR_CTRL_IRQ_TIMING // - We do not call the timer adjust function, so it's done in the TIMER1/3/4/5 ISR, blocking the core a bit

// longer for other interrupts.
| MOTOR_CTRL_FASTER // - The speed has to increase.
| MOTOR_CTRL_DRV_EN //This is a security that must be set to enable the motor driver, without the motor is stopped.
, 2666666UL //uint32_t timerTop32virtual. Add "UL" to direct parameters because this is unsigned long value.

//One may also obtain this value as uint32_t initial32bitTop = motorTimerCalcPerSecond (200 / 60) //start at 1 RPM, but this
//will create additional rounding errors.

, 0UL //uint32_t limit not used: the motor keeps spinning when reaching the final RPM (there is no "endpoint" in steps.
, 91264UL //uint32_t timerModification = 0, //Virtual 32bit correction on timerTop32Virtual., 91264UL //uint32_t timerModification = 0, //Virtual 32bit correction on timerTop32Virtual.
, 250 //Every xx ms, the correction is applied (this must be 50ms or more).
, 29 //uint16_t modCounts: after this amount of virtual32bit timer updates, further updates are disabled.

);
Note: this shows how control bits can be combined (this is an OR function in C code).

Below declarations define the Arduino digital pin numbers for various motor shield pins. However, one has to take into account MOTOR_DIR is not taken from this table and hardcoded for Uno & Mega only.

MOTOR_ENABLE_A 3
MOTOR_BREAK_B 8
MOTOR_BREAK_A 9
MOTOR_ENABLE_B 11
MOTOR_DIR_A 12 Note: used by the driver for the initial motor driver configuration, but not during interrupts.
MOTOR_DIR_B 13 Note: used by the driver for the initial motor driver configuration, but not during interrupts.

These functions are at present not guaranteed and are not guaranteed:
motorCallBackPositionReached

Arguments: (void (*userFunction) ()) The user can provide here an own defined function that gets called when the motor reaches the end position. This will only be called if the user
calls the motorTimerUpdateCheck on a timed basis. If MOTOR_CTRL_IRQ_TIMING is used, this has no meaning. Reason is that we have no control
over this user function and an interrupt should never be a blocking function - what cannot be guaranteed. Therefor, the user function is not called
when MOTOR_CTRL_IRQ_TIMING is used.

motorCallBackFault
Arguments: (void (*userFunction) ()) Similar to motorCallbCackPositionReached. This function gets called on detecting an error (only if MOTOR_CTRL_IRQ_TIMING is not used).

8. RPM vs. Timer
In order to have a linear RPM behavior, an option is built in to modify the timerModification parameter. However, this limits the amount of modCounts to maximal ~30, most likely even much less.
Below table shows how the RPM behaves vs. timerTop32virtual. By shifting the timerModification value left (when slowing down the rotation speed) or right (when increasing the rotation speed),
the motor RPM changes by a factor of 2 as can be seen in the 2nd table. Since timerModification is a 32bit parameter, shifting more than this certainly makes the result 0, stopping the motor speed
modification. When using this option, one has to calculate the initial RPM, the required modification and based on those two parameters, one can determine the maximal amounts of possible shifts.
This option allows to speed up and down in a more user-friendly manner at the expense of somewhat more calculation work by the calling function.

IO Clock 16000000 Set MOTOR_CTRL_VARIABLE_PWR Each Timer modification will be half or twice the previous modification value (for as far it fits in 32bit integer)
Steps/Rotation 200 Increment Timer1 Steps/s RPM ModCount Start 3.333333 steps/s 1 RPM
Timer Steps/s RPM 0 1000 16000 4800 0 Target 500 steps/s 150 RPM

