```
;* Laser pcb printer
;* For Attiny13
;* Mark Lerman
;* Version 2.00 - Start 1/26/2016
;* Uses manual feed clutch
;* Programmed via usb programmer
;* 9.6 MHz /8 fuse=1.2MHz clock
;* uses signal from MF Clutch as signal is printing
;* Using old narrow media sensor as pis
;* 16 inch carrier
;* Carrier feed manually initiated
;ver 2.00
.Include "tn13def.inc"
.DEF rmp0
               =R16
                       ;multipurpose register
.DEF ticks
               =R17
                       ;interrupts counter`
.DEF secs
               =R18
                       ;seconds counter
; bit definitions
.EQU mfps
               =1
                               ;to manual feed paper sensor
.EQU pis
               =4
                               ;to paper in sensor
.EQU es
               =2
                               ;to exit sensor
.EQU sol
               =3
                               ;mf solenoid clutch, lo when actiated by print command
.EQU npis
               =0
                               ;optical pis
.CSEG
.Org $0000
;interrupt vectors are 1 byte in attiny13
       rjmp
               start
                               ; Reset Handler
       reti
                                       ; IRQ0 Handler
       reti
                                       ; PCINTO Handler
       reti
                                       ; Timer0 Overflow Handler
       reti
                                       ; EEPROM Ready Handler
                                       ; Analog Comparator Handler
       reti
                               ; Timer0 CompareA Handler
               timint
       rjmp
       reti
                                       ; Timer0 CompareB Handler
                                       ; Watchdog Interrupt Handler
       reti
                                       ; ADC Conversion Handler
       reti
start:
```

Idi rmp0, low(RAMEND); Set Stack Pointer to top of RAM out SPL,rmp0

```
; main program start
;initializes with mfps, pis and es hi
              set_ports
       rcall
                                    ;set up ports
       rcall
              set_ticks
                                    ;set up 25 msec interrupts
       sei
                                                  ;start interrupts
;do 30 second pause to allow printer to do initialization
;is 30 sec long
delay:
                                    ;seconds counter
       clr
                     secs
del1:
                     ticks
       clr
del2:
                     ticks,40;1 second?
       cpi
              del2
       brne
                            ;not yet
       inc
                     secs
                                    ;bump seconds
                                    ;30 seconds?
       cpi
                     secs,30
       brne
              del1
                            ;no, keep going
; using mf clutch signal to tell that user has started printing
;new pis is through sensor, picks up hole in carrier
;new pis goes lo when activated
main:
       clr
                     ticks
main0:
                     ticks,120
                                    ;3 seconds?
       cpi
       brne
              main0
                            ;not yet
                                    ;tell printer to move input rollers
       cbi
                     portb,mfps
main00:
              pinb,sol;loop till mf clutch pulled in (lo) when print starts
       sbic
              main00
       rjmp
;printer sometimes pulls Solenoid in "randomly", so ignore these
```

```
;if NPIS is lo - i.e. no carrier present
       sbis
               pinb,npis
                               ;if carrier not present is false alarm
       rjmp
               main00
                               ;so don't print yet
;test time to see range after start of vclutch lo
;clutch is in for 4 seconds
;PIS must go lo between 3.875 and 4.575 seconds after clutch goes lo - .7 second window
;since travel is 3.873 IPS, max distance is 2.711 inches
;if 2 inches from starting point till hole in carrier, .258 sec/inch * 2 = .516 seconds
;stop beep at 3.875 -.375 sec = 3.5, giving extra time to push carrier into drum interface
;approx 1 sec window (1.075)
       clr ticks
       main000:
       cpi
               ticks,140
                              ;3.5 seconds
       brne
               main000
       sbi
               ddrb,3 ;make output hi, beeper off
;loop till npis goes lo
;npis sees hole through carrier
       cli
                                              ;no interrupts
main00000:
                              ;loop till hole in carrier seen by npis=lo
       sbic
               pinb,npis
               main00000
       rjmp
;16 inch carrier - 14" numbers work well, leave alone
; carrier is now moving, printer is getting ready to print
;actual start of physical printing is fixed time from PIS hi->lo
;must reset the 3 sensors at correct time,
;11" paper takes 2.84 seconds to traverse each sensor
:.258 sec/inch=3.873 inches/sec;
;7.07" pis to es * .257=1.825 sec /.025 =73 ints
;3.2" mfps to pis * .257=.8224 sec /.025=33 ints
;3.2" mfps to pis, so when pis goes lo, (14-3.2=10.8") left til mfps goes hi
;10.8*.258= 2.7864 sec = 111.4 ints
;14" * .258 sec/inch =3.612 sec=144.48 ints for 14" carrier to pass
;33 ints mfps to pis
;73 ints pis to es
;when pis goes lo is 10.8" to trailing edge carrier=111.4 ints
; when es goes lo is 3.73 inches between mfps and trailing edge of carrier
;3.73 inches*.258 ips = .96234 seconds /.025=38.49 interrupts
```

```
cbi
                                               ;pis to lo, we are printing
                       portb,pis
       sei
                                                       ;start timer
                       ticks
       clr
                                               ;start timing
main11:
                       ticks,73
                                       ;1.825 sec to reach exit sensor=7.07 inches
       cpi
       brne
               main11
       cbi
                       portb,es
                                               ;exit sensor lo
;all sensors lo at this point
;now have to reset them
       clr
                       ticks
main12:
                       ticks,38
                                               ;3.73 inches
       cpi
       brne
               main12
       sbi
                       portb,mfps
                                               ;mpfs reset
main13:
                       ticks,71
       cpi
       brne
               main13
       sbi
                       portb,pis
                                               ;reset pis
main14:
       cpi
                       ticks,144
       brne
               main14
       sbi
                       portb,es
                                               ;reset es
;after print done mf solenoid pulls in again stopping roller
;then releases again
       cbi
                       ddrb,3
                                               ;make input again
       rjmp
               main
                                       ;and do again
;25 msec interrupts
set_ticks:
       ldi
               rmp0,0x02
                               ;ctc on ocr0a
               tccr0a,rmp0
       out
       ldi
               rmp0,0x04
                               ;prescale by 256, =.213.33msec/ct
       out
               tccr0b,rmp0
               rmp0,117
                                       ;117*.2133=24.9561 msec/int
       ldi
       out
               ocr0a,rmp0
               rmp0,0x04
       ldi
                               ;0a output compare enabled
```

```
out
               timsk0,rmp0
        ret
;init ports - all sensors hi
;b0,b3 input, rest output
set_ports:
               rmp0,0x16
                               ;0 in, rest out
        ldi
               ddrb,rmp0
       out
               rmp0,0xfe
                               ;outputs hi, input pullup on
       ldi
               portb,rmp0
        out
        ret
Timint:
        inc
               ticks
```

reti