

Electrical Engineering Department
EE 20A

Project EMB
Measuring AC Power Using ESP32 and ZMPT101b,

ZHT103 Modules

 Submitted To:
Sir Asad ur Rehman

 Submitted By:
Fahad Qalbi (210401060)

1. Introduction
The ESP32 Dev Kit v1 is a versatile, feature-packed development board

produced by Espressif that is designed around their powerful ESP32 system on
a chip (SoC). The ESP32 is a powerful dual-core microcontroller with
integrated Wi-Fi and Bluetooth capabilities, making it suitable for a wide range
of applications from simple prototyping to complex IoT deployments.

Key features of the ESP32 Dev Kit v1 include:

 Dual-core Xtensa® 32-bit LX6 microprocessor, operating at a frequency
of up to 240 MHz.

 Integrated 520 KB SRAM.
 Built-in 2.4 GHz Wi-Fi (802.11 b/g/n) and Bluetooth (v4.2 BR/EDR and

BLE) capabilities.
 30 GPIO pins (input/output), which can support a variety of peripheral

functions such as UART, SPI, I2C, etc.
 2 analog to digital converters (ADCs) with 12-bit resolution.
 2 digital to analog converters (DACs) with 8-bit resolution.
 3 UART interfaces.
 Integrated LiPo Battery Charging Circuit.

ESP32 Dev Kit v1 Pinout:

The ESP32 Dev Kit v1 features a number of GPIO pins that support a

variety of functions. Key pins include:

 -3V3 (3.3V): Power supply pin (3.3V). Provides the power supply to the
chip and other components on the board.

 GND: Ground pin.
 EN: Reset/Enable pin. Pulling this pin LOW resets the chip.
 VP / VN: ADC1_CH7 (GPIO36) / ADC1_CH6 (GPIO39) respectively.
 RXD0 / TXD0: UART interface. RXD receives data, TXD transmits data.
 IO21 / IO22: Typically used for I2C communication (SDA / SCL

respectively).
 IO19 / IO23: Typically used for SPI communication (MISO / MOSI

respectively).
 IO18: Typically used for SPI communication (SCK).
 IO5: Typically used for SPI communication (CS).
 A0 – A3: Analog pins.
 IO25 / IO26: DAC1 / DAC2 respectively.

The specific functions of these pins can be customized through software

configuration, giving you a lot of flexibility when designing your own projects.

The ZMPT101B module is a voltage transformer ideal for measuring AC

voltage. It can transform the AC signal into a smaller amplitude signal. On the
other hand, the ZHT103 is a current sensor module that can be used to measure
AC current.

16x2 LCD display:
In this project, I also used a 16x2 LCD display, which is an alphanumeric

display that can show up to 32 characters in two lines (16 characters each). It is
connected to the ESP32 using an I2C module, a simple, reliable communication
protocol, allowing the LCD to receive data from the ESP32 over just two wires.
The I2C bus uses two lines: a serial data line (SDA) and a serial clock line
(SCL). SCL stands for Serial Clock. It's one of the two signals used in the I2C
communication protocol, the other being the Serial Data (SDA) line. In I2C
communication, the SCL line is used to synchronize all data transfers over the
I2C bus. It's controlled by the master device, which generates the clock signal.

1.1 Emon Library
The Emon library is used. This library has been designed to make energy

monitoring easier by providing calibration and phase correction for AC power
measurements. The library calculates real power, apparent power, power factor,
Vrms, and Irms.

1.2 LiquidCrystal_I2C Library
The LiquidCrystal_I2C library is used to control the LCD display via I2C

communication. This allows us to write to the display and control the backlight
and cursor position, among other things.

2. Component Interconnections:

As shown in the wiring diagram above, the ZMPT101B module is
connected to the ESP32 to measure the AC voltage.

The ZHT103 module is also connected to the ESP32 to measure AC

current.

The LCD display module is connected to the ESP32 using an I2C

module, allowing it to display voltage, current, and power readings.

The code handles the interaction between these components, collecting
measurements from the voltage and current sensors and outputting the results to
the LCD display.

3. Working:

1. Library and Objects Initialization:
At the top, the necessary libraries are included, and a

LiquidCrystal_I2C object (lcd) and an EnergyMonitor object (emon1) are
initialized. The LCD has 16 columns and 2 rows, and it uses the I2C
address 0x27.