1000 16000 4800 1000 2000 8000 2400 1 Mods <= 10
2000 8000 2400 2000 4000 4000 1200 2 MOTOR_CTRL_SLOWER Tim1Mod
3000 5333.333 1600 4000 8000 2000 600 3 Tim1start 4800000 4800000
4000 4000 1200 8000 16000 1000 300 4 Tim1end 32000 2415000 23850004000 4000 1200 8000 16000 1000 300 4 Tim1end 32000 2415000 2385000
5000 3200 960 16000 32000 500 150 5 Tim1decr 4768000 1222500 1192500
6000 2666.667 800 32000 64000 250 75 6 626250 596250
7000 2285.714 685.7143 64000 128000 125 37.5 7 328125 298125
8000 2000 600 128000 256000 62.5 18.75 8 179063 149062
9000 1777.778 533.3333 256000 512000 31.25 9.375 9 104532 74531

10000 1600 480 512000 1024000 15.625 4.6875 10 67267 37265
11000 1454.545 436.3636 1024000 2048000 7.8125 2.34375 11 48635 18632
12000 1333.333 400 2048000 4096000 3.90625 1.171875 12 39319 9316
13000 1230.769 369.2308 4096000 8192000 1.953125 0.585938 13 34661 4658
14000 1142.857 342.8571 8192000 16384000 0.976563 0.292969 14 MOTOR_CTRL_FASTER 32332 2329
15000 1066.667 320 16384000 32768000 0.488281 0.146484 15
16000 1000 300 32768000 65536000 0.244141 0.073242 16
17000 941.1765 282.3529 The curve shows the RPM when we change the timer divider on a linear basis.17000 941.1765 282.3529 The curve shows the RPM when we change the timer divider on a linear basis.
18000 888.8889 266.6667
19000 842.1053 252.6316
20000 800 240
21000 761.9048 228.5714
22000 727.2727 218.1818
23000 695.6522 208.6957
24000 666.6667 200
25000 640 192
26000 615.3846 184.6154
27000 592.5926 177.7778
28000 571.4286 171.4286
29000 551.7241 165.5172
30000 533.3333 160

3000

4000

5000

6000

RP
M

RPM Vs. Virtual 32bit Timer VARIABLE_PWR not …

30000 533.3333 160
31000 516.129 154.8387
32000 500 150
33000 484.8485 145.4545
34000 470.5882 141.1765
35000 457.1429 137.1429
36000 444.4444 133.3333
37000 432.4324 129.7297
38000 421.0526 126.3158
39000 410.2564 123.0769
40000 400 120

0

1000

2000

3000

1… 3… 5… 7… 9… 1… 1… 1… 1… 1… 2… 2… 2… 2… 2… 3… 3… 3… 3… 3… 4… 4… 4… 4… 4… 5…

RP
M

41000 390.2439 117.0732
42000 380.9524 114.2857
43000 372.093 111.6279
44000 363.6364 109.0909
45000 355.5556 106.6667
46000 347.8261 104.3478
47000 340.4255 102.1277
48000 333.3333 100
49000 326.5306 97.95918
50000 320 96
51000 313.7255 94.11765

9.Conclusions.
Is there still some math to be done: if one wants to use RPM, calculate initial and final RPM: there is surely some extra requirement. Is there still some math to be done: if one wants to use RPM, calculate initial and final RPM: there is surely some extra requirement.
But if one uses steps, just wants linear behavior of the speed increases / decreases, this code is a good starting point. Since RPM calculations can be done in the loop function, nearly un-affected by present
motor rotations, it becomes more realistic to assume slower floats can be used without affecting the application too much.

10.Examples / validation
Below some code examples used during the validation. The code also shows the use of the callback function.

