
Sohum Kulkarni

MAE 3780

November 3, 2021

Individual Project Final Report

Overview

The purpose of this device is to record an alarm sound and, upon hearing that alarm

sound again, actuate a positional servo motor to click a key on a laptop keyboard,

thereby awaking the laptop from a sleep state.

This actuation can also be manually accomplished via a short press of the included

button.

The actual recording of the alarm sound can be accomplished via a long press of the

included button. A green LED turns on to indicate recording has begun, and then is

turned off and replaced with a red LED to indicate the recording is complete. These

LEDs are both grounded through the same resistor for current control. Though

ordinarily this would limit the brightness, since both are never on at the same time,

their brightness is not limited. Furthermore, the roughly 2V voltage drop across each

LED in operation means that the reverse bias on one LED when the other is active is

roughly 3V, less than the reverse breakdown voltage for LEDs (~5V). When all LEDs are

off, the device has returned to normal operation, listening for the alarm and waiting for

a button press.

The recognition of the alarm sound is accomplished via counting the number of zero-

crossings of an analog signal from the included microphone within the runtime of a

certain loop. In order to produce a reliable value for zero, a high-pass filter removes the

DC signal from the microphone on top of which the AC sound sinusoid is overlaid, and

then a voltage divider between +5V and 0V sets that sinusoid’s “zero” to roughly 2.5V,

depending on the exact resistances of the two resistors in the divider. This

characteristic number is correlated with the frequency of the sound. This number has

been found to be highly reproducible, and as such is used as a recognition characteristic

for certain sounds when the number as calculated for the heard sound is within a

certain tolerance of the number as calculated for the recorded alarm.

Design Considerations

Mechanically, this project is relatively simple, and all assembly is designed with the

maximum possible degrees of freedom in order to accommodate minor errors in the

dimensions of purchased components. Nevertheless, measurements should be taken

carefully of all purchased components in order to ensure that no interferences exist and

to minimize the number of post-3D printing modifications that need to be made.

If I were to redo this project with the same constraints, the first change I would make

is a more accurate measurement of the hole spacing on the board to which the Arduino

is glued. Although the spacing was good enough to assemble, a better measurement

would have made assembly easier. I would actually, however, recommend offsetting

one hole in the 3D printed support (Figure C.3) to which the board mounts, in order to

produce, in effect, a distorted thread mechanism in the nuts that holds the nuts to the

bolts and the nuts to the 3D printed support without the use of glue. I would also

research the microphone I purchased more carefully. Ultimately, after buying a $4

microphone, I had nearly $6 left over. A higher-quality, higher-gain microphone could

likely have improved the abilities of this device. I could also have included reverse-bias

protection diodes on the LEDs or simply connected them to separate resistors. Another

possible improvement, which I only learned about the day before the project was due,

is using interrupts to recognize the button press instead of the several instances of

polling I had to ensure adequate response time.

If I had more time and more money, I would replace the inset nuts in the 3D printed

support (Figure C.3) with threaded inserts. Although threaded inserts are not

individually more expensive, they were not provided at a discount as part of the craft

supplies. I would again purchase a nicer microphone – the quality of the microphone

signal is essential to the purpose of this device. I would also develop a better

frequency-recognition algorithm. Using a Fast Fourier Transform or Fast Hartley

Transform on the audio signal could likely produce a much more reliable frequency

characteristic for the sound, but the necessary testing to validate that would have

required too much time. I might also build the entire structure from a single 3D printed

piece of plastic (Figure C.3, C.4, C.5, C.6 joined into one). The use of steel rods reduced

cost at the expense of weight and assembly.

Assembly Instructions

Tasks to be completed before these instructions apply are as follows: Program the

Arduino, connect the circuit as per Figure B.1, manufacture 3D Printed Support 1, 2,

and 3 as well as the steel rods as per Figures C.3, C.4, C.5, C.6. Each step corresponds

to a cell in Table C.1, reading left to right and top to bottom:

1. With the 2 steel rods (Figure C.6) parallel on a table, place 3D Printed Support 1

(Figure C.3) on top of them such that the semicylindrical channels in 3D Printed

Support 1 lock onto the rods and the side of the 3D Printed Support closest to

the vertical protrusion is flush to the ends of the rods.

2. Insert one 4-40 nut into each of the hexagonal insets in 3D Printed Support 1

(Figure C.3)

3. Slide the 2 copies of 3D Printed Support 2 (Figure C.4) onto the opposite end of

the steel rods. These should be oriented such that the step down is facing

upward and the steps on each one of the 3D Printed Supports are not facing one

another. This will be a friction fit. The spacing between them is arbitrary right

now, but the 3D Printed Support 2 (Figure C.4) farthest from 3D Printed Support

1 (Figure C.3) should be flush to the end of the steel rods.

