Dot Zero $(n=0)$ is the arc AB on the vertical part of the cylinder
Dot $1(n=1)$ is the arc BC
These arcs subtend an angle of \varnothing at the centre of the cylinder

The length of chords $A B$ and $B C$ is d
D is the mid point of chord $B C$ and
F the mid point of chord $A B$
Therefore the angles BOD and DOC are both $\varnothing / 2$, as are AOF and FOB

We need to find Y_{1}, the projected height of Dot 1

Angle $\mathrm{OBE}=$ angle $\mathrm{FOB}=\varnothing / 2$ (alternate angles)

In the right angled triangle $O B D$, angle $O B D=\Theta+$ angle $O B E$ $=\theta+\varnothing / 2$
and the angles of this triangle must sum to 180°
therefore $\Theta+\varnothing / 2+90+\varnothing / 2=180$
giving $\Theta=90-\varnothing$

From the right angled triangle $B C E, Y_{1}=C E=B C \sin \theta$
Therefore $Y_{1}=d \sin \Theta=d \sin (90-\varnothing)=d \cos \varnothing$

In the same way, it can be shown that $Y_{n}=d \cos (n \varnothing)$