Case 1: Decrease speed while spinning
18:01:58.018 -> IRQ Timer 1 Enabled //Remove the comment #define DEBUG_BAUDRATE (115200) and open a serial monitor to the port the Arduino is connnected to.
18:01:59.020 -> >>>motorSetSpeed void
18:01:59.020 -> Arduino Mega loop ()
18:01:59.020 -> motor_ctrl_irq: 0xF018:01:59.020 -> motor_ctrl_irq: 0xF0 {
18:01:59.067 -> motor_timer_top32virt_irq: 15000 static uint8_t once = 1;
18:01:59.067 -> motor_timer_modify_irq: 64 if (once == 1)
18:01:59.067 -> motor_step_count_limit_irq: 8844 {
18:01:59.067 -> motor_time_irq: 1009 Serial.begin (115200);
18:01:59.067 -> motor_stat_irq: 0x00 int8_t ec = motorSetSpeed (MOTOR_CTRL_SPEED_VARIABLE
18:01:59.121 -> motor_update_time_irq: 1000 | MOTOR_CTRL_IRQ_TIMING
18:01:59.121 -> motor_millis_endtime_irq: 0 | MOTOR_CTRL_VARIABLE_PWR
18:01:59.121 -> motor_modCounts_irq: 19 //| MOTOR_CTRL_DIRECTION
18:01:59.121 -> motor_pattern_irq: 3 | MOTOR_CTRL_SLOWER
18:01:59.121 -> Exit Code: 00 Update | MOTOR_CTRL_DRV_EN,
18:01:59.168 -> motor_ctrl_irq: 0xF0 15000UL, //uint32_t: Virtual 32bit timer TOP
18:01:59.168 -> motor_timer_top32virt_irq: 15000 64 8900UL, //uint32_t: amount of steps
18:01:59.168 -> motor_timer_modify_irq: 64 64UL, //uint32_t: correction on timerTop18:01:59.168 -> motor_timer_modify_irq: 64 64UL, //uint32_t: correction on timerTop
18:01:59.168 -> motor_step_count_limit_irq: 8722 UPDATE_INTERVAL,//uint16_t: Correction interval ms
18:01:59.221 -> motor_time_irq: 1009 19); //uint16_t: Correction Limitter.
18:01:59.221 -> motor_stat_irq: 0x00
18:01:59.221 -> motor_update_time_irq: 1000 if (ec < 0) { } //Optional error handler.
18:01:59.221 -> motor_millis_endtime_irq: 0 once = 0;
18:01:59.221 -> motor_modCounts_irq: 19 }
18:01:59.268 -> motor_pattern_irq: 1 #ifdef DEBUG_BAUDRATE
18:02:00.180 -> motor_ctrl_irq: 0xF0 uint32_t now = millis ();
18:02:00.180 -> motor_timer_top32virt_irq: 15064 128 static uint32_t lastUpdate = 0;
18:02:00.180 -> motor_timer_modify_irq: 128 if ((now - lastUpdate) > UPDATE_INTERVAL)
18:02:00.180 -> motor_step_count_limit_irq: 7656 {
18:02:00.180 -> motor_time_irq: 2009 if (TIMSK1 & (1 << TOIE0)) debugDump ();
18:02:00.224 -> motor_stat_irq: 0x00 else if ((once & 2) == 0)18:02:00.224 -> motor_stat_irq: 0x00 else if ((once & 2) == 0)
18:02:00.224 -> motor_update_time_irq: 1000 {
18:02:00.224 -> motor_millis_endtime_irq: 0 motorSetSpeed (); //This stops the motor.
18:02:00.224 -> motor_modCounts_irq: 18 once |= 2;
18:02:00.271 -> motor_pattern_irq: 2 }
18:02:01.173 -> motor_ctrl_irq: 0xF0 lastUpdate = now;
18:02:01.173 -> motor_timer_top32virt_irq: 15192 256 }
18:02:01.173 -> motor_timer_modify_irq: 256 #endif
18:02:01.226 -> motor_step_count_limit_irq: 6594 }
18:02:01.226 -> motor_time_irq: 3009
18:02:01.226 -> motor_stat_irq: 0x00

