
Home Environment Dashboard Documentation

Introduction
Welcome to the documentation for the Inkplate Home Environment Dashboard! I created this
comprehensive guide to help makers and electronics enthusiasts build their own smart home
monitoring system. After receiving numerous requests from my YouTube community about building IoT
projects, I decided to document this project in detail, breaking down every component and explaining
the code structure thoroughly. This documentation reflects my commitment to helping others learn and
build confidently.

You can find the latest version of this code, along with regular updates and improvements, on my
website at educ8s.tv. I regularly update the code based on community feedback and new feature
requests, so make sure to check there for the most recent version.

Project Overview
The Home Environment Dashboard is a smart monitoring system that uses an Inkplate2 Board, a
BME280 sensor, and an E-Ink display to track temperature, humidity, and barometric pressure.
The data is displayed both on the E-Ink screen and through a local web dashboard accessible from
any device on the same network. This project ensures privacy and efficiency by keeping all data
local and optimizing power consumption.

Features
Object-Oriented Modular Design, allowing easy modification and scalability. (If you're not
comfortable with OOP design, check out my detailed course here: Object-Oriented
Programming Made Easy.)
Real-time environmental monitoring using a BME280 sensor.
E-Paper display for a classic thermometer look.
Web dashboard for real-time data visualization and historical tracking.
Power efficiency, updating the display only when necessary.
Local data storage, ensuring privacy with no external cloud dependencies.

http://educ8s.tv/
https://bit.ly/3NaMfg4
https://bit.ly/3NaMfg4

Hardware Requirements
Inkplate2 Board: https://educ8s.tv/part/Inkplate2
BME280 Sensor: https://educ8s.tv/part/BME280
MiniUSB Breakout Board: https://educ8s.tv/part/MiniUSBBreakout

Software Requirements
Arduino IDE with ESP32 board support
Required Libraries:

 ArduinoJSON (to create JSON data for the webserver)
 Inkplate (for the board)
 Adafruit_BME280 (for the sensor)

You can install these libraries directly from the Arduino IDE, from the Library Manager.

How the Code Works

Code Flow & Execution

1. Initialization (setup() Function in ESP32_HomeDashboard.ino)
The execution begins in the setup() function:

Serial communication starts (Serial.begin(115200)).
The sensor is initialized (sensor.begin()).
The E-Paper display is initialized (epaper.init()).
WiFi connection is established (connectToWiFi()).
The web server is set up (setupServer()).
Initial sensor readings are taken and displayed.

2. Main Loop (loop() Function in ESP32_HomeDashboard.ino)
The loop() function runs continuously:

Handles client requests (server.handleClient()).
Reads temperature every 5 minutes (using a timer check with millis()).

https://educ8s.tv/part/Inkplate2
https://educ8s.tv/part/BME280
https://educ8s.tv/part/MiniUSBBreakout

Determines if the display needs an update by comparing the new temperature with the last
recorded value (needsRedraw()).
If a significant change is detected, the E-Paper display updates
(epaper.drawTemperature(currentTemperature)).
Data is logged every hour to maintain a history for trend analysis.

Code Structure

Global Variables
Wi-Fi Credentials:
You enter your credentials here:

const char* ssid = "your_network_name";

const char* password = "your_network_password";

Metric System Setting:

const bool metric = true; // Set to false for Fahrenheit readings

Instances of Classes:
 Sensor sensor(metric); - Handles temperature readings.
 WebServer server(80); - Sets up an HTTP server on port 80.
 SensorData sensorData(48, sensor); - Manages sensor data updates.
 Display epaper; - Manages the E-Ink display.

Timers:

const unsigned long tempUpdateInterval = 300000; // 5 minutes

 setup() Function
Initializes serial communication.
Starts the sensor and E-Ink display.
Connects to Wi-Fi.
Sets up the web server.

 loop() Function
Handles incoming web requests.

Updates temperature readings at regular intervals.
Updates the E-Ink display only when a significant temperature change occurs.

 connectToWiFi() Function
Handles Wi-Fi connection using SSID and password, ensuring stability in network connection. The
function waits until a connection is established and prints the IP address.

 setupServer() Function
Defines API endpoints to provide temperature data to clients.
Serves an HTML page stored in index_html.h .

