
Kate Mosle (km662)
MAE 3780 Individual Project

Final Report
Fall 2021

SlapJack Jr.

I. OVERVIEW

SlapJack Jr is a single-player version of a children’s game where one player extends
their hands forward, roughly at arm's length, with their palms down. The other player's
hands, also roughly at arm's length, are placed, palms up, under the first player's hands.
The object of the game is for the second player to flip their own hands over the
opposing player’s and slap the back of their opponent's hands before they can pull them
away. If the slapping player is able to hit their opponents hands, then they earn a point.
If the slapping player misses, then their opponent earns a point.

The computer is only able to play as the slapping player, and has a single actuating
arm, controlled by a positional servo motor and equipped with an HC-SR04 ultrasonic
distance sensor in the ‘hand’. The distance sensor detects whether the player’s hands
are in place or if they have been pulled away. The arm is fixed at a 90 degree angle and
has a 180 degree rotational range. There are 3 LEDs of each color at the top of the front
panel to denote the points earned by each player. The computer will run LED chase
programs when the player wins or reaches ‘game over’, at which point the scores will
reset and the player can continue playing. The potentiometer allows the player to set
the difficulty of the game, which is determined by the speed at which the arm moves
and which strategies the computer uses. The two strategies available are ‘feint’, where
the arm moves to a random angle between 0 and 100 degrees, or ‘full turn’, where the
arm will move the full 180 degrees to try to score a point. The computer will only make a
play from the 0 degree position if the player’s hand is in place over the sensor.

II. DESIGN CONSIDERATIONS

Given more time, I would add a 3D printed cover for the potentiometer, so that users do
not have to use the screwdriver. The LEDs could have been attached to the other side
of the back panel such that the wires were hidden between the front and back panel,
with the wires coming out the hole of the back panel to connect to the breadboard, for a
cleaner final design. Future design modifications that would also fit within the given
budget include the addition of a second arm. A single servo was able to handle the
actuation of the arm without any additional mechanical advantage, so a second arm
could be added with another ultrasonic sensor with some calculation to ensure the
servo is not overloaded. A second ultrasonic sensor was already purchased for this
iteration of the design, so the extra cost would only be $1.93 for another 4-wire F-F
harness and M-M header as there is enough cardboard and popsicle sticks in this bill of
materials for a second arm. The arms could be controlled independently through the
use of the positional and the 360 continuous rotation servos, which would not add to the
budget cost, but would require modification of the Arduino code. For a more refined final
product, I would consider using laser cut acrylic plates rather than the cardboard for the
panels, base and supports. However, the additional cost of the acrylic and RPL
manufacturing did not make this an option with the current budget constraint. I would
also explore using a different, smaller proximity sensor, as the HC-SR04 is quite heavy.
One potential option would be to use IR sensing, which would likely fit within the current
budget but appropriate parts would need to be sourced. Aesthetic modifications within
the current budget could include the use of stronger tape which would allow the builder
to use less while still ensuring a secure structure. I would also recommend soldering as
many components together as possible as most issues that arose during the build were
due to loose connections. The guidelines for this project did not allow for major
modifications so no soldering was done in this version.

III. ASSEMBLY INSTRUCTIONS

1. Fix the Arduino board and large breadboard to an unaltered piece of cardboard
using tape. The USB port on the Arduino should be at one edge of the panel and
parallel with the long dimension. The breadboard fit best when the center
channel was aligned with the short dimension of the panel (refer to Figure A6).

2. Place potentiometer on mini breadboard (see Figure A6)
3. Use Figures A2a, A2b and A2C from the appendix and box cutter to cut the

cardboard for the front and back panels and 2 supports. Make the slits in the
bottom of the panels approximately 1/16” wide in order to fit snuggly with the
supports.

2

4. Insert supports into slots on the back panel and fix with tape.
5. Secure the assembled panel to the front edge of the base (in front of the

breadboard) from step 1 using tape.
6. Wire LEDs using 4-wire harnesses and 3-pin headers; connect to the large

breadboard. Align LEDs along top of back panel and fix with tape so they are
visible over the top of the panel (see Figure A6)

7. Attach the servo to the front panel using included screws. Add a straight bar
attachment to the servo and secure it with the included screw (see Figure A4).