18:02:01.226 -> motor_update_time_irq: 1000
18:02:01.226 -> motor_millis_endtime_irq: 0
18:02:01.273 -> motor_modCounts_irq: 17
18:02:01.273 -> motor_pattern_irq: 0
18:02:02.175 -> motor_ctrl_irq: 0xF0
18:02:02.175 -> motor_timer_top32virt_irq: 15448 512
18:02:02.175 -> motor_timer_modify_irq: 512
18:02:02.229 -> motor_step_count_limit_irq: 5543
18:02:02.229 -> motor_time_irq: 4009
18:02:02.229 -> motor_stat_irq: 0x00
18:02:02.229 -> motor_update_time_irq: 1000
18:02:02.229 -> motor_millis_endtime_irq: 0
18:02:02.275 -> motor_modCounts_irq: 16
18:02:02.275 -> motor_pattern_irq: 118:02:02.275 -> motor_pattern_irq: 1
18:02:03.180 -> motor_ctrl_irq: 0xF0
18:02:03.180 -> motor_timer_top32virt_irq: 15960 1024
18:02:03.231 -> motor_timer_modify_irq: 1024
18:02:03.231 -> motor_step_count_limit_irq: 4512
18:02:03.231 -> motor_time_irq: 5009
18:02:03.231 -> motor_stat_irq: 0x00
18:02:03.231 -> motor_update_time_irq: 1000
18:02:03.278 -> motor_millis_endtime_irq: 0
18:02:03.278 -> motor_modCounts_irq: 15
18:02:03.278 -> motor_pattern_irq: 3
18:02:04.180 -> motor_ctrl_irq: 0xF0
18:02:04.180 -> motor_timer_top32virt_irq: 16984 2048
18:02:04.233 -> motor_timer_modify_irq: 204818:02:04.233 -> motor_timer_modify_irq: 2048
18:02:04.233 -> motor_step_count_limit_irq: 3519
18:02:04.233 -> motor_time_irq: 6009
18:02:04.233 -> motor_stat_irq: 0x00
18:02:04.233 -> motor_update_time_irq: 1000
18:02:04.280 -> motor_millis_endtime_irq: 0
18:02:04.280 -> motor_modCounts_irq: 14
18:02:04.280 -> motor_pattern_irq: 0
18:02:05.182 -> motor_ctrl_irq: 0xF0
18:02:05.236 -> motor_timer_top32virt_irq: 19032
18:02:05.236 -> motor_timer_modify_irq: 4096
18:02:05.236 -> motor_step_count_limit_irq: 2593
18:02:05.236 -> motor_time_irq: 7009
18:02:05.236 -> motor_stat_irq: 0x0018:02:05.236 -> motor_stat_irq: 0x00
18:02:05.283 -> motor_update_time_irq: 1000
18:02:05.283 -> motor_millis_endtime_irq: 0
18:02:05.283 -> motor_modCounts_irq: 13
18:02:05.283 -> motor_pattern_irq: 0
18:02:06.238 -> motor_ctrl_irq: 0xF0
18:02:06.238 -> motor_timer_top32virt_irq: 23128
18:02:06.238 -> motor_timer_modify_irq: 8192
18:02:06.238 -> motor_step_count_limit_irq: 1777
18:02:06.238 -> motor_time_irq: 8009
18:02:06.238 -> motor_stat_irq: 0x00

