
COOLMAY HMI MT6070HA / ARDUINO CLONE

/ ARDUINO UNO and MODBUS RTU

0-Connecting the devices:
You need:

 -a COOLMAY MT6070H HMI: the master

 -2xMAX485 shields

 -an arduino uno board: the slave 3

 -an arduino clone board: the slave 1

 -an USBasp cable and 2xUSB cables

PART 1: HMI the MASTER, Clone the SLAVE1, UNO the SLAVE3
1-Arduino and softwares needed:
1-1- Install Arduino 1.8.13

1-2- Go to https://github.com/Formator/SimpleModbus for the modbus rtu lib downloading:

Copy the libraries here:

1-3- Go to https://github.com/MCUdude and download the 5 packs of boards: you need here

the Minicore because I use an arduino clone board made of an Atmega328P

Put the pack in a folder called “hardware” and copy it here and check if it’s good:

And the good progammer here and use it like this:

1-4- USBasp needed:
When you connect for the first time the driver is not correctly installed

So you need Zadig to reinstall the driver

Now it’s good:

1-5- The programs for the both slaves:
The skectches are based on this example:

The arduino boards are slaves and there will be only

one master: the HMI. This HMI will control leds on the

both slave whenever you want.

I used the serial pin 0 and pin 1 (RX TX) and the pin 2 to

control the link.

Serial settings: SERIAL_8N2: 1 start bit, 8 data bits, 2

stop bits and 115200 bauds according to those of the

HMI.

The HMI lights ON/OFF the pin 5 of the slave 1 via

holdingRegs[1] while the slave1 send the value 32765

via holdingRegs[0] to the HMI. A button on A0 of the

arduino clone board light ON/OFF a lamp of the HMI

via holdingRegs[2].

At the same time the HMI lights ON/OFF the pin 5 of

the slave 3 via holdingRegs[1] while the slave 3 send

the value 6666 via holdingRegs[0] to the HMI. A button

on A0 of the arduino UNO board light ON/OFF a lamp

of the HMI via holdingRegs[2].

The clone board: slave ID 1

The arduino board: slave ID 3

2-COOLMAY HMI and softwares needed:
Download here http://www.coolmay.com/Download-159-36-41.html

2-1-Install COOLMAY HMI soft and the very special driver :
Install COOLMAY HMI and link the diplay like this :

- Special USB wire to the USB port of your PC

- The ethernet wire directly on the ethernet shield of your Arduino.

- Power on the display

Have a look on the peripheral devices on your PC :

The device RNDIS appears as USB device, if not libusk use Zadig after restart in

non signature driver mode. In the network list, there is only other networks.

It appears as HMI RNDIS, the wifi embedded functions are disabled. You need to install the driver in order to activate the

wifi embeded on your display.

Right click, Properties :

Update the driver :

Look for the driver in the PC :

Go to the COOLMAY file you have just installed :

Click on choose in a list : CoolMayHMI

Done :

It has been transform as a network connector :

And a new network (the display’s one) appears in the list as undentified network with no internet communication.

Now you’re able to download the sketch you’ll done with CoolmayHMI software.

2-2-IP adresses settings and MODBUS RTU communication:
You will have to work with 2 different addresses on your display :

- One is used to download the program

- The other is made for communicate with the ethernet peripheral device (Arduino , PLC….)

2-2-1 IP address for download :

You must use an IP address like 222.222.222.9 because the basic address of the display is 222.222.222.222

2-2-2 Launch as administrator :

And open the home made sketch IP search :

New file

Set working:

The good HMI here

Modbus RTU slave

8EN2 line

The slave adress in

case of only one

slave

COM1 is RS232

COM2 is RS485 : this

one

115200 bauds like

arduinos

Have a look here for multi slave communication:

Offset of 100x(i-1) between

slaves i.