4. Glue one copy of 3D Printed Support 3 (Figure C.5) to each of 3D Printed

Support 2 (Figure C.4). The side glued down should be the smallest face, closest

to the larger of the two holes in 3D Printed Support 3 (Figure C.5). The small

hole is offset on the face through which it passes. The side toward which it is

closer should be the side oriented toward the 3D Printed Support 2 (Figure C.4)

to which it is not attached. For positioning along the long axis of 3D Printed

Support 2 (Figure C.4), the faces of 3D Printed Support 3 (Figure C.5) and 2

(Figure C.4) should be flush.

5. Place the board containing the Arduino and the breadboard on top of the

assembly such that the holes in the board closest to the breadboard are aligned

with the two nuts inserted into 3D Printed Support 1 (Figure C.3) and such that

the board extends from there toward the 3D Printed Support 2s (Figure C.4).

Place the microphone unit such that one of its holes is concentric with one of the

nuts inset into 3D Printed Support 1 (Figure C.3).

6. Insert screws through the board and through the microphone unit hole into the

nuts inset in 3D Printed Support 1 (Figure C.3).

7. Place the servo motor such that the output faces out away from 3D Printed

Support 2 (Figure C.4) and the two mounting holes are aligned with the small

holes in 3D Printed Support 3 (Figure C.5). Move the 3D Printed Support 2

(Figure C.4) as necessary to accomplish this. Screw one 4-40 bolt through each

of the small holes in the 3D Printed support 3s (Figure C.5) into the mounting

holes in the servo motor. The holes in 3D Printed Support 3 should be small

enough that the bolt self-taps through the plastic.

8. Assembly complete.

Operation Instructions

To manually actuate the keyboard key click, short press the button.

To record an alarm sound, begin playing the alarm sound and long press the button.

When the green LED turns on, recording has begun. Wait until the green LED is off and

the red LED has turned on, and then stop playing the alarm sound. Once the red LED

has turned off, normal operation has resumed and the device is ready to either receive

a short button press, record a new alarm, or recognize the existing alarm.

When the device hears the recorded alarm, it will actuate the keyboard key click.