18:02:06.285 -> motor_update_time_irq: 1000
18:02:06.285 -> motor_millis_endtime_irq: 0
18:02:06.285 -> motor_modCounts_irq: 12
18:02:06.285 -> motor_pattern_irq: 2
18:02:07.241 -> motor_ctrl_irq: 0xF0
18:02:07.241 -> motor_timer_top32virt_irq: 31320
18:02:07.241 -> motor_timer_modify_irq: 16384
18:02:07.241 -> motor_step_count_limit_irq: 1116
18:02:07.241 -> motor_time_irq: 9009
18:02:07.287 -> motor_stat_irq: 0x00
18:02:07.287 -> motor_update_time_irq: 1000
18:02:07.287 -> motor_millis_endtime_irq: 0
18:02:07.287 -> motor_modCounts_irq: 11
18:02:07.341 -> motor_pattern_irq: 018:02:07.341 -> motor_pattern_irq: 0
18:02:08.243 -> motor_ctrl_irq: 0xF0
18:02:08.243 -> motor_timer_top32virt_irq: 47704
18:02:08.243 -> motor_timer_modify_irq: 32768
18:02:08.243 -> motor_step_count_limit_irq: 634
18:02:08.290 -> motor_time_irq: 10009
18:02:08.290 -> motor_stat_irq: 0x00
18:02:08.290 -> motor_update_time_irq: 1000
18:02:08.290 -> motor_millis_endtime_irq: 0
18:02:08.290 -> motor_modCounts_irq: 10
18:02:08.343 -> motor_pattern_irq: 3
18:02:09.227 -> motor_ctrl_irq: 0xF0
18:02:09.227 -> motor_timer_top32virt_irq: 80472
18:02:09.261 -> motor_timer_modify_irq: 6553618:02:09.261 -> motor_timer_modify_irq: 65536
18:02:09.261 -> motor_step_count_limit_irq: 326
18:02:09.261 -> motor_time_irq: 11009
18:02:09.308 -> motor_stat_irq: 0x00
18:02:09.308 -> motor_update_time_irq: 1000
18:02:09.308 -> motor_millis_endtime_irq: 0
18:02:09.308 -> motor_modCounts_irq: 9
18:02:09.308 -> motor_pattern_irq: 2
18:02:10.249 -> motor_ctrl_irq: 0xF0
18:02:10.249 -> motor_timer_top32virt_irq: 146008 131072
18:02:10.249 -> motor_timer_modify_irq: 131072
18:02:10.296 -> motor_step_count_limit_irq: 143
18:02:10.296 -> motor_time_irq: 12009
18:02:10.296 -> motor_stat_irq: 0x0018:02:10.296 -> motor_stat_irq: 0x00
18:02:10.296 -> motor_update_time_irq: 1000
18:02:10.296 -> motor_millis_endtime_irq: 0
18:02:10.349 -> motor_modCounts_irq: 8
18:02:10.349 -> motor_pattern_irq: 0
18:02:11.252 -> motor_ctrl_irq: 0xF0
18:02:11.252 -> motor_timer_top32virt_irq: 277080
18:02:11.252 -> motor_timer_modify_irq: 262144
18:02:11.299 -> motor_step_count_limit_irq: 42
18:02:11.299 -> motor_time_irq: 13009
18:02:11.299 -> motor_stat_irq: 0x00

18:02:11.299 -> motor_update_time_irq: 1000
18:02:11.352 -> motor_millis_endtime_irq: 0
18:02:11.352 -> motor_modCounts_irq: 7
18:02:11.352 -> motor_pattern_irq: 2
18:02:12.001 -> Motor halted
18:02:12.255 -> >>>motorSetSpeed
18:02:12.255 -> Arduino Mega
18:02:12.302 -> motor_ctrl_irq: 0x00
18:02:12.302 -> motor_timer_top32virt_irq: 0 19 updates where not possible, the step limit has been reached.
18:02:12.302 -> motor_timer_modify_irq: 0 The motor was stopped at very low speed.
18:02:12.302 -> motor_step_count_limit_irq: 0
18:02:12.302 -> motor_time_irq: 13009
18:02:12.355 -> motor_stat_irq: 0x00
18:02:12.355 -> motor_update_time_irq: 018:02:12.355 -> motor_update_time_irq: 0
18:02:12.355 -> motor_millis_endtime_irq: 0
18:02:12.355 -> motor_modCounts_irq: 0
18:02:12.355 -> motor_pattern_irq: 0
18:02:12.402 -> Exit Code: 00