In case of only one slave:

2-3-An example of HMI:
The HMI looks like this: for nice and eyes catchy buttons have a look at my TUNNEL DE CHAUFFE instructable

Controls for slave 1:

Slave 1 / holdingRegs[2] / register 40002

Slave 1 / holdingRegs[1] / register 40001

Slave 1 / holdingRegs[0] / register 40000

Controls for slave 3:

Slave 3 / holdingRegs[2] / register 40202

Slave 3 / holdingRegs[1] / register 40201

Slave 3 / holdingRegs[0] / register 40200

2-4-Upload the sketch:

Now, Compile :

Done and generated in xxx.hw6 under c:/

Now you are able to download the sketch : if Download is not launch, restart CoolmayHMI Build as an Administrator.

Right click :

Select the just generated file :

Select the network where to download (created when driver update) AND CHECK THE DEVICE.

Select the wlan of the display :

Down :

Success.

If the network doesn’t run, stop and restart the master.

PART 2: HMI the SLAVE1, Clone the MASTER, UNO the SLAVE3
The schematic and the links between the devices remain the same. The Clone is now the master because you

embed a program in state machine programming to control systems: you can’t do it with an HMI as master

because it doesn’t respect safety machine rules.

The matrix of registers used for the communication:

Names of Packets received/sent

in the MASTER (enum array)

Address

es in

enum

array

Holding

registers

addresses in

an array

defined by

TOTAL_NO_OF

_REGISTERS

(15 word max

for com)

Names

READ_SLAVE3_adr0_6666 0 10 holdingRegs[10]

holdingRegs[_40011]

WRITE_SLAVE3_adr1_LED13 1 1 holdingRegs[1]

holdingRegs[WRITE_SLAVE3_adr1_LED13]

READ_SLAVE3_adr2_BUTTON 2 14 holdingRegs[14]

_40004 3 3 holdingRegs[3]

holdingRegs[_40004]

_40005 4 4 holdingRegs[4]

holdingRegs[_40005]

_40006 5 5 holdingRegs[5]

holdingRegs[_40006]

_40007 6 6 holdingRegs[6]

holdingRegs[_40007]

_40008 7 7 holdingRegs[7]

holdingRegs[_40008]

_40009 8 8 holdingRegs[8]

holdingRegs[_40009]

_40010 9 Not used

_40011 10 10 holdingRegs[10]

holdingRegs[_40011]

_40012 11 Not used

_40013 12 Not used

TOTAL_NO_OF_PACKETS No

address

and

leave

this one

 13

 14 holdingRegs[14]

 15

TOTAL_NO_OF_REGISTERS (here 15) must be equal or greater than TOTAL_NO_OF_PACKETS (here 12).

When you read a value from a slave you must do it via another register BECAUSE YOU REACH DIRECTLY the

READ VALUES you want to proceed. For example, here I read a value ‘6666’ from the slave3 and I want to

display it on the HMI (slave1) on an LCD display with th address 40009. First: I store the value in

holdingRegs[10] or holdingRegs[_40011] (but not holdingRegs[READ_SLAVE3_adr0_6666], not working).

Second: I store holdingRegs[10] or holdingRegs[_40011] in holdingRegs[8] or holdingRegs[_40009].

2-1 The Clone as MASTER:
The skectch is based on this example:

The communication seems to be very slow. In order to

get more speed:

-I use a state machine for a multitasking running

-I change some communication settings like this:

SERIAL_8O1: 1 start bit, 8 data bits, 1 Odd parity bit, 1

stop bit

115200 bauds

modbus_construct is a function which gives addresses and makes relationships between the registers of enum

(coming from the slaves) and the local registers of the master:

Here the master operates and controls inputs and outputs registers:

If the network doesn’t run, reset the master.

The sketch of the master:

2-2 The UNO as SLAVE3:
The skectch is based on this example:

The communication seems to be very slow. In

order to get more speed:

-I use a state machine for a multitasking

running

-I change some communication settings like

this:

SERIAL_8O1: 1 start bit, 8 data bits, 1 Odd

parity bit, 1 stop bit

115200 bauds

2-3 The HMI as SLAVE1:
An example of a dashboard:

Supervision

for the

MASTER

Supervision

for the

SLAVE3

Communication settings:

Supervision settings for the MASTER:

Supervision settings for the SLAVE3:

