

Electrical Engineering Department
EE 20A

Project EMB
Measuring AC Power Using Arduino Nano and

ZMPT101b, ZHT103 Modules

 Submitted To:
Sir Mudasir

 Group Members:
Fahad Qalbi (210401060)

Raza Hussain (210401072)
Rayan Sohail (210401074)
Raza Madni (210401034)

Table Of Content:

1. Introduction of Arduino
2. Equipment
3. Introduction of Project
4. Working (Abstract of Code)

1. Introduction to Arduino
The Arduino Nano is a popular and versatile microcontroller board that

has gained widespread recognition among electronics enthusiasts, students, and
hobbyists. Developed by the Arduino company, this compact yet powerful
board serves as the foundation for countless creative projects and prototypes. It
is highly regarded for its ease of use and adaptability, making it an excellent
choice for beginners and experienced electronics enthusiasts alike.

The Arduino Nano is equipped with a variety of pins and features that

enable users to interact with and control various electronic components. These
pins are divided into three main categories:

ATmega328 Microcontroller

 High-performance low-power 8-bit processor
 Achieve up to 16 MIPS for 16 MHz clock frequency.
 32 kB of which 2 KB used by bootloader.
 2 kB internal SRAM
 1 kB EEPROM
 32 x 8 General Purpose Working Registers
 Real Time Counter with Separate Oscillator
 Six PWM Channels
 Programmable Serial USART
 Master/Slave SPI Serial Interface

Power

 Mini-B USB connection
 7-15V unregulated external power supply (pin 30)
 5V regulated external power supply (pin 27)

Sleep Modes

 Idle
 ADC Noise Reduction
 Power-save
 Power-down
 Standby
 Extended Standby

I/O

 20 Digital
 8 Analog
 6 PWM pins

Understanding these pins and their functionalities is essential for successfully
building and programming projects using the Arduino Uno. With its user-
friendly interface and a wide array of libraries and resources available, the
Arduino NANO opens a world of possibilities for anyone interested in
electronics and programming. Whether you want to create interactive art, build
home automation systems, or explore robotics, the Arduino Uno is an excellent
platform to get started.

2. Equipment:

1. 16x2 LCD display:
In this project, I also used a 16x2 LCD display, which is an alphanumeric

display that can show up to 32 characters in two lines (16 characters each). It is
connected to the Arduino using an I2C module, a simple, reliable
communication protocol, allowing the LCD to receive data from the Arduino
over just two wires. The I2C bus uses two lines: a serial data line (SDA) and a
serial clock line (SCL). SCL stands for Serial Clock. It's one of the two signals
used in the I2C communication protocol, the other being the Serial Data (SDA)
line. In I2C communication, the SCL line is used to synchronize all data
transfers over the I2C bus. It's controlled by the master device, which generates
the clock signal.

2. I2C module:
The I2C (Inter-Integrated Circuit) module, often referred to as I2C bus or

I2C interface, is a widely used serial communication protocol in the field of
electronics. It allows multiple devices to communicate with each other over a
two-wire bus, typically consisting of a data line (SDA) and a clock line (SCL).
I2C is known for its simplicity and versatility, making it a popular choice for
connecting various components, such as sensors, displays, and microcontrollers
in embedded systems. This protocol enables efficient data exchange between
devices while using minimal pins and providing addressing capabilities for

distinguishing between multiple devices on the same bus. I2C is a fundamental
tool for building complex and interconnected electronic systems.

3. ZMPT101B module (Voltage Sensor):
The ZMPT101B module is an AC voltage sensor module that is

commonly utilized in various electronic applications. It is designed to provide a
simple and reliable way to measure AC voltage levels in electrical circuits. The
module includes a ZMPT101B voltage transformer and a signal conditioning
circuit, making it suitable for interfacing with microcontrollers or other digital
devices.

Key features of the ZMPT101B module:

Voltage Measurement: The ZMPT101B module is specifically designed for
measuring AC voltage. It can accurately detect and provide voltage values for
use in your projects.

Signal Conditioning: The module includes components for signal conditioning,
which means that it can provide a more stable and reliable output signal for
voltage measurement.

Linear Output: The output of the ZMPT101B is linearly proportional to the
input AC voltage, making it easier to convert the sensor data into voltage
values.

Low Power Consumption: It operates with low power consumption, making it
suitable for battery-powered and low-power applications.

Easy Integration: The ZMPT101B module typically features standard pins for
connection to microcontrollers, making it relatively easy to integrate into your
projects.

4. ZHT103 module (Current Sensor):
The ZHT103 is a 1-phase AC current sensor. It can measure AC currents

less than 5A, the corresponding analog output 5A / 5mA. It has a built-in
sampling resistor and an accurate micro-current transformer.

3. Working (Abstract of Code):

1. Library and Objects Initialization:

At the top, the necessary libraries are included, and a
LiquidCrystal_I2C object (lcd) and an Energy Monitor object (emon1)
are initialized. The LCD has 16 columns and 2 rows, and it uses the I2C
address 0x27.