Case 2: increase speed Motor: 200 steps/rotation
12:54:08.076 -> IRQ Timer 1 Enabled Ioclk 16000000 Hz void
12:54:09.132 -> >>>motorSetSpeed loop ()
12:54:09.132 -> Arduino Mega Start conditions: {
12:54:09.132 -> motor_ctrl_irq: 0xF2 13.08793 steps/s static uint8_t once = 1;
12:54:09.132 -> motor_timer_top32virt_irq: 4800000 3.92638 RPM if (once == 1)
12:54:09.132 -> motor_timer_modify_irq: 2385000 {
12:54:09.179 -> motor_step_count_limit_irq: 0 Serial.begin (115200);12:54:09.179 -> motor_step_count_limit_irq: 0 Serial.begin (115200);
12:54:09.179 -> motor_time_irq: 1009 int8_t ec = motorSetSpeed (MOTOR_CTRL_SPEED_VARIABLE
12:54:09.179 -> motor_stat_irq: 0x00 | MOTOR_CTRL_IRQ_TIMING
12:54:09.179 -> motor_update_time_irq: 1000 | MOTOR_CTRL_VARIABLE_PWR
12:54:09.232 -> motor_millis_endtime_irq: 0 //| MOTOR_CTRL_DIRECTION
12:54:09.232 -> motor_modCounts_irq: 11 | MOTOR_CTRL_FASTER
12:54:09.232 -> motor_pattern_irq: 1 | MOTOR_CTRL_DRV_EN,
12:54:09.232 -> Exit Code: 00 4800000UL,
12:54:09.232 -> motor_ctrl_irq: 0xF2 0UL,
12:54:09.232 -> motor_timer_top32virt_irq: 4800000 2385000UL,
12:54:09.279 -> motor_timer_modify_irq: 2385000 UPDATE_INTERVAL,
12:54:09.279 -> motor_step_count_limit_irq: 0 11);
12:54:09.279 -> motor_time_irq: 1009
12:54:09.279 -> motor_stat_irq: 0x00 if (ec < 0) { } 12:54:09.279 -> motor_stat_irq: 0x00 if (ec < 0) { }
12:54:09.332 -> motor_update_time_irq: 1000 once = 0;
12:54:09.332 -> motor_millis_endtime_irq: 0 //delay (40000);
12:54:09.332 -> motor_modCounts_irq: 11 //ec = motorSetSpeed (MOTOR_CTRL_DRV_EN,
12:54:09.332 -> motor_pattern_irq: 1 // 24615UL);
12:54:10.250 -> motor_ctrl_irq: 0xF2 }
12:54:10.250 -> motor_timer_top32virt_irq: 4800000 #ifdef DEBUG_BAUDRATE
12:54:10.250 -> motor_timer_modify_irq: 2385000 uint32_t now = millis ();
12:54:10.297 -> motor_step_count_limit_irq: 0 static uint32_t lastUpdate = 0;
12:54:10.297 -> motor_time_irq: 1009 if ((now - lastUpdate) > UPDATE_INTERVAL)
12:54:10.297 -> motor_stat_irq: 0x00 {

12:54:10.297 -> motor_update_time_irq: 1000 if (TIMSK1 & (1 << TOIE0))
12:54:10.335 -> motor_millis_endtime_irq: 0 {
12:54:10.335 -> motor_modCounts_irq: 11 debugDump (ONLY_IF_VARIABLE_SPEED);
12:54:10.335 -> motor_pattern_irq: 0 }
12:54:11.284 -> motor_ctrl_irq: 0xF2 1st update else if ((once & 2) == 0)
12:54:11.284 -> motor_timer_top32virt_irq: 1222500 13.08793 steps/s {
12:54:11.284 -> motor_timer_modify_irq: 596250 3.92638 RPM motorSetSpeed ();
12:54:11.284 -> motor_step_count_limit_irq: 0 once |= 2;
12:54:11.284 -> motor_time_irq: 3009 }
12:54:11.337 -> motor_stat_irq: 0x00 lastUpdate = now;
12:54:11.337 -> motor_update_time_irq: 1000 }
12:54:11.337 -> motor_millis_endtime_irq: 0 #endif
12:54:11.337 -> motor_modCounts_irq: 9 }
12:54:11.337 -> motor_pattern_irq: 012:54:11.337 -> motor_pattern_irq: 0
12:54:12.286 -> motor_ctrl_irq: 0xF2 2nd update
12:54:12.286 -> motor_timer_top32virt_irq: 626250 25.5489 steps/s
12:54:12.286 -> motor_timer_modify_irq: 298125 7.664671 RPM
12:54:12.286 -> motor_step_count_limit_irq: 0
12:54:12.340 -> motor_time_irq: 4009
12:54:12.340 -> motor_stat_irq: 0x00
12:54:12.340 -> motor_update_time_irq: 1000
12:54:12.340 -> motor_millis_endtime_irq: 0
12:54:12.340 -> motor_modCounts_irq: 8
12:54:12.387 -> motor_pattern_irq: 2
12:54:13.289 -> motor_ctrl_irq: 0xF2 3rd update
12:54:13.289 -> motor_timer_top32virt_irq: 328125 48.7619 steps/s
12:54:13.289 -> motor_timer_modify_irq: 149062 14.62857 RPM12:54:13.289 -> motor_timer_modify_irq: 149062 14.62857 RPM
12:54:13.289 -> motor_step_count_limit_irq: 0
12:54:13.343 -> motor_time_irq: 5009
12:54:13.343 -> motor_stat_irq: 0x00
12:54:13.343 -> motor_update_time_irq: 1000
12:54:13.343 -> motor_millis_endtime_irq: 0
12:54:13.343 -> motor_modCounts_irq: 7
12:54:13.389 -> motor_pattern_irq: 1
12:54:14.292 -> motor_ctrl_irq: 0xF2
12:54:14.292 -> motor_timer_top32virt_irq: 179063
12:54:14.292 -> motor_timer_modify_irq: 74531
12:54:14.345 -> motor_step_count_limit_irq: 0
12:54:14.345 -> motor_time_irq: 6009
12:54:14.345 -> motor_stat_irq: 0x0012:54:14.345 -> motor_stat_irq: 0x00
12:54:14.345 -> motor_update_time_irq: 1000
12:54:14.345 -> motor_millis_endtime_irq: 0
12:54:14.392 -> motor_modCounts_irq: 6
12:54:14.392 -> motor_pattern_irq: 2
12:54:15.279 -> motor_ctrl_irq: 0xF2
12:54:15.326 -> motor_timer_top32virt_irq: 104532
12:54:15.326 -> motor_timer_modify_irq: 37265
12:54:15.326 -> motor_step_count_limit_irq: 0
12:54:15.326 -> motor_time_irq: 7009
12:54:15.326 -> motor_stat_irq: 0x00