8. Use Figure A2d and scissors to cut 3 popsicle sticks to appropriate dimensions
and make holes. Assemble the 2 sticks with cutouts to form a window and secure
the ultrasonic sensor into the window so it is flush, secure with tape.

9. Place the popsicle sticks at 90 degrees and secure at the angle with tape (see
Figure A6).

10.Secure single popsicle stick to servo attachment using 2 included screws through
small premade holes in popsicle stick.

11. Connect a 4-wire harness to the ultrasonic sensor and thread wires through the
small square hole on the front panel. Secure wires to popsicle sticks fixed to the
servo using tape, leaving some slack to ensure wires do not disconnect.

12.Thread sensor harness and servo wires through hole in back panel and wire to
large breadboard using headers.

13.Connect the front panel to the back panel using 2 popsicle sticks as spacers and
align slots of the front panel over supports. Secure with tape.

14.Complete wiring using circuit diagram in Figure A1. LEDs connected to pins 4
and 11 should be in the center and LEDs connected to pins 6 and 13 should be
on the outside of the LED setup. See additional diagram in Figure A5.

15.Assembly the 6V battery pack and connect it to the large breadboard. Connect
the Arduino to a computer using the USB cable and download the Arduino code
from the Appendix.

Note 1: reference figures for assembly located in Appendix

Note 2: final assembly modifications may be needed to align the popsicle stick attached
to the servo in the vertical position with the sensor facing up when the device is first
turned on (the servo will move to the 0 degree position). Modify by using a screwdriver
to loosen the screw securing the straight bar attachment to the servo, rotate
appropriately and reattach (accessible through large hole in the middle of the single
popsicle stick of the arm).

3

IV. OPERATIONAL INSTRUCTIONS

After the device is assembled according to the instructions listed above, use the
screwdriver to turn the potentiometer to the fully clockwise position to make sure the
game is paused. The Arduino code establishes 4 equal zones on the potentiometer:
pause, easy, medium, and hard. Once the player is ready, the potentiometer can be set
to easy, medium or hard mode by turning the knob counterclockwise until the desired
zone is reached. The computer will always wait until the player places their hand within
range of the sensor, about 2 inches above (level with the servo). The computer will
randomly select between two playing strategies: feint and full turn. Hard mode will have
a higher probability of playing a feint and move with a higher angular speed, and easy
mode will be more likely to play a full turn and move with a slower angular speed. On a
feint, the servo will rotate to a random angle between 0 and 100 degrees, before
returning to the 0 degree position. The player cannot score a point with the strategy, but
if they pull their hand away from the sensor then the computer will get a point. On a full
turn play, the servo will turn a complete 180 degrees before returning to the 0 position.
The computer will score a point if the turn is completed before the player can pull their
hand away. If the player can pull their hand away before the turn is complete, then they
will earn a point. The player must completely remove their hand from above the sensor
to be considered ‘pulled away’, and can do so by either moving directly back from the
device or to the left. Moving their hand to the right may lead the arm to hit the player’s
hand. The game will continue until either the player or the computer is able to achieve 3
points. The LEDs will flash to indicate the winning side, and then the ‘game over’ LED
light chase sequence will play. After the sequence is complete, the score will reset to 0
for both the computer and the player, the servo will return to the 0 position, and a new
match begins. The player can change the game mode at any point by adjusting the
potentiometer.

4

APPENDIX

A. BILL OF MATERIALS

Table 1. Full list of all materials used for this project. (*) denotes a part included in the kit
provided by course staff. (x) denotes parts that were purchased/ordered. (-) denotes
parts/quantity that were scavenged.

Item Name Vendor Part Number Quant.
Ordered

Quant
.Used

Unit Cost

4-wire harness
F-F

Digikey - 1528-1961-ND 4 4 $0.40

3-pin header
M-M

Digikey * (2)
- (4)

3M156516-03-ND 6 6 $0.58

100 k trimpot Jameco * 2291079 1 1 $0.97

MicroServo
Positional +
attachments

DFRobot * SER-0006 1 1 $3.30

Arduino Uno Digikey * 1050-1024-ND 1 1 $20.90

Wire Kit Amazon:Austor * B07PQKNQ22 1 1 $2.17

Tongue
Depressor

In-Stock
Supplies

x 10 8 $0.03

Cardboard
(5”x7”x1/16”)

