Autonomous Lighter Than Air Unmanned Aerial Vehicle

Ibrahim Zreik, Jose Juarez, Mustafa Alazzawi, Constantine Hatzidakis

OBJECTIVE

Create a lighter than air unmanned aerial vehicle (drone) that is maneuverable indoors with enough airlift capacity for a camera.

BACKGROUND

- Lighter than air systems provide sustained airlift capabilities
- Drones can be built smaller than traditional aircraft Drones provide a degree of safety by removing human pilots
- Cameras are needed for long distance control Sustained flight can be used for the survey of large areas
- Lighter than air flight allows for non-traditional propulsion
- Lighter than air flight is stable even without propulsion

Department of Electrical and Computer Engineering

Faculty Advisor: Marek Perkowski

Our Design Approach

- of a modular system.
- This system is currently remote controlled but has room for additional systems to automate its flight
- Include an approachable system where the propulsion and attachment methods are flexible and adaptable to other envelope styles
- Open-Source software used to modify the flight controller functionality allowing user customization

PROTOTYPING

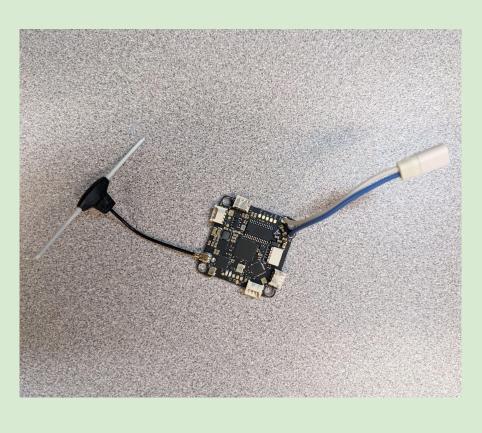
- Using our 3D printed custom designed propulsion mounting system we achieved controllable lighter than than air flight
- We paired our 3D design with user-friendly drone parts from BetaFPV.com
- The flight controller firmware is modified using BetaFlight software, and controlled with a handheld remote control
- Creating a custom motormix in Betaflight allowed control of the motors in our designed configuration
- 3D printing allows quick design changes, facilitating high variability in motor mounting designs
- Use of velcro allowed design changes without risk of damage to the envelope

FINAL RESULTS and FUTURE WORK

- Flies reliably for approximately one hour
- Maneuverable within an indoor space
- Able to carry up to 155g after a full fill of 80% helium mixture
- Helium fill lasts at least 1 week while maintaining basic functionality
- Next steps
 - Add a camera for long distance control
 - Improve the 3D printing design
 - Extend battery life
 - Improve stability
 - Add new functionality or systems (in-office snack delivery?)

Industry Sponsor: Ethan Lew

• We combined off the shelf whoop drone hardware with a Mylar envelope to obtain the base



OUR FINAL MOUNT DESIGN

PROTOTYPE

galois

Whoop Drone Flight Controller Board

3D PRINTED CUSTOM DESIGNED PARTS

OUR FINAL RESULT

Maseeh College of Engineering and Computer Science