12:54:15.363 -> motor_update_time_irq: 1000
12:54:15.363 -> motor_millis_endtime_irq: 0
12:54:15.363 -> motor_modCounts_irq: 5
12:54:15.410 -> motor_pattern_irq: 1
12:54:16.297 -> motor_ctrl_irq: 0xF2
12:54:16.297 -> motor_timer_top32virt_irq: 67267
12:54:16.350 -> motor_timer_modify_irq: 18632
12:54:16.350 -> motor_step_count_limit_irq: 0
12:54:16.350 -> motor_time_irq: 8009
12:54:16.350 -> motor_stat_irq: 0x00
12:54:16.350 -> motor_update_time_irq: 1000
12:54:16.397 -> motor_millis_endtime_irq: 0
12:54:16.397 -> motor_modCounts_irq: 4
12:54:16.397 -> motor_pattern_irq: 112:54:16.397 -> motor_pattern_irq: 1
12:54:17.299 -> motor_ctrl_irq: 0xF2
12:54:17.299 -> motor_timer_top32virt_irq: 48635
12:54:17.353 -> motor_timer_modify_irq: 9316
12:54:17.353 -> motor_step_count_limit_irq: 0
12:54:17.353 -> motor_time_irq: 9009
12:54:17.353 -> motor_stat_irq: 0x00
12:54:17.353 -> motor_update_time_irq: 1000
12:54:17.400 -> motor_millis_endtime_irq: 0
12:54:17.400 -> motor_modCounts_irq: 3
12:54:17.400 -> motor_pattern_irq: 2
12:54:18.301 -> motor_ctrl_irq: 0xF2
12:54:18.355 -> motor_timer_top32virt_irq: 39319
12:54:18.355 -> motor_timer_modify_irq: 465812:54:18.355 -> motor_timer_modify_irq: 4658
12:54:18.355 -> motor_step_count_limit_irq: 0
12:54:18.355 -> motor_time_irq: 10009
12:54:18.355 -> motor_stat_irq: 0x00
12:54:18.402 -> motor_update_time_irq: 1000
12:54:18.402 -> motor_millis_endtime_irq: 0
12:54:18.402 -> motor_modCounts_irq: 2
12:54:18.402 -> motor_pattern_irq: 2
12:54:19.357 -> motor_ctrl_irq: 0xF2 final update
12:54:19.357 -> motor_timer_top32virt_irq: 34661 461.6139 steps/s
12:54:19.357 -> motor_timer_modify_irq: 2329 138.4842 RPM
12:54:19.357 -> motor_step_count_limit_irq: 0
12:54:19.357 -> motor_time_irq: 11009
12:54:19.404 -> motor_stat_irq: 0x0012:54:19.404 -> motor_stat_irq: 0x00
12:54:19.404 -> motor_update_time_irq: 1000
12:54:19.404 -> motor_millis_endtime_irq: 0
12:54:19.404 -> motor_modCounts_irq: 1
12:54:19.404 -> motor_pattern_irq: 2