Appendix A: Bill of Materials

Table A.1: Bill of Materials

Item
Part

Number Vendor
 Cost per

Unit Qty Total Cost

Purchased/ Scavenged
Items

Microphone U096
221-U096-

ND Digikey $ 3.95 1 $ 3.95

Steel Round Rod
0.25"x2' 8920K114 McMaster-Carr $ 2.83 1 $ 2.83

3D Printing Job PLA N/a Cornell RPL $ 1.00 1 $ 1.00

3D Printing Plastic PLA N/a Cornell RPL $ 0.40 5.5 $ 2.20

4-40 Hex Screw, 0.5” N/a
Cornell Craft

Supplies $ 0.01 4 $ 0.04

4-40 Hex Nut N/a
Cornell Craft

Supplies $ 0.02 2 $ 0.04

Superglue 1739050
Amazon:
Loctite $ 4.16 1 $ 4.16

Kit Items

Arduino Uno R3
1050-1024-

ND Digikey $ 20.90 1 $ 20.90

4-wire harness
1568-1931-

ND RobotShop.com $ 1.35 1 $ 1.35

Micro Servo Positional SER0006 DFRobot $ 3.30 1 $ 3.30

Mini Breadboard 98AC7296 Newark $ 1.05 1 $ 1.05

Tactile Switch Push
Button 155380 Jameco $ 0.35 1 $ 0.35

Wire Kit B07PQKNQ22
Amazon:
Austor $ 2.17 1 $ 2.17

Resistor 220 Ohm 220QBK-ND Digikey $ 0.01 1 $ 0.01

Resistor 1 kOhm 1.0kQBK-ND Digikey $ 0.01 1 $ 0.01

Resistor 10 kOhm 10kQBK-ND Digikey $ 0.01 3 $ 0.03

Capacitor 1 uF
BC1162CT-

ND Digikey $ 0.18 1 $ 0.18

Red LED 697602 Jameco $ 0.05 1 $ 0.05

Green LED 334086 Jameco $ 0.08 1 $ 0.08

Total
Purchased/Scavenged $ 14.22

Total $ 43.70

Appendix B: Circuit Diagram

Figure B.1: Circuit Diagram

Appendix C: CAD Images, Drawings, and Assembly Drawings

Section C.1: CAD Images

Figure C.1: Full Assembly, Top Isometric View

Arduino board in blue, breadboard and supporting board in red

Microphone in white, servo in periwinkle

3D Printed Support 1 at back in black

3D Printed Support 2 (2x) at front bottom in black

3D Printed Support 3 (2x) attached to servo in black

4-40 screws in white

Steel Rods in gray

Figure C.2: Full Assembly, Bottom Isometric View

Figure C.3: 3D Printed Support 1

Figure C.4: 3D Printed Support 2

Figure C.5: 3D Printed Support 3

Section C.2: Manufacturing Drawings

Figure C.6: Steel Rod Drawing

Section C.3: Assembly Drawings

Table C.1: Assembly Drawings

Appendix D: Commented Arduino Code

/*

 * This program operates a device that can detect an alarm signal and depress a lever when that signal is detected.

 * The alarm signal can be custom recorded to the device. The function for that is record().

 * The function butPressed() handles button presses.

 * The function getSound() converts raw data from the microphone to a frequency characteristic of the recorded sound.

 * This frequency characteristic is the parameter used to compare sounds and recognize the alarm.

 */

#include <Servo.h>

int curVol; //Stores retrieved value from microphone

int pinBut = 12; //pin input from button

int pinG = 2; //pin output for green led

int pinR = 6; //pin output for red led

int pinVol = A0; //pin input from microphone

int pinServo = 3; //pin output for servo

int alarmSound; //stores frequency characteristic of alarm

int curSound; //stores current measured frequency characteristic

int fht_input[256]; //stores list of measured microphone inputs

Servo servo; //Servo motor initialization

void setup() {

 pinMode(pinVol,INPUT); //Set input for microphone

 pinMode(pinBut,INPUT); //Set input for button

 pinMode(pinR,OUTPUT); //Set output for red led
 pinMode(pinG,OUTPUT); //Set output for green led

 servo.attach(pinServo); //attach servo object to servo pin

 servo.write(180); //default to servo lever up

}

void loop() {

 if(digitalRead(pinBut)==HIGH){ //If button is pressed, run butPressed()

 butPressed();

 }

 curSound = getSound(); //retrieve frequency characteristic for currently heard sound

 if(curSound-alarmSound<50 && curSound-alarmSound>-50){ //if current freq. characteristic is similar to alarm

 servo.write(10); //servo lever to down

 delay(500);

 servo.write(180); //servo lever back up

 delay(500);

 }

}

void record() {//This function records and saves the frequency characteristic of the alarm

 delay(1000);

 digitalWrite(pinG,HIGH);//Indicate recording beginning with green led

 delay(500);

 alarmSound = getSound();//Record alarm

 delay(2000);

 digitalWrite(pinG,LOW);//Indicate recording ending with green led off

 digitalWrite(pinR,HIGH);//Indicate recording complete with red led

 delay(200);

 digitalWrite(pinR,LOW);//Indicate return to normal device operation with red led off

 delay(100);

}

int getSound() {//This function retrieves a frequency characteristic for the current sound

 int q[10]; //Set of frequency characteristics

 int sum; //multiuse variable in summation & averaging processes

 for(int j=0;j<10;j++){//iterating through q[]

 if(digitalRead(pinBut)==HIGH){//jump to butPressed() if button is pressed - intended to improve response time

 butPressed();

 }

 q[j]=0; //clear any previous value of freq. characteristic

 for(int i=0;i<256;i++){//fill list of microphone inputs

 int k = analogRead(pinVol);

 fht_input[i]=k;

 }

 for(int i=1;i<256;i++){//knowing zero point of microphone signal at 534, find number of times mic signal crosses zero
 if((fht_input[i]-534)/(fht_input[i-1]-534)<0){//check if two consecutive inputs have opposite sign

 q[j]=q[j]+1; //store number of zero crossings in q[j] - this is a frequency characteristic

 }

 }

 }

 sum=0; //clear any previous value of sum

 for(int i=0;i<10;i++){//iterate through [q]

 sum=sum+q[i]; //sum all frequency characteristics from q[]

 }

 int avg_h=sum/10; //average freq. characteristics from q[]

 return avg_h; //return freq. characteristic

}

void butPressed() {//what to do if the button is pressed

 delay(500); //wait to check if long press or short press

 if(digitalRead(pinBut)==HIGH){//if long press

 record(); //record alarm signal

 }

 else{//if short press

 servo.write(10); //servo lever down

 delay(500);

 servo.write(180); //servo lever up

 delay(500);

 }

}

