
Bluetooth Speaker

What to do

now?

Messing around

with Arduino and Pi

Blinking LED

What do I want

it to play?

Bluetooth

START

Switches and

LEDS

A bit of RF

comms (I2C)
NEOPIXELS!!!

PI Music

Servers

(Volumio)

Aux

Chromecast

Phono

NEOPIXELS!!! NIXIE TUBES

Screw that! 180V!!!

KISS!!!

Combined L&R VU

Meter/Music

Visualizer (NANO)

Run out

of

memory

Combined

L&R circuit

built

Added simple

matrix display

functions

Added menu

system to

select

different

patterns

Refactored code

Still out

of

memory

Bought in his

bigger brother

(UNO)

Decided to

separate

functions

Cheap NANO

knockoffs

dedicated to

sample L & R

audio signal

UNO to be

Master and

get I2C data

from samplers

Refactored code

Implemented

I2C comms

(So far so

good)

Added more

patterns and

colour options

Run out

of

memory

Refactored code

Implemented

StateMachine

Code too long

and

unmaneageable

Bit the bullet

(MEGA!!!!)

Implemented

CPP Classes

Refactored code

Started IDE

Tabs

Kept looking

at samplers.

Decided they

were too ugly!

Decided to

GERBERise

them

Downloaded

Fritzing and started

playing

Few hours

managed to

design PCB

Ordered PCB

online (OSH)

Not cheapest

but v easy and

they are

PURPLE!!!

Reconsidered,

choice however

they were

PURPLE!!!

Superficially from

the top they

looked ok(ish)

however like my

wife's tidying up, a

small scratch

under the surface

exposed a horror

DELIVERY APPROACH/”PROCESS”

Switch from UNO

LCD/Switches

shield to dedicated

switches and OLED

Quick Stock Take:

1) 2 NANO knock offs

acting as L & R

samplers

2) MEGA (Real McCoy)

acting as master

controller

3) I2C comms sending

data from samplers to

Master

4) Crude state

machine/menu system

with 4 push buttons +

nice little OLED menu

display

<TICK!>

They’re only bloody purple!!!!

Re do the samplers

when the boards

arrive and job

done!

Stop, now start with

the audio selection

bits

Now start with the

Audio bits

What does it

need to do?

Power On/Off

(+ Supply)

Display

Chromecast

(Spotify/

YouTube/

Netflix/etc)

Select input

sources and

route to

amplifier

But leave a

powered

standby circuit

(WIFI control?)

Pick these

up later

(below)

How far we have

come that this

caught me out,

not since the days

of Bill Gates

telling us that we

would never need

more than 16K

did I have to think

about memory

use! But I kinda

liked it! J

Come back

to this later

(below)

Cheap 7" (No

touchscreen) from

eBay

“Borrowed”

Chromecast

from bedroom

TV

Plugged it all

in and worked,

however now

need to break

out the audio

“Where’s the

f*@ing Netflix

gone?”

Quickly returned

Chromecast to its

correct place with

shrift rebuke from

better half

Top-Tip
Order lots of parts

from WISH in one go

and turn everyday into

Christmas as they

deliver them piece by

piece over the next 3

months!

Note to self: Need

to be more careful

and shneaky

when “borrowing”

things

Ordered HDMI/

Audio splitter box &

4-into-1 Relay

Audio controller

Challenge:

Lots of

buttons to be

controlled by

4 only thru

menu

MAIN MENU HAS:

1) Select/Menu

2) Back

3) Up

4) Down

Don’t want to add any more than these 4 buttons to

the exterior of the speaker so need these buttons to

control all other functions via state machine and

Mega digital GPIO pins (with digital or mechanical

relays)

Screen has: Source, Power, Menu, Up, Down

4-into-1 Relay Audio Controller has: Source

(sequential step through inputs which I don’t like, I

want to directly select input from MAIN MENU.

Audio splitter

arrived in pieces.

Soldered it all

together and

worked

Plan to

replace

splitter

controller

board with

menu driven

GPIO control

abandoned

Removing the controller board introduced

massive HUM into circuit which was beyond my

capability to resolve. May come back to this,

however decided to add dedicated button to

control function and extend the LEDS to highlight

on “control” panel

Clock, that’s

what it

needs!!!

Get DS1307 RTC

going and

integrated onto I2C

bus

Arduino

started

hanging

2 days of

diagnostics

F’it out?

Issue resolved

when powered

correctly!

Digital Clock

display working

Very nearly

Input audio

selector working

Still need to

add AUX and

Phone

Issue NOT:

1) DT1307 Module

2) Differences between UNO and Mega

3) My Code

4) Contention on I2C bus (which can be busy with

VU and Clock data

Issue WAS:

DS1307 powered from breadboard power bus.

Once changed to direct from Mega 5V and GND

no problems!

So where are we now?