In-Stock
Supplies

x 10 6 $0.11

LED, red Jameco * 697602 3 3 $0.05

LED, blue Jameco - 2283655 3 3 $0.05

Resistor, 1 k Digikey * (5)
- (1)

1.0kQBK-ND 6 6 $0.01

HC-SR04
Ultrasonic
Sonar Distance
Sensor

DigiKey x 2234-HC-
SR04-ND

2 1 $3.95

Breadboard Newark * 79X3922 1 1 $2.71

Mini
breadboard

Newark * 98AC7296 1 1 $1.05

5

4-AA battery
holder

Jameco * 216187 1 1 $1.75

AA batteries McMaster-Carr * 71455K58 4 4 $0.40

USB Cable A
to B

Monoprice * 39918 1 1 $1.09

Small
screwdriver

QLP * Custom imprint 1 1 $ -

Blue Painters
Tape

- 1 1 $ -

Box cutter - $ -

Scissors - $ -

Total Cost from Scratch: $50.28

Total Budget (purchased/scavenged): $13.23

B. CIRCUIT DIAGRAM

Figure A1. Circuit diagram. All grounds are connected to a single common
ground. Pins 4, 5, 6 correspond to blue LEDs. Pins 11, 12, 13 correspond to red
LEDs.

6

C. CAD FILES & DIAGRAMS

(a) (b)

(c) (d)

Figure A2. CAD drawings for (a) back panel, (b) front panel, (c) supports, and (d) arm
components. Dimensions are listed in inches.

7

Figure A3. Assembled mechanical structure.

Figure A4. Servo assembly with straight bar attachment.

Figure A5. LED-pin diagram..

8

Figure A6. Full assembly with ultrasonic sensor, potentiometer, actuator, LEDs, and
arduino & breadboard place markers.

9

D. ARDUINO CODE

//SlapJack

//Goal: beat the player by rotating 180 degrees before the player can pull their hands
away,
// player can earn points by pulling their hands away before the arm makes a full turn.
Computer
// can also earn points by making the player pull their hands away on a feint

//proximity sensor checks if players hands are in place
//game mode determined by potentiometer position (off, easy, medium, hard)
//computer can either feint to a random angle or make a full turn (harder game mode
means computer is more likely to feint)
//computer moves faster at harder game modes

//first to earn 3 points wins, game resets after gameover LED sequence

#include <Servo.h>

Servo servo1;
const int trigger = 8;
const int echo = 7;

float dist;
int speed; //set game mode (speed)
int outofrange = 5; //approx distance between US sensor and player's hands

int computerscore = 0;
int playerscore = 0;

void setup()
{
Serial.begin(9600);

//Servo: signal to pin 2, pulse width limits (500,2500)
servo1.attach(2,500,2500);

//Distance Sensor: input - 7, output - 8
pinMode(trigger,OUTPUT);

10

pinMode(echo,INPUT);

//LED (red-computer)
pinMode(13,OUTPUT);
pinMode(12,OUTPUT);
pinMode(11,OUTPUT);

//LED (blue-player)
pinMode(6,OUTPUT);
pinMode(5,OUTPUT);
pinMode(4,OUTPUT);

servo1.write(0); //always start at 0
Serial.println("setup complete");

}

void loop()
{

int mode = analogRead(A0); //potentiometer gives number between 0-1023

//Off
if (mode < 255)
speed = 0;

//Easy Mode
else if(mode < 511){
speed = 3;

}
//Medium Mode
else if(mode < 765){
speed = 2;

}
//Hard Mode
else{
speed = 1;

}
Serial.println(speed);

//choose strategy based on game mode if player is ready (hard mode more likely to
feint)

11

if (speed!=0 && inRange()){
Serial.println("play");
int randstrat = random(11);
if (randstrat <= speed+3){
fullturn(speed);
Serial.println("full");

}
else{
feint(speed);
Serial.println("feint");

}
}
//time delay before next move (1-2.5 sec)
delay(500*random(2,6));

}

void feint(int speed){
//start from 0, turn to final angle at game speed, check for hands, return to 0

//generate random final angle position between 0 and 100 (incomplete rotation)
int ran = random(0,100);
for (int i=5;i<=ran;i=i+5){
servo1.write(i);
delay(6*speed);

}
//check if player pulled their hands back
if(!inRange()){
pointComputer();