1.1 Emon Library:
 The Emon Library, also known as the Energy Monitoring

(Emon) Library, is a software library designed for use with Arduino and
other compatible microcontroller platforms. This library is primarily used
for energy monitoring and measurement applications. It enables
developers and hobbyists to interface with various energy monitoring
hardware, making it easier to measure and analyze electricity
consumption and power-related data.

Key features and functions of the Emon Library include:

1. Real-Time Energy Monitoring: The library provides tools to measure and
monitor real-time energy consumption, including voltage, current, power, and
power factor.

2. Support for Energy Sensors: Emon Library is compatible with a variety of
energy sensors, such as current transformers (CTs) and voltage transformers
(VTs), which are commonly used to measure electrical parameters in AC
circuits.

3. Data Logging: It allows users to log and store energy consumption data for
later analysis or reporting. This is valuable for tracking energy usage patterns
and optimizing energy efficiency.

4. Calculations: The library includes functions for calculating active power
(watts), apparent power (VA), and reactive power (VAR), making it easier to
understand power distribution and usage.

5. Data Processing: Emon Library provides tools for processing raw sensor
data and presenting it in a more user-friendly format. This can include
averaging data over time or smoothing noisy measurements.

6. Visualization: It may offer functions or compatibility with visualization tools
or platforms to display energy consumption data graphically, making it easier to
interpret and analyze.

The Emon Library is commonly used in projects related to home energy
monitoring, solar power systems, smart grid applications, and energy-efficient
building management. By using this library in conjunction with appropriate
hardware, developers can create solutions that help users better understand and
control their energy consumption, ultimately contributing to energy savings and
a more sustainable environment.

1.2 LiquidCrystal_I2C Library:
The LiquidCrystal_I2C library is used to control the LCD display

via I2C communication. This allows us to write to the display and control
the backlight and cursor position, among other things

2. Setup:

In the setup () function, serial communication is initiated at some
baud rate. The LCD is also initialized, and a start-up message "AC Power
Meter" is displayed. The `emon1.voltage()` and `emon1.current()`
methods are used to set the calibration values for the voltage and current
sensors.

3. Main Loop:
In the loop() function, the following sequence is used continuously:

 The string "Sequence: I+V,P" is printed on the LCD i.e. voltage and
current + power.

 RMS voltage and current will be calculated using `emon1.calcVI()`
for voltage and `emon1.calcIrms()` for current.

 The calculated voltage and current are multiplied to obtain the
power in watts.

 The RMS voltage, current, and power will be displayed on the LCD,
one at a time, with a 1-second delay between each display.

 The RMS voltage and current values are also sent to the serial
monitor.

The lcd.print() and lcd.setCursor() functions will be used to control what
is displayed on the LCD and where it is displayed. The Serial.print() and
Serial.println() functions will be used to send data to the serial monitor.
The delay() function will be used to create a pause between different
readings, and lcd.clear() will be used to clear the LCD before displaying
new data.

Code:
//8888 EmonLibrary examples openenergymonitor.org, Licence GNU GPL V3
#include <LiquidCrystal_I2C.h>
#include "EmonLib.h" // Include Emon Library
int lcdColumns = 32;
int lcdRows = 2;
LiquidCrystal_I2C lcd(0x27, lcdColumns, lcdRows);

EnergyMonitor emon1; // Create an instance

void setup() {
 lcd.init();
 lcd.backlight();
 lcd.cursor_off();
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("AC Power Meter");
 delay(1000);
 emon1.voltage(A3,366, 3.6);
 emon1.current(A6, 1.15999); // Current: input pin, calibration.
 lcd.clear();
}

void loop() {
 lcd.setCursor(0,0);
 lcd.print("Sequence: I+V,");
 lcd.setCursor(0,1);
 lcd.print("Power(RMS),");
 lcd.setCursor(16,0);
 lcd.print("PowerFactor,");
 delay(2000);

 emon1.calcVI(20, 4000);
 double Vrms = emon1.Vrms;
 if(Vrms<10){Vrms=0;};
 double Irms = emon1.calcIrms(4000); // Calculate Irms only
 double Phase = emon1.powerFactor;
 if(Vrms<10 && Irms<0.009){Phase=0;};
 double apparentpower=(Irms*Vrms);

 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("Vrms:");
 lcd.setCursor(6,0);
 lcd.print(Vrms);
 lcd.setCursor(14,0);
 lcd.print("V");

 lcd.setCursor(0,1);
 lcd.print("Irms:");
 lcd.setCursor(6,1);
 lcd.print(Irms);
 lcd.setCursor(11,1);
 lcd.print("A");
 delay(2000);
 lcd.clear();

 lcd.setCursor(0,0);
 lcd.print("Power:");
 lcd.setCursor(7,0);
 lcd.print(apparentpower);
 lcd.setCursor(13, 0);
 lcd.print(" W");

 lcd.setCursor(0,1);
 lcd.print("Pfactor:");
 lcd.setCursor(9,1);
 lcd.print(Phase);
 delay(2000);
 lcd.clear();

}

Output:

