Electronic Hardware Onboarding: Communication Protocols

Introduction

<u>Agenda</u>:

- 1. Logic Levels
- 2. Pull Resistors
- 3. Push-Pull & Open-Drain
- 4. Parallel vs Serial
- 5. UART
- 6. SPI
- 7. I2C
- 8. SD/MMC
- 9. PWM

<u>Goal</u>:

Understand the various ways embedded digital components communicate with one another

Logic Levels

<u>Intro</u>

- The binary ON (1) OFF (0) states of a digital circuits via voltage
- Different logic "levels" exists 5V, 3.3V, 1.8V referring to V_{DD} value (Need logic level shifting chips to convert between levels)

Thresholds

- V_{DD} Power supply voltage, max voltage
- V_{OH} Output High, minimum output voltage for high state
- V_{IH} Input High, minimum input voltage for high state
- V_{OL} Output Low, maximum output voltage for low state
- V_{IL} Input Low, maximum input voltage for low state
- GND Common voltage reference, lowest voltage
- Different per logic level! 5V, 3.3V, etc...

VDD 3.3V HIGH (1) 2.4V 2V ۷ін Floating-0.8V LOW (0) -0.5V GND

3.3V Logic Families (Based on 74LVT04 Hex Inverter)

Pull Resistors

Pull-Up

• A resistor used to pull a line up to voltage supply

<u>Pull-Down</u>

• A resistor used to pull a line down to ground

Pin States

- <u>Active High</u>: A high signal actives the system or specific function
- <u>Active Low</u>: A low signal actives the system or specific function (*Pin may be show with line over name Ex:* \overline{CS})
- <u>High Impedance</u>: A circuit that is not driven high or low and is floating, requires external circuit to change its state (*Impedance = Resistance + Reactance*)
- <u>Floating</u>: Undefined, achieved when pin isn't connected to V_{DD} or GND (Unintentional floating circuits may behave unexpectedly)

<u>Note</u>

• Large resistors lead to weak pull-ups and pull-downs.

VDD

DATA1D

DATA2D

Pull Down

Pull Up

3.3k

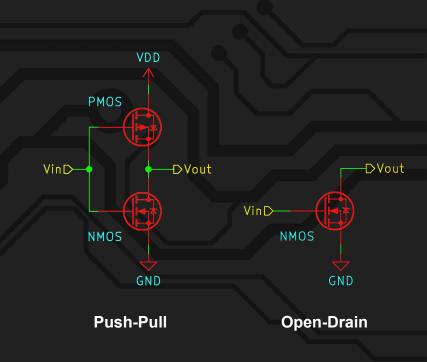
DATA1

DATA2

3.3k

GND

Push-Pull & Open-Drain


How do output pins change from high to low?

Push-Pull

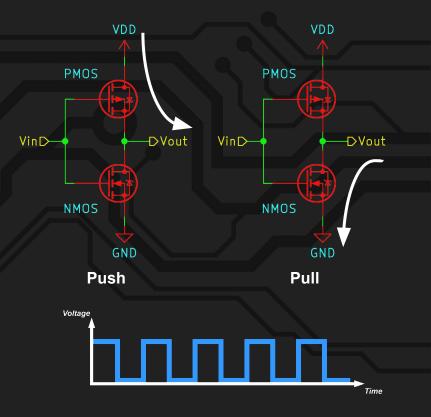
- Two transistors switch between load voltage and GND
- Commonly used for unidirectional lines (SPI, UART)

Open-Drain

- One transistors ties the output to GND
- An external resistor pulls the line high by default
- Commonly used for bidirectional lines (I2C)

Push-Pull

<u>Push</u>


- When the output pin is driven to 1 transistors
- "Sourcing current to the load"

<u>Pull</u>

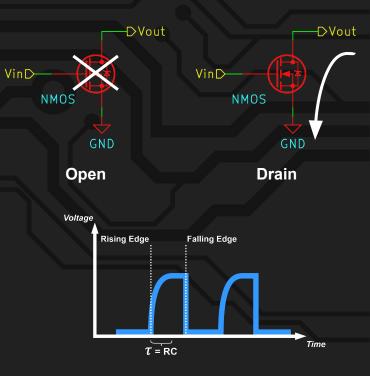
- When the output pin is driven to 0 by the transistors
- "Sinking current from the load"

<u>Notes</u>

• Consistently driven ≈ better performance (Sharper rising edge slope)