}
//reset position
delay(500);
for (int j=ran-3;j>=0;j=j-3){
servo1.write(j);
delay(40);

}
servo1.write(0);

}

void fullturn(int speed){
//start from 0, make full 180 turn at game speed, check for hands, return to 0

12

//full turn slightly faster than feint
for (int i=0;i<=180;i=i+5){
servo1.write(i);
delay(3*speed);

}
//check for players hands
if(inRange()){
pointComputer();

}
else{
pointPlayer();

}
//reset position
delay(500);
for (int j=180;j>0;j=j-3){
servo1.write(j);
delay(40);

}
servo1.write(0);

}

bool inRange(){
//checks for the players hands, returns true if their hands are in place
digitalWrite(trigger,LOW);
delayMicroseconds(5);
digitalWrite(trigger,HIGH);
delayMicroseconds(10);
digitalWrite(trigger,LOW);
dist=pulseIn(echo,HIGH); //returns length of pulse in microseconds (dist/58 for cm)
Serial.println(dist/58);
return dist/58 <= outofrange;

}

void updateScoring(int p_score,int comp_score){
//change LEDs to match the current score
if (comp_score==1){
digitalWrite(11,HIGH);
digitalWrite(12,LOW);
digitalWrite(13,LOW);

13

}
else if (comp_score==2){
digitalWrite(11,HIGH);
digitalWrite(12,HIGH);
digitalWrite(13,LOW);

}
else if (comp_score==3){
digitalWrite(11,HIGH);
digitalWrite(12,HIGH);
digitalWrite(13,HIGH);
gameOver();

}

if (p_score==1){
digitalWrite(4,HIGH);
digitalWrite(5,LOW);
digitalWrite(6,LOW);

}
else if (p_score==2){
digitalWrite(4,HIGH);
digitalWrite(5,HIGH);
digitalWrite(6,LOW);

}
else if (p_score>2){
digitalWrite(4,HIGH);
digitalWrite(5,HIGH);
digitalWrite(6,HIGH);
gameOver();

}
}

void pointComputer(){
//increase computer score by 1, change LEDs
computerscore++;
updateScoring(playerscore,computerscore);

}

void pointPlayer(){
//increase player score by 1, change LEDs
playerscore++;

14

updateScoring(playerscore,computerscore);
}

void gameOver(){
// play LED game over sequence, reset scores
digitalWrite(11,HIGH);
digitalWrite(12,HIGH);
digitalWrite(13,HIGH);
digitalWrite(4,HIGH);
digitalWrite(5,HIGH);
digitalWrite(6,HIGH);
delay(2000);
digitalWrite(11,LOW);
digitalWrite(12,LOW);
digitalWrite(13,LOW);
digitalWrite(4,LOW);
digitalWrite(5,LOW);
digitalWrite(6,LOW);
if (playerscore<computerscore){
for (int i=1;i<=5;i++){
digitalWrite(13,HIGH);
digitalWrite(12,LOW);
digitalWrite(11,HIGH);
delay(250);
digitalWrite(13,LOW);
digitalWrite(12,HIGH);
digitalWrite(11,LOW);
delay(250);

}
}
else{
for (int i=1;i<=5;i++){
digitalWrite(6,HIGH);
digitalWrite(5,LOW);
digitalWrite(4,HIGH);
delay(250);
digitalWrite(6,LOW);
digitalWrite(5,HIGH);
digitalWrite(4,LOW);
delay(250);

15

}
}
digitalWrite(11,LOW);
digitalWrite(12,LOW);
digitalWrite(13,LOW);
digitalWrite(4,LOW);
digitalWrite(5,LOW);
digitalWrite(6,LOW);
for (int i=1;i<=5;i++){
// light chase victory
digitalWrite(13,HIGH);
delay(250);
digitalWrite(12,HIGH);
digitalWrite(13,LOW);
delay(250);
digitalWrite(11,HIGH);
digitalWrite(12,LOW);
delay(250);
digitalWrite(4,HIGH);
digitalWrite(11,LOW);
delay(250);
digitalWrite(5,HIGH);
digitalWrite(4,LOW);
delay(250);
digitalWrite(6,HIGH);
digitalWrite(5,LOW);
delay(250);
digitalWrite(6,LOW);

}
playerscore = 0;
computerscore = 0;

}

16