1) Audio Input Selection

2) Music synced (Crudely)

 LED Matrix display

 LED Strip display

3) Clock display (Matrix and

Strip)

4) Pattern selection

5) Colour selection

Now: Get out the craft knife,

foam board and hot glue gun

(my new BFF) and start laying

out/prototyping where is will all

go.

Stop and Rethink!!!

There are too many components in

the delivery chain here, and each has

its own opportunity to fail/mess

around. Not happy with the menu

interface as its very clumsy! Don’t

like the Chrome->HDMI Splitter

arrangement. Additionally code

getting very close to Mega flash limit,

need to rationalise

SIMPLIFY!!!

Going to run out of

memory and be

forever identifying

where issues are in

the system food

chain

Right Stephen, how we

going to simplify this!!!

Frustration and

very-likely trip to

the bin!

We have all gotten so used to unlimited resources

these days (gone are the 16K limits if we needed it or

not, thank you Mr Gates, and the use of NEAR and

FAR pointers!). In the age of bloatware you can keep

layering code on top of code and let the hardware

handle it. Arduino enforces very strict limitations.

This is refreshing (in a peculiar kind of way) as it

forces efficiency of code and functionality.

He says despite the issue now of throwing away all the

bells and whistles and redesigning the control

interface.

 Remove all local

control of lights

 Change “front end”

to simplified all in

one solution

 Change base

MicroProcessor to

Wemos Mega +

NodeMcu combined

platform

Use MQTT to control selections,

puts all “intellegence” up into

MQTT server, removing it from

Arduino

Replace “music” machine with

cheap Android Car Head Unit.

Does it all, including BT, Spotify,

YouTube, etc, etc

Adding WiFi requires

appropriate interface. Wemos

has single board with NodeMCU

on it already(ish)

Start MQTT

Start Head

Replacement

Start Adding WiFi Use rPi as MQTT/

NodeRed server

Install

Mosquitto

Learn

NodeRed!

Build Flows and

Dashboard in

NodeRed to enable

lights to be

controlled by

sending out MQTT

commands

Learn JSON!
Learn

Javascript!

Dashboard Created

and MQTT

messages being

sent out!

Install new board

manager for

NodeMCU board

Simple code to

receive MQTT

subscribed

messages and

send these out (in

JSON structure)

over Serial Port for

Mega to receive

and decode.

Test connecting to

rPI MQTT server

and receiving MQTT

messages

Will smarten this up to enable the NodeMCU module to be

used generically (i.e. configurable MQTT server/port/etc and

WiFi config details). Currently hardcode into the config.

Port the Arduino

Mega code into the

Wemos Mega (no

changes)

Rip out all the

menu system

Rip out the

RTC code (will

use MQTT to

provide time if

required)

Add code to read

Serial3 (from

NodeMCU) and

parse the message

Try and work out

why its not

working!!! I can see

NodeMCU sending

JSON, but appears

in Mega as rubbish

Whilst the obvious Baud rates were ok, 9600, still got

corruption. Reduced the BAUD down to 1200 which made

things better, however still having problems with some of the

longer “topic” strings. Seems I was on the cusp of the serial

port timeout, so amjority where ok, but a couple of messages

pushed it over. Updated the port timeout and reliability

ensued. Still cannot understand why the Baud rate needs to

be so low, not a problem for this app, but not very good!!!

Especially as on the Wemos, the Serial line is physically

internally routed from the NodeMCU over short PCB copper

line (not even jumper cables!). Ho-hum….

Upped the

timeout and

lowered the

Baud and

seems to be

working now

Tested MQTT

messages

generated from

NodeRed

dashboard received

by Mega (via

NodeMCU) and

correct light

patterns/colours

changed

Purchased $50

head unit from

Wish/Bangood/

wherever

Low expectations

surprised as was

pretty good!

Purchased cheap

car speakers from

Wish/Bangood/

wherever

Low expectations

realised as they

were pretty crap!

Decided that whilst

audiophile quality

was not a

requirement, the

constant

disappointment

from the speakers

would annoy me

too much

Bought 2nd hand

pair of Pioneers

from eBay

Quality much

better!

Replaced the Car

Centric dashboard

(Speed, SatNav,

Reversing Camera,

etc), with more

standard Android

(mobile type)

desktop

Wired it all up and

tested! All good.

Build the Enclosure

Construct the

framework

Edge the frame

with rubber strip to

provide airtight

speaker enclosure

Order and cut the

Polycarbonate

(4mm sheets)

Mirror (badly the

first sheet)

Decided it was so

bad that created

second sheet

(better but not

perfect!)

Installed both to

create magic mirror

effect on matrix

(nice)

Wrap entire frame

in 6mm flexiply

(lovely stuff!)

Lots of sanding and

vanishing

Finalised and filled

front panel

Install all

electronics and test

We’re DONE!!!!

For now…….

	20191210-Instructable-ProcMap.vsdx
	Page-1