Server Endpoints

Endpoint Method Description

 / GET Serves the web interface page

 /sensor GET
Returns current temperature, humidity, and pressure data in JSON
format

 /history GET Returns historical sensor data in JSON format

Sensor Class
The Sensor class is responsible for interfacing with the BME280 environmental sensor, providing
real-time temperature, humidity, and pressure readings. It supports both metric and imperial units
and ensures accurate environmental data retrieval.

Class Definition

class Sensor {

public:

 Sensor(bool useMetric = true); // Constructor accepts metric flag

 bool begin(); // Initializes the sensor hardware

 float getTemperature(); // Returns temperature in the selected unit

 float getTemperatureC(); // Returns temperature in Celsius

 float getHumidity(); // Returns humidity percentage

 float getPressure(); // Returns atmospheric pressure in hPa

private:

 Adafruit_BME280 bme; // Object handling BME280 sensor operations

 bool metric; // Flag to determine whether to return values in metric units

};

How It Works
Initialization (begin()): Initializes the BME280 sensor and verifies its availability.
Temperature Reading (getTemperature()): Returns the current temperature in either Celsius or
Fahrenheit, depending on the metric flag.
Direct Celsius Reading (getTemperatureC()): Provides the temperature in Celsius regardless of
the metric setting.
Humidity Measurement (getHumidity()): Retrieves the current relative humidity percentage.
Pressure Measurement (getPressure()): Returns the atmospheric pressure in hectopascals
(hPa) after conversion from Pascals.

Usage Example

Sensor sensor(true); // Create a sensor instance using metric units

if (sensor.begin()) {

 float temp = sensor.getTemperature(); // Get temperature in Celsius

 float humidity = sensor.getHumidity(); // Get humidity percentage

 float pressure = sensor.getPressure(); // Get atmospheric pressure in hPa

}

Display Class
The Display class is responsible for managing the E-Ink display, rendering real-time temperature
readings, and providing a graphical representation of environmental data. It ensures that the display
updates only when necessary to conserve power.

Class Definition

class Display {

public:

 Display(); // Constructor that initializes display settings

 void init(); // Initializes the display hardware

 void clear(); // Clears the screen before updating

 void drawFace(); // Draws a visual face layout on the display

 void drawTemperature(float temperature); // Updates the display with a graphical temperature

 bool needsRedraw(float currentTemp, float previousTemp); // Determines if an update is neces

private:

 Inkplate display; // Object handling E-Ink display operations

 const uint8_t* face; // Pointer to an image representing a static UI element

 int faceWidth; // Width of the face image

 int faceHeight; // Height of the face image

};

How It Works
Initialization (init()): Sets up the E-Ink display and prepares it for rendering data.
Clearing (clear()): Ensures that previous content does not interfere with new updates.
Drawing UI Elements (drawFace()): Displays a predefined UI image on the screen, such as a
thermometer face.
Updating Temperature (drawTemperature(float temperature)): Visually represents temperature
as a bar that grows or shrinks accordingly.
Redraw Optimization (needsRedraw(float currentTemp, float previousTemp)): Prevents
unnecessary updates if the temperature hasn’t changed significantly, reducing flicker and saving
power.

Usage Example

Display epaper;

epaper.init(); // Initialize the display

epaper.drawFace(); // Draw initial UI layout

float temp = sensor.getTemperature();

epaper.drawTemperature(temp); // Display current temperature

Thermometer Image Data
The thermometer.h file contains raw image data for rendering a thermometer icon on the E-Ink
display. The image is stored as a byte array and used to create a graphical representation of the
thermometer.

How It Works
The image is stored in a constant byte array (const uint8_t thermometer[]), ensuring efficient
memory usage.
The display class reads this array and renders the thermometer image onto the screen.
The image provides a static visual reference that complements the dynamic temperature bar.