2. Setup:

In the setup() function, serial communication is initiated at a baud
rate of 9600 for debugging purposes. The LCD is also initialized and a
start-up message "AC Power Meter" is displayed. The `emon1.voltage()`
and `emon1.current()` methods are used to set the calibration values for
the voltage and current sensors.

3. Main Loop:

In the loop() function, the following sequence is repeated

continuously:
 The string "Sequence: I+V,P" is printed on the LCD.
 RMS voltage and current are calculated using `emon1.calcVI()` for

voltage and `emon1.calcIrms()` for current.
 The calculated voltage and current are multiplied to obtain the

power in watts.
 The RMS voltage, current, and power are displayed on the LCD, one

at a time, with a 1-second delay between each display.
 The RMS voltage and current values are also sent to the serial

monitor.

The lcd.print() and lcd.setCursor() functions are used to control what is
displayed on the LCD and where it is displayed. The Serial.print() and
Serial.println() functions are used to send data to the serial monitor. The
delay() function is used to create a pause between different readings, and
lcd.clear() is used to clear the LCD before displaying new data.

3. Code :

// Include necessary libraries
#include <LiquidCrystal_I2C.h>
#include "EmonLib.h"

// Declare and initialize display characteristics
int lcdColumns = 16;
int lcdRows = 2;
LiquidCrystal_I2C lcd(0x27, lcdColumns, lcdRows);

// Create an instance of EnergyMonitor
EnergyMonitor emon1;

// The setup function runs once when you press reset or power the board
void setup() {
 // Open serial communications and set the baud rate to 9600 bps:
 Serial.begin(9600);

 // Initialize the LCD
 lcd.init();
 lcd.backlight();
 lcd.cursor_off();

 // Print a start-up message
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("AC Power Meter");

 // Wait for 1 second
 delay(1000);

 // Set calibration values for voltage and current sensors
 emon1.voltage(35,366, 0);
 emon1.current(34, 1.100999); // Current: input pin, calibration.

 // Clear the LCD for next messages
 lcd.clear();
}

// The loop function runs over and over again forever
void loop() {
 // Print sequence
 lcd.print("Sequence: I+V,P");

 // Calculate Vrms and Irms
 emon1.calcVI(20, 2000);

 double Vrms = emon1.Vrms;
 double Irms = emon1.calcIrms(2000); // Calculate Irms only

 // Calculate Power
 float watt=(Irms*Vrms);

 // Clear the LCD for next messages
 lcd.clear();

 // Print Vrms on the LCD
 lcd.setCursor(0,0);
 lcd.print("Vrms:");
 lcd.setCursor(6,0);
 lcd.print(Vrms);
 lcd.setCursor(14,0);
 lcd.print("V");

 // Print Vrms on the Serial Monitor
 Serial.print(Vrms);
 Serial.print(" V, ");

 // Print Irms on the LCD
 lcd.setCursor(0,1);
 lcd.print("Irms:");
 lcd.setCursor(6,1);
 lcd.print(Irms);
 lcd.setCursor(11,1);
 lcd.print("A");

 // Print Irms on the Serial Monitor
 Serial.print(Irms);
 Serial.println(" A, ");

 // Wait for 1 second
 delay(1000);

 // Clear the LCD for next messages
 lcd.clear();

 // Print Power on the LCD
 lcd.setCursor(0,0);
 lcd.print("Power:");
 lcd.setCursor(8,0);
 lcd.print(watt);
 lcd.setCursor(15, 0);
 lcd.print("W");

 // Wait for 1 second

 delay(1000);

 // Clear the LCD for next messages
 lcd.clear();
}

4. Conclusion

From this experiment, we have gained valuable experience in measuring
AC voltage and current using the ESP32 along with the ZMPT101B and
ZHT103 modules. We learned how to display these readings on an LCD display
using the I2C communication protocol. We also became familiar with the
EmonLib library, which simplifies the process of measuring power in AC
circuits. This project can serve as a basis for many applications, including
energy management systems, home automation, or condition monitoring in
industrial settings. It also highlights the versatility and power of the ESP32 in
interfacing with various hardware modules and sensors.