Open-Drain

<u>Open</u>


- Line is left floating and <u>pulled up by external resistors</u>
- High impedance (Hi-Z) state

<u>Drain</u>

- When the output pin is driven to 0 by the transistors
- "Sinking current from the load"

Rising Edge Slope

- Wires naturally have capacitance so when combined with pull-up resistors it creates a low pass filter leading to curved rising edges (*Transistors in Push-Pull have less resistance so faster rising edges*)
- More resistance = Slower rising edge speeds & more noise
- Less resistance = More power consumption

Parallel vs Serial

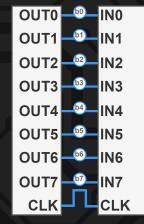
Parallel

• Each bit in a piece of data is transferred simultaneously

Serial

- Each bit in a piece of data is transferred sequentially
- Slower than parallel but requires less hardware connections

Synchronous


- A common clock is shared amongst all devices on the data bus
- Requires at least one extra wire

Asynchronous

• Data is transferred without a shared common clock

Baud Rate

- The speed data is transferred over serial
- No set limit as long as both devices operate at the same rate
- Standard Rates:
 - 9600, 1200, 2400, 4800, 19200, 38400, 57600, 115200

Synchronous Parallel

Serial Frames

Data Chunk

- The section where actual data is sent
- Variable length, depends on protocol

Synchronization

- <u>Start</u>: A flag used to indicate a new packet
- End: A flag used to indicate the end of a packet

Address (Sometimes)

• Data to indicate destination on a multi-device shared bus

Parity

• Low level error checking

Endianness

- The order bits are sent
- <u>Big-Endian</u>
 - Most Significant Bit (MSB) sent first
 - MSB stored at smallest memory address
- <u>Little-Endian</u>
 - Least Significant Bit (LSB) sent first
 - LSB stored at smallest memory address

Start Data	Parity End
------------	------------

UART: Universal Asynchronous Receiver/Transmitter

Protocol Signals

- <u>TX</u>: Transmit
- <u>RX</u>: Receive

Features

- Asynchronous
- Direct connections
- Full-duplex (TX & RX simultaneously)

Common Errors

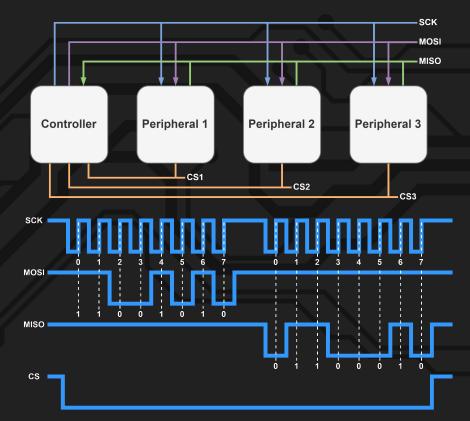
- $TX \rightarrow RX \text{ not } TX \rightarrow TX$
- Baud rate mismatch

Implementation

- Converts between serial and parallel (Internally)
- May use first-in-first-out (FIFO) buffer to store data

SPI: Serial Peripheral Interface

Protocol Signals


- <u>SCK</u>: Serial Clock
- <u>MOSI</u>: Master Out Slave In
- <u>MISO</u>: Master In Slave Out
- <u>CS</u>: Chip Select

Features

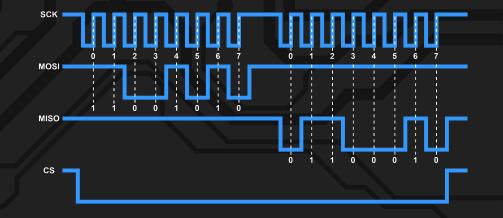
- One controller many peripherals
- Many different speeds depending on hardware
- Extra data line versions (Octo-SPI & Quad-SPI)
- Synchronous
- Full-duplex

Chip Select

- Turns on peripheral
- Only one active peripheral
- Active low

SPI: Serial Peripheral Interface

Implementation


- Very simple implementation with shift register
- Single controller that generates clock
- Data sampled on either rising or falling edge (Check datasheet)

Advantages

- Can be very fast
- Supports multiple peripherals
- Simpler internal implementation

