Aj_SoundCard

Sound Card Interface

Technical Manual

1. Introduction:

This is a brief manual containing relevant technical data required for understanding construction and use of the Aj_SoundGen_SigGen 'PC Sound card interface'.

Figure 1 Aj_SoundGen_SigGen PC Sound Card Interface

This unit is designed as a teaching aid for budding engineers, electronic enthusiasts and hobbyists.

The Aj_SoundGen_SigGen unit is connected to the PC audio output and draws power through an USB connector. This unit overcomes the basic limitations of AC coupling and $\pm 2V$ signal level limit of the audio output and implements a simple circuit providing a fixed gain and a variable offset of typically $\pm 5V$ at the signal generator output.

2. Warning & Disclaimer:

All content provided in this document is for informational purposes only. The owner of this document makes no representations as to the accuracy or completeness of any information. The owner will not be liable for any errors or omissions in this information. The owner will not be liable for any losses, injuries, or damages from the display or use of this information including software.

3. Specifications

Input		
No of Channels	Two	Audio Left/Right
Input impedance	10 kilo Ohm	
Input connection	3 mm Audio Jack	
Output		
Sin/Square/Triangle	Gain 5.5	
Offset	± 5V	
Aux out1	1V Sq 40kHz	
Aux out1	5V Sq 40kHz	
Sampling Rate	44 kbps	
PC Software	VB.Net 2.0	
Power Supply	USB +5V	20mA

4. Block Schematic and Function Description

Figure 2, Aj_SoundGen_SigGen simplified block schematic

Figure 2 shows the simplified block schematic of the system. The USB +5V is fed to the MAX232 dual driver/receiver which carries out several functions:

- Generation of generates +8V and -8V supply for the op-amp circuitry
- Conversion of TTL level PWM to ± 8V level
- Generation of 40 kHz aux outputs

The Left-Channel outputs a 441 Hz PWM signal which when converted to TTL and fed to the Max 232 provides a \pm 8V level PWM which is averaged to provide a DC offset signal.

The Right Channel provides the Sin/Square/Triangle signal from the PC which is amplified by 5.5 and summed with the DC offset signal to form the Aj_SoundGen_SigGen output.

5. Software on the PC Host:

Microsoft Windows based GUI software has been developed which interfaces with the internal sound-card of the PC and provides the audio-outputs to the Aj_SoundGen_SigGen via the speaker port.

Visual Basic .Net Microsoft Windows Application Code

Figure 3, Aj_SoundGen_SigGen icon MS Windows

GUI VB.Net 2.0:

🔜 Aj_Sound	ICard_SigGen			
~Waveform				
💿 Sine	🔘 Square	🔘 Triangle		
Frequency	Amplitude	Offset		
		<u>></u>		
		-		
	-			
⊻	<u>~</u>	×		
1000 HZ	41 %	51 %		
Swap Outputs Invert Offset				
Run	Stop	Exit		

Figure 4, Aj_SoundGen_SigGen GUI

A simple GUI is used to control the PC sound-card outputs and indirectly the Aj_SoundCard_SigGen.

Once the Aj_SoundCard_SigGen USB and Audio connector are connected and the PC sound card enabled with maximum volume:

- Three Radio-Buttons select the type of waveform
- The first slider sets the signal generator frequency
- The second slider sets the amplitude of the chosen waveform
- The third slider controls the duty-cycle of the 441 Hz PWM which controls the DC offset.
- The RUN ,STOP and EXIT buttons are self explanatory

To ensure compatibility with different sound-cards:

- The swap-output check-box swaps the L/R channels if required
- And the Invert-Offset check-box inverts the polarity of the 441 Hz PWM.

6. Aj_SoundCard_SigGen Unit:

Figure 5, Aj_SoundGen_SigGen UNIT

In order to economize on the cost of an enclosure the circuitry has been designed to fit within a small matchbox.

The USB connection to the PC is on one end along with the Audio-Jack for the audiosignal input. The outputs are provided on the other side along with a power-ON LED.

