
1-Multitasking with ladder programming on LDmicro4.2 for MEGA

2560 via USB

1-0 The machines to program:

1-1 Settings on LDmicro:

1-2-Program the ladder: a translation of the state diagram
I have got some working problems with LDmicro to Mega2560 pin maping:

-PE0 and PE1 for I1 and I2 don’t run as digital I/O even with some limited port manipulation on the

software. So I used a switch to link this pins to PC1 and PD7

-PF0, PF1 and PF7 don’t run as outputs even with some limited port manipulation on the software. So I link

with a wire: PK0 to PF0, PK1 to PF1 and PK2 to PF7.

-and then, PL5 link to PB6 and PL3 link to PB7 because LDmicro doesn’t allow you to use PWM on PL5 and

PL3 ??!!

I choose on purpose 4 different timers with no link to demonstrate the multitasking process.

On State10 every output must be reset and all the states of the slave machines too.

A rising edge on State11 event (OSR function) launches the 3 slaves.

I use 2 analog inputs POT1 on PK0 and POT2 on PK1 to control PB6 linked to PL5 and PB7 linked to PL3.

The machine 1: blink O1

The machine 2: blink O2

The Machine 3: RUN/STOP O6 and switch ON O12 if I18 is pushed within the State41.

The list of INPUT/OUTPUT addresses on the microcontroller and the internal relays used in the ladder.

1-3 Compile the program in .hex file:

1-4 Launch Xloader downloader:

Because the Mega board is uploaded with an USB wire not USBasp, you can’t use Kazhama anymore to

download the .hex file. Xloader does the job.

Select the good Microcontroller:

Load the hex file you have just created:

Switch off the 32I/O board on RUN (to connect the pins D10, D11, D12 and D13 to the digital outputs, here

they are not the SPI bus).

Select the good COM port and Upload:

That’s it and enjoy.

2-Multitasking with programming on Arduino IDE 1.8.2 using SM

library:
In order to use pins 0 and pin 1 on the MEGA 2560 board you need to manipulate the port E with this trick:

DDRE = DDRE | B00001001; //D0 as output and then input, unless: not running

DDRE = DDRE | B00001000;

You need also to disable Serial communication, disconnect all the links needed on LDmicro and put the

switches as advised in the supplied guide.

3-Multitasking with programming on Arduino IDE 1.8.2 using SM

library and supervising on AdvancedHMI:
You need to switch on O1 to pin24 in order to disconnect D4, a pin used by the Ethernet shield.

The shield is only connected to the MEGA 2560 board by:

 -pin D4

 -pin D10

 -ICSP connector (SPI bus, GND, +5V).

The control panel is made of:

 -an Emergency mushroom head button

 -a light to know the emergency button state

 -a light to know if we are on emergency state

 -a blinking light for Machine1

 -a blinking light for Machine2

 -a light for Machine3 switched ON/OFF with the push-buttons RUN and STOP

 -a light switched ON/OFF with a selector switch during the run of Machine3 only

 -2 digital panels meter for 2 analog inputs

 -2 gauges for 2 analog outputs

When you push the emergency: the master machine stays in state 10 (Reset of all the system) but it’s not

safe because at the same time the power must be switch off on the actuator (EMERGENCY RULE) and it’s

only done with the real mushroom push-button.

When you close the mainform of advancedHMI, the system is reset on state10.

The modified code of the Mainform:

The modified arduino sketch:

4-Multitasking with programming on Yakindu and using Arduino

libraries inside:

4-1 Create the project:

Next

Next

Select the good Timer: Timer1 16 bit, if not you will have troubles to upload.

Finish

Yes

File MEGA2560multitasking Created:

4-2 Drawings:
Now draw your state diagram:

To prevent errors and test in local, some tricks to launch:

Sometimes you need to restart YAKINDU.

Draw the state diagram

I1 declared as integer if you don’t want a RE (rising edge) on the transition.

I2 declared as in event to use the RE function.

4-3 Generate the code:
Now generate the code:

Import Arduino libraries needed: SMlib in this case because I need the RE function. Put it in src-gen

Sometimes with Yakindu update the file xxx.sgen has an

error:

You just have to remove the quote of the cyclPeriod:

Build and clean the

project.

4-4 Complete the code:
Go to src/yourprojectConnector.cpp to modify the code to upload:

The modified and completed file:

init(): a part to declare Inputs and output. It’s like Setup().

raiseEvents(): A part for real inputs/transitions links

syncState(): a part for outputs/actions links. Sometimes the functions like “statemachine->get_o1()” or

else give errors, so you need to clean and rebuild the profect until it appears in src-

gen/MEGA2560multitasking.h file.

Build, clean and here remains an error on DDRE (I don’t know why but it works) and you can still upload

the program.

4-5 Upload the code:
Before uploading: create a driver

Next, complete:

Finish

The result, if it’s good:

5-Multitasking with programming on Yakindu using Arduino libraries

inside and supervising on advancedHMI:

5-1 Import needed libraries:
You need to import some libraries into your src-gen file in YAKINDU:

From a previous src-gen file project:

 If there are troubles in building with some imported library: correct #include <myLib> by
#include “myLib”

If a library includes folders, put all the files in the same YAKINDU folder: src-gen and don’t forget:

“save/clean/build” to correct each error.

To insert library put it in the src-gen folder or right click on src-gen/import files and select the

folder where is your library to add. Then call it in src/xxxConnector.cpp:
 #include "../src-gen/thelib.h"

5-2 Copy the previous project
If you work on a copy of a project, becarefull to change the target where the code is generated:

Some changes compared with the previous state diagram: add virtual HMI buttons

5-3 Modify and complete the generated code:
Use the switch to disconnect D4 (used by the Ethernet shield) and connect D24 instead (O1)

Upload it and launch the previous HMI you created (an exe file in the archives I gave to you):

And that’s it.