Disadvantage

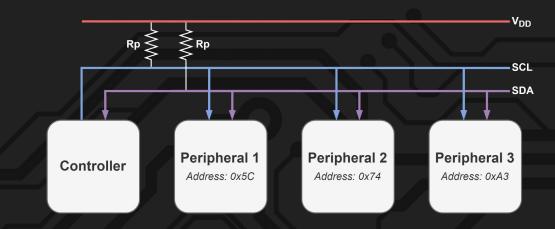
- Requires more wires (CS line per peripheral)
- The controller must control all communications
- Peripherals can't communicate with each other

SPI: BNO086 Example

CEVA	⊡hi	llcrestlabs.		BNO08X Data Sheet	Schematic	IMU 9DOF	+3V3
5	PS1		Input	Protocol Select pin 1		BNO086	1
6	PS0	/WAKE	Input	Protocol Select pin 0, also used to wake processor in SPI mode		R101	U103 M 🕅
17	SA0	/H_MOSI	Input	Lower address bit of device address. In <mark>SPI mode, data</mark> input		10k BN0086_CSD	
18	H_C	SN	Input	SPI chip select, active low		SPI_MOSID	17 H SAO MOSI ENV SCI 15
19	H_S	CL/SCK/RX	Bidirectional	Host Interface I ² C clock, <mark>SPI</mark> clock or UART RX	Pin Descriptions	SPI_SCKD SPI_MISOC	19 H_SCL/SCK/RX 20 H_SDA/H_MISO/TX 4
20	H_S	DA/H_MISO/TX	Bidirectional	Host Interface I ² C data, <mark>SPI</mark> <mark>data out</mark> or UART TX	- 17/ 3		
						BN0086_RESETD	11 NRST XOUT32/CLKSEL1
	PS0	BNO08X (BOOTN=1)	BNO08X bootloade (BOOTN=		ation	BN0086_BOOTD	4 BOOTN XIN32 27 5 PS1 PS0/WAKE CAP 9 6 PS0/WAKE CAP 9
0	0	I ² C	I ² C				N S BN0086
0	1	UART-RVC	Reserved				
1	0	UART	UART			Clock Select Pins CLKSELO Low = External Cry	estal BNO086
1	1	SPI	SPI			CLKSELO Low = External Cry CLKSELO High = Internal Clu (Internal Clock Pin 27 and 2	ock
				and the		L	

"Single chip 9 axis sensor with embedded sensor fusion that enables rapid development of sensor-enabled robotics, AR, VR, and IoT devices." - CEVA

Protocol Signals


- <u>SDA</u>: Bidirectional data
- <u>SCL</u>: Clock

Modes

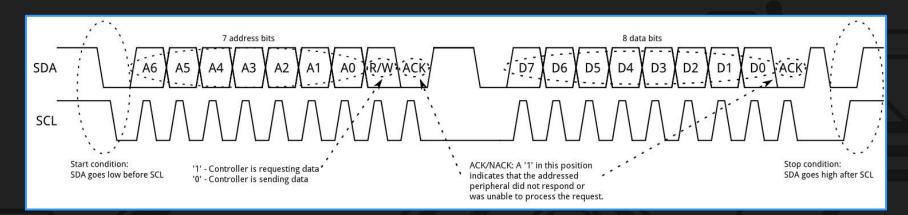
- Original: 100kHz
- Fast-mode: 400kHz
- Fast-mode plus: 1MHz
- High-speed mode: 3.4MHz
- Ultra-fast mode: 5MHz
- Custom speeds: 0kHz to 5MHz

Pull-Up Resistors

- Open drain, pull up resistors required for all signals
- 4.7kΩ is good starting point
 - Adjust down as needed
 - Datasheet may have recommendations

Multiple Controllers

- Multiple controllers can share a bus (SDA/SCLK) and talk to all peripherals
- Controllers can't talk to each other
- Controllers must take turns sharing bus


Addresses

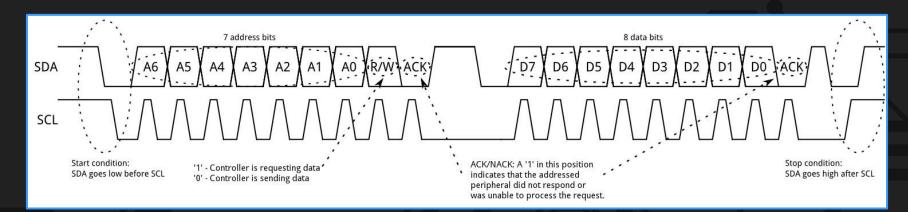
- 7-bit (112 Devices)
- 10-bit (1008 Devices)
- 10b & 7b devices can coexist