Case 3: calling the timer update function from main and use callback on position reached
Declare a function that must be executed when the motor stops:
Notify the callback function to the motor driver as shown below.
Further changes are:

- Do NOT include MOTOR_CTRL_IRQ_TIMING in the control byte;
- Define an endpoint (or the motor will not stop spinning - no callback is performed.
- Call the timer update function from your own main loop.

Here the callback function was executed, when the motor reached the endpoint restriction.

void
endPosReadched ()
{
 Serial.println ("Motor position reached / rotation stopped");
}

void
setup ()
{
 pinMode (MOTOR_ENABLE_A, OUTPUT);
 pinMode (MOTOR_BREAK_B, OUTPUT);
 pinMode (MOTOR_BREAK_A, OUTPUT);
 pinMode (MOTOR_ENABLE_B, OUTPUT);
 pinMode (MOTOR_DIR_A, OUTPUT);
 pinMode (MOTOR_DIR_B, OUTPUT);
 digitalWrite (MOTOR_ENABLE_A, LOW);
 digitalWrite (MOTOR_BREAK_B, LOW);
 digitalWrite (MOTOR_BREAK_A, LOW); digitalWrite (MOTOR_BREAK_A, LOW);
 digitalWrite (MOTOR_ENABLE_B, LOW);
 digitalWrite (MOTOR_DIR_A, LOW);
 digitalWrite (MOTOR_DIR_B, LOW);
 Serial.begin (115200);
 motorCallBackPositionReached (endPosReadched);
}

void
loop ()
{
 static uint8_t once = 1;
 if (once == 1)
 { {
 int8_t ec = motorSetSpeed (MOTOR_CTRL_SPEED_VARIABLE
 //| MOTOR_CTRL_IRQ_TIMING //Do not use IRQ_TIMING when setting the motor speed (must be called by user instead).
 | MOTOR_CTRL_VARIABLE_PWR
 //| MOTOR_CTRL_DIRECTION
 | MOTOR_CTRL_FASTER //Increase speed: TOP register is subtracted with decrease value.
 | MOTOR_CTRL_DRV_EN,
 4800000UL, //uint32_t: Virtual 32bit timer TOP to apply motor steps; 0 = STOP motor.
 10000UL, //uint32_t: Limits amount of steps to execute (0 = never stop) or amount of millis to execute.
 2385000UL, //uint32_t: Virtual 32bit correction on timerTop32Virtual.
 UPDATE_INTERVAL, //uint16_t: Every xx ms, the correction is applied.

 11); //uint16_t: After this amount of mods has been reached, mod stops.

 if (ec < 0) { } //Optional error handler.
 once = 0;
 Serial.println ("From now you see increasing counter from main loop");
 }
 static uint32_t counts = 0;
 static uint32_t previous;
 uint32_t now = millis ();
 static uint32_t motorUpdateTime = 0; //This is example how to call the motor timer update not too frequent from main loop.
 if ((now - motorUpdateTime) >= 50UL) //If one does not want to take care of this, remove this code and uncomment above
 { // | MOTOR_CTRL_IRQ_TIMING (so it gets included in the build).
 motorTimerUpdateCheck (); //This shows how motor timer update check is now called by the user application.
 motorUpdateTime = now; //When the motor position is reached, this function will result the endPosReached function
 } //gets called (a subroutine only called once after the motor has been stopped).
 ++counts;
 if ((now - previous) > 1000UL)
 {
 previous = now;
 Serial.println (counts);
 }
}

