
10151413

16

1514131211109
0 1 2 3 4 5 6 7 8

3.3v

16

G
N
D

G
N
D

20
19

3.3v

-+-+

+
-

����
�����
���

00:00
CLK -> Pin 13
DIO -> Pin 14
VCC -> Pin + (Positive)
GND -> Pin - (Negative)

00:05
What You Need:
1 x Crazy Circuits Bit Board

1 x micro:bit

1 x 7 Segment Display

4 x Jumper Wires

4 x Slide Switch

1 x Jumbo Pushbutton

1 x LEGO Baseplate

Misc. LEGO Pieces

1/8” Maker Tape

**

1* How it Works:
There are four switches that can be set to an on or

off postion. The on position is equal to 1, and the

off position is equal to 0.

After setting each switch into a position to equal 1

or 0 you can press the pushbutton to calculate the

value.

With all four switches in the off position, the binary

number 0000 would translate to 0 in decimal.

When a switch is in the on position you add the

value for that switch (8, 4, 2, or 1) to the total which

will be shown when you press the CALCULATE

button.

If the switches are off, on, off, on while reading left

to right your binary number would be 0101 and

would add 0 + 4 + 0 + 1 for a total of 5.

Each time you press the CALCUATE button it resets

the number to zero, and then adds up the results

of the switches and shows it on the 4 digit display

connected to the Bit Board.

Binary Calculator

For more fun projects and educational guides visit us at BrownDogGadgets.com

8 4 2 1 CALCULATE

OFF=0

ON=1

Binary Numbering System

For more fun projects and educational guides visit us at BrownDogGadgets.com

1* To the right is a chart showing how you would translate a binary number into a decimal number.

You can get any value between 0 and 15 with just four binary digits. (This is a 4 bit register.)

1, 2, 4, and 8 are the only numbers we need to accomplish our counting. If we need 3 we just

add 1 and 2. If we need 7 we add 4 and 2 and 1, and so on up to 15.

If this is a 4 bit register, what would an 8 bit register look like? To start with, you would have 8

digits instead of 4 and you would be able to count much higher of course.

Here is our 8 bit register. It has 8 “slots” that we can toggle on/off to create our decimal number.

(And yes, each “slot” holds one bit which is why this is referred to as 8 bit.)

8 4 2 1
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 1 0
1 0 1 1 1 1
1 1 0 0 1 2
1 1 0 1 1 3
1 1 1 0 1 4
1 1 1 1 1 5

Binary Decimal

1 2 8 6 4 3 2 1 6 8 4 2 1
 0 0 0 0 0 0 0 0

If you examine the numbers from right to left you’ll notice that the next digit is always one more

than the total we can get using the previous numbers combined.

For instance, 1 + 2 = 3, so we don’t need a 3 but we do need a 4 because we can’t count to 4

just using 1 and 2. Likewise, 4 + 2 + 1 = 7, so the next value we need is 8. This continutes on

along the string of numbers. 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127. If we add 127 and 128 we get

255. Now, if you’re familiar with 8 bit and know that it’s related to the number 256, that’s

because we need to count zero! (A count from 0 to 255 gives us 256 values because when

computers count they count 0 as a valid value.)

These bits are part of a base 2 numbers system. While base 10 numbers look like 10, 100, 1,000,

10,000, etc. Our base 2 numbers look like 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,

8192, 16384, etc.

With our 4 bits, that means 2 to the power of 4 (or 2 x 2 x 2 x 2) which equals 16, and the

highest value we can count to with our 8 bit register. (Remember, we’re including zero, so 0 to 15

is really 16 values.)

4 bit register
The term ‘bit’ is short for ‘binary digit’

Binary Calculator Code

For more fun projects and educational guides visit us at BrownDogGadgets.com

1* Let’s take a look at the code

for the Binary Calculator so

we can see what is

happening!

Disable the built-in LED matrix

We have a variable called theNumber which

will hold the value we get when we add our

registers together

For each of the pins we connect to for the four

switches and the pushbutton we need to set

them as “up” pins so that when we turn “on”

the switch, or push the button, the are pulled

“down” to ground by completing the

connection

We have a variable called tm which

represents the 7 Segment Display we are

using to display the decimal number

We have the 7 Segment Display connected to

Pin 13 and Pin 14, so we specify that here

Our pushbutton is connected to Pin

4, so we don’t do anything until the

button is pressed

We constantly display the value for

theNumber on the 7 Segment

Display, which only changes when

we press the button

We set our theNumber variable to

0 each time the button is pressed

We have four if/then

statements to evaluate each

of the four switches

In each case, if the switch is

in the on position (and it is

pulled down and equals 0)

we then add to theNumber
to increase the value

From left to right the first

switch represents 8, the

second 4, the third 2, and

the fourth 1

For each if/them statement

if the switch is in the off
position then the else part

of the if/then statement is

triggered and the value is

increased by 0 (which

means it does not increase

in value)

The start section of the code runs just once

when our program begins (typically this is

when the micro:bit is powered on) so it

contains a lot of setup statements.

The forever section runs in a loop for as long

as the micro:bit is turned on and receiving

power.

In other systems the start section is referred to

as the setup and the forever is referred to as

the loop. They may have different names, but

they serve the same purpose.

https://makecode.microbit.org/_avbceA0oHcob