SMBus

- System Management Bus
- I2C but more strict timing
- 10kHz to 100KHz only

Start Condition

- Controller starts address frame by leaving SCL high and pulls SDA low
- All peripherals on alert
- Controller that pulls SDA low first wins in shared bus


7-bit Address Frame

- Always sent first in new communication
- 7-bit Address (MSB first)
- Last bit is Read/Write (1 = Read, 0 = Write)

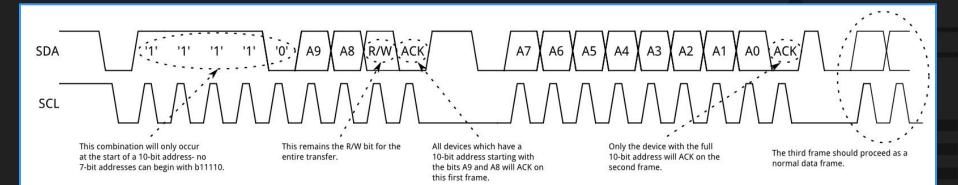
Data Frame

- Occur after address frames
- Controller continues sending clock pulses at regular intervals
- Number of data frames arbitrary

Acknowledge

- 9th bit of every frame
- Error checking
- NACK (1) = Not Acknowledged
- ACK (0) = Acknowledged

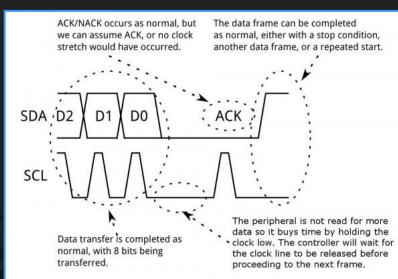
Acknowledge Steps


- 1. Receiving device given control of SDA
- 2. If receiving device doesn't pull SDA low before the 9th CLK pulse then transmission halts

(Failure response decided by system code)

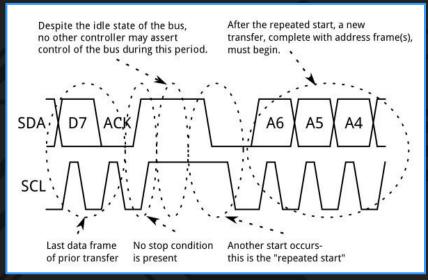
Stop Condition

- SDA goes high after SCL
- During normal data writing operation, the value on SDA should not change when SCL is high, to avoid false stop conditions.



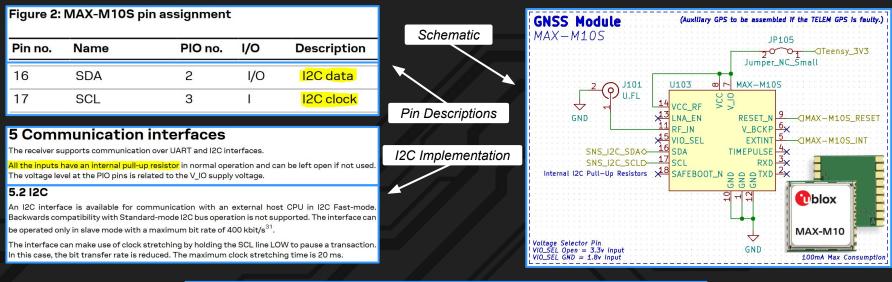
10-bit Address Frames

- <u>1st Frame</u>
 - "11110" Specific flag for 10-bit addresses
 - A9/A8 Address bits
 - Read/Write bit (1 = Read, 0 = Write)
 - Acknowledge bit from all devices that match A9 and A8 address bits


- 2nd Frame
 - A7...A0 Address bits
 - Acknowledge bit from specific device

Clock Stretching

- Current controller controls clock
- Peripheral can pull clock low to delay the controller sending more data



Repeated Start Condition

- Controller needs to continuously send data larger than 7 bits
- Don't send stop condition between frames
- Resends start condition

I²C: MAX-M10S Example

³¹ External pull-up resistors may be needed to achieve 400 kbit/s communication speed, as the internal pull-up resistance can be very large.