Usage in Code

extern const uint8_t thermometer[]; // Declaring external image array

// Usage in display class

void Display::drawFace() {

 display.drawBitmap(0, 0, thermometer, faceWidth, faceHeight, BLACK);

}

Why Use a Byte Array?
Efficient Storage: Stores the image as a compressed bitmap in program memory (PROGMEM).
Low Power: Reduces processing overhead by storing static images instead of dynamically
generating graphics.
Faster Rendering: Allows quick drawing on the E-Ink display.

SensorData Class
The SensorData class is responsible for collecting, storing, and providing access to historical
temperature, humidity, and pressure data from the sensor. It maintains a rolling buffer to efficiently
manage data points over time.

Class Definition

class SensorData {

public:

 SensorData(int dataPoints, Sensor& sensor); // Constructor that initializes storage

 ~SensorData(); // Destructor to free allocated memory

 void update(); // Updates stored sensor readings

 String getCurrentDataJson(); // Returns latest sensor readings in JSON format

 String getHistoricalDataJson(); // Returns historical data in JSON format

private:

 Sensor& sensor; // Reference to the sensor object

 const int DATA_POINTS; // Maximum number of data points to store

 int currentIndex; // Tracks the latest stored data index

 float* temperatureHistory; // Rolling buffer for temperature readings

 float* humidityHistory; // Rolling buffer for humidity readings

 float* pressureHistory; // Rolling buffer for pressure readings

};

How It Works
Initialization (SensorData(int dataPoints, Sensor& sensor)): Allocates memory for historical data
storage and associates the sensor.
Updating Data (update()): Retrieves the latest sensor readings and stores them in rolling
buffers, ensuring old values are replaced over time.
Fetching Current Data (getCurrentDataJson()): Returns a JSON-formatted string with the most
recent temperature, humidity, and pressure readings.
Fetching Historical Data (getHistoricalDataJson()): Provides historical sensor readings in
JSON format for visualization or external use.

Usage Example

SensorData sensorData(48, sensor);

sensorData.update(); // Capture latest sensor readings

String currentData = sensorData.getCurrentDataJson();

Serial.println(currentData); // Print JSON-formatted data

HTML & JavaScript Structure
The web interface is defined within index_html.h , stored in program memory (PROGMEM) to be
served directly by the ESP32 web server.

Key Components

HTML Structure

Header (<head>)
Includes Chart.js for graph rendering.
Contains a <meta> tag for viewport scaling, ensuring mobile compatibility.
Defines CSS styles for layout and theming.

Body (<body>)
Displays the Home Environment Dashboard title.
Includes a current values section displaying:

Temperature
Humidity
Pressure

Contains a graph section displaying historical data for temperature, humidity, and pressure
using <canvas> elements.
Includes a footer noting that data is stored for 48 hours.

CSS Styling

Uses a clean, modern design with:
Light background (#f4f4f9) and dark text for contrast.
Card-based UI for displaying live data.
Box shadows for better readability.
Flexbox layout for responsiveness.

JavaScript Functionality
Data Fetching

Calls /sensor endpoint for live temperature, humidity, and pressure data.
Calls /history endpoint to retrieve historical data.
Updates UI dynamically every 5 seconds.

Graph Rendering
Uses Chart.js to visualize sensor readings.
Displays data over the last 48 hours.
Labels time intervals as "hours ago" for clarity.

Endpoints Used

Endpoint Method Description

 /sensor GET Retrieves current temperature, humidity, and pressure in JSON format.

 /history GET Fetches historical data (last 48 hours) in JSON format.

Usage Example

server.on("/", HTTP_GET, [](AsyncWebServerRequest *request){

 request->send_P(200, "text/html", index_html);

});

Learning Opportunities
Building this Home Environment Dashboard is an excellent opportunity to enhance your programming
skills across multiple domains. The project combines hardware interfacing, object-oriented
programming, web development, and data visualization into a practical, real-world application. If you're
eager to expand your knowledge further, 👋 visit programmingwithnick.com, where you'll find
comprehensive tutorials and courses covering everything from basic electronics to advanced
programming concepts. Whether you're interested in IoT development, web technologies, or
embedded systems, there's always something new to learn and explore in the world of programming.

https://programmingwithnick.com/