7. Functional Description:

PC sound cards form a readily available Signal Generator for testing electronic circuits. The utility of these signal generators is limited because the outputs are AC coupled and limited to $\pm 2V$.

Taking advantage of the two channels provided by the sound card the circuit uses one channel to output the Sin/Square/Triangle waveform with a fixed gain, while setting up a 441 Hz PWM square wave on the second channel. This PWM waveform is converted to $\pm 8V$ averaged and summed with the first channel to provide a DC offset controllable by the duty-cycle setting.

The circuit in **Figure 6** provides a variable offset of typically $\pm 5V$ at the signal generator output.

Figure 6, Aj_SoundGen_SigGen Schematic

The circuit is powered from the PC USB +5V supply which is converted by the capacitive voltage generator within the MAX232 dual driver/receiver IC, U1 to typically ±8V to power the TL082 low power op-amp, U2. L1/C8 and L2/C7 filter out the ripple on the V+ and V-outputs of U1. The 441Hz PWM waveform output on the sound-card left-channel is clamped by C1/D1 and fed through R1 to the base of T1. This produces a TTL compatible square wave at the collector of T1 which is fed to theT2IN of U1. T2OUT is a ±8V PWM waveform which is averaged by R3/C6 and buffered by U2B to generate a DC voltage depending on the PWM duty-cycle. This voltage is summed along with the Sin/Square/Triangle waveform output on the sound-card right-channel by U2A and forms the signal generator output. C16/R5 forms a low-pass filter to smoothen the quantized signal generated by the sound-card. With the values of the components shown the right-channel is amplified by a fixed gain of 5.5 and the DC offset variation is typically ±5V.

Figure 7 illustrates the circuit operation. The 75% duty-cycle PWM input signal is converted to typically $\pm 8V$ at T2OUT and when averaged produces ~ 4V DC at Pin7 of U2B. The 0.5V sin-wave is amplified and offset by the inverting summing amplifier U2A to form the signal generator output.

Figure 7, Aj_SoundGen_SigGen Waveforms

This circuit while removing the limitations of AC coupling and $\pm 2V$ signal level limit provides a bonus output by potential dividing the C1- output of U1 using R1/R2 to provide a 1V, 40 kHz square wave which can be used for step response testing of analog circuits.

8. Bill of materials:

SI.No.	Qty	Value	Package	Parts
1.	2	1K	R0805	R9, R10
2.	1	1N914	DIODE-SOD323-W	D1
3.	7	1UF	C1210	C2, C3, C4, C5, C6, C
4.	1	1UF16V	C1210	C1
5.	2	1mH 35mA	C1812	L1, L2
6.	2	3.3K	R0805	R2, R8
7.	2	10K	R0805	R1, R7
8.	1	22K	R0805	R4
9.	1	33PF	C0805	C15
10.	1	100K	R0805	R3
11.	1	100UF 16V	C1812	C11
12.	1	120K	R0805	R5
13.	1	180K	R0805	R6
14.	1	180PF	C0805	C16
15.	1	BC847	SOT23	T1
16.	1	CON-JACK-2CH	CON-JACK-2CH	U\$2
17.	1	TL082CM	SO08	IC2
18.	1	MAX232DR	SO16	U\$3
19.	1	OUTPUT	FE06-1	SV1

9. Printed Circuit Boards:

Figure 8, Component layout Top

Figure 9, Component layout Bottom

Figure 10, Wired PCB Top

Figure 11, Wired PCB Bottom

10. Appendices

- Schematic Colour
- Schematic B&W
- PCB 1:1 A4 Top mirrored
- PCB 1:1 A4 Bottom

11. Summary

This document provides essential information for fabrication and operation of the Aj_SoundCard_SigGen unit.

Software and Gerber Files can be downloaded from my website http://www.ajoyraman.in

Address any doubts and clarifications to me at ajoyraman@gmail.com