Global Navigation Satellite System (GNSS) = Global Positioning System (GPS, US Version)

"Ultra-low-power GNSS receiver for high-performance asset-tracking devices. Less than 25 mW power consumption without compromising GNSS performance. Maximum position availability with concurrent reception of 4 GNSS." - ublox

SD/MMC: Secure Digital / Multi-Media Card

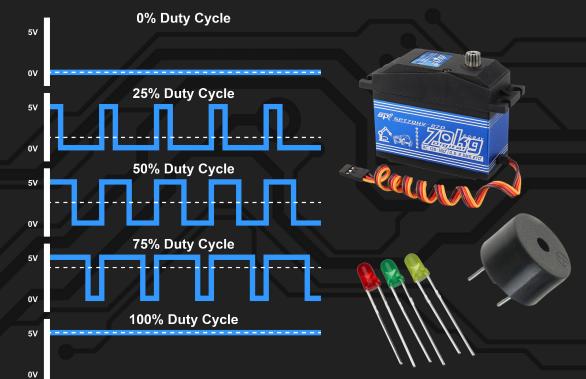
MicroSD Card	Pin	SD	SPI	INAND 7250XI
 Can either be used with SD or SPI interfaces Sometimes slots come with card detect pins 	1	DAT2	x	INAND GAGE
 Can be left floating if unused 	2	CD/DAT3	CS	Title Old and
eMMC Embedded multi-media card	3	CMD	DI/MOSI	Tilling of the second s
 Like a MicroSD card but soldered in place May have up to 8 data lanes 	4	VDD	VDD	1 8
	5	CLK	SCLK	
	6	vss	GND	
	7	DAT0	DO/MISO	
	8	DAT1	x	

PWM: Pulse Width Modulation

Protocol Signals

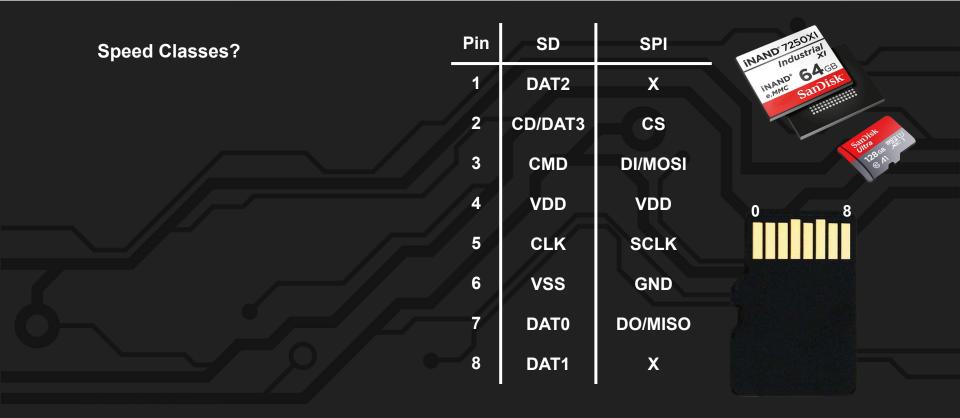
• <u>PWM</u>: Pulses

Characteristics


- Frequency: Rate of oscillation
- Duty Cycle: Percentage of "ON" time

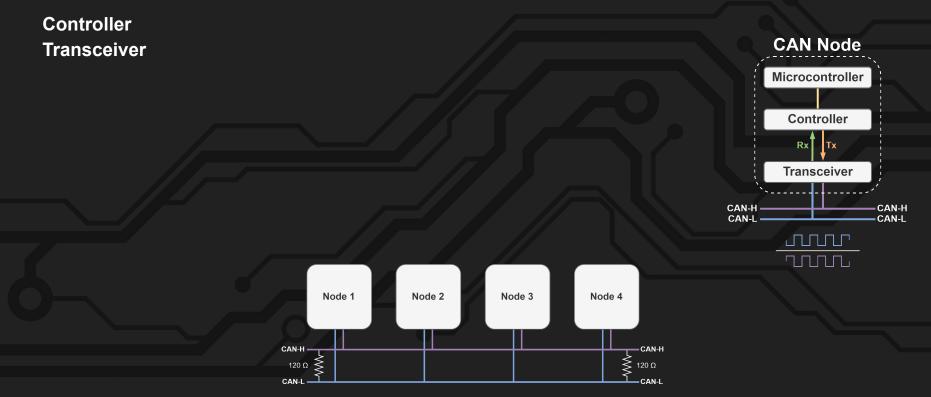
<u>Example</u>: An LED with a 20% duty cycle at 1 Hz will be obvious that it's turning on and off to your eyes, meanwhile, a 20% duty cycle at 100 Hz or above will just look dimmer

Usages


- Servo Motors
- Piezo Buzzers
- LED Dimmers
- And much more!

PWM emulates an analog signal by controlling the average power output. Faster frequencies produce a better analog appearing signal.

SD/MMC: Secure Digital / Multi-Media Card



Balanced and Differential

- 1. <u>Text</u>
- 2. <u>https://www.allaboutcircuits.com/technical-articles/the-why-and-how-of-differential-signaling/</u>
- 3. <u>https://forum.headphones.com/t/single-ended-balanced-differential-w</u> <u>hat-it-means/3571</u>

Illinois Space Society - Spaceshot Avionics - 2023

Signal Names

Names

۲

- SDO Serial Data Out. An output signal on a device where data is sent out to another SPI device.
- SDI Serial Data In. An input signal on a device where data is received from another SPI device.
- CS Chip Select. Activated by the controller to initiate communication with a given peripheral.
- PICO (peripheral in / controller out). For devices that can be either a controller or a peripheral; the signal on which the device sends output when acting as the controller, and receives input when acting as the peripheral.
- POCI (peripheral out / controller in). For devices that can be either a controller or a peripheral; the signal on which the device receives input when acting as the controller, and sends output when acting as the peripheral.
- SDIO Serial Data In/Out. A bi-directional serial sign
- SCK Serial Clock. The clock for the bus generated by the controller.
- MOSI Master Out Slave In
- MISO Master In Slave Out
- SS Slave Select
- MOMI Master Out Master In
- SOSI Slave Out Slave In

Protocol Signals 5V: Voltage supply +D: Data positive -D: Data negative ID: On-The-Go (OTG) identification GND: Ground

<u>Pro/Cons</u> <u>Simple to implement</u> <u>Power and data</u> <u>Slower than other USB types</u> <u>Special PCB routing considerations</u> (Differential pair)

USB OTG ID Some devices have flexible dual roles Negotiates between two devices to determine the host and peripheral device

<u>Note</u>: Electrostatic Discharge (ESD) chips are commonly used to protect USB connectors and devices when connecting and disconnecting.

Bit Banging

Bit-Banging

 A "term of art" for any method of data transmission that employs software as a substitute for dedicated hardware to generate transmitted signals or process received signals

Further Reading

1i101i10, and Big6Big6. "Difference between Open Drain and Push-Pull Modes." *Electrical Engineering Stack Exchange*, 18 May 2022, electronics.stackexchange.com/questions/620150/difference-between-open-drain-and-push-pull-modes. Accessed 29 Dec. 2023. bri_huang. "Logic Levels." SparkFun, learn.sparkfun.com/tutorials/logic-levels/all. Accessed 29 Dec. 2023. jimblom. "Serial Communication." SparkFun, learn.sparkfun.com/tutorials/serial-communication. Accessed 29 Dec. 2023. JordanDee. "Pulse Width Modulation." SparkFun, learn.sparkfun.com/tutorials/pulse-width-modulation. Accessed 29 Dec. 2023. MikeGrusin. "Serial Peripheral Interface." SparkFun, learn.sparkfun.com/tutorials/serial-peripheral-interface-spi. Accessed 29 Dec. 2023. Seidle, Nathan. "A Redefinition of SPI Signal Names." SparkFun, www.sparkfun.com/spi signal names. Accessed 29 Dec. 2023. SFUptownMaker. "I2C." SparkFun, learn.sparkfun.com/tutorials/i2c/all. Accessed 29 Dec. 2023. Stoyanov, Yasen. "Open Drain Output vs. Push-Pull Output." Open4Tech, 18 May 2019, open4tech.com/open-drain-output-vs-push-pull-output/.

Valdez, Jonathan, and Jared Becker. "Understanding the I2C Bus." *Texas Instruments*, <u>www.ti.com/lit/an/slva704/slva704.pdf</u>. Accessed 29 Dec. 2023.

Further Reading

Works Cited:

- 1. https://learn.sparkfun.com/tutorials/logic-levels/all
- 2. https://electronics.stackexchange.com/questions/620150/difference-between-open-drain-and-push-pull-modes
- 3. https://open4tech.com/open-drain-output-vs-push-pull-output/
- 4. https://www.sparkfun.com/spi_signal_names
- 5. https://learn.sparkfun.com/tutorials/i2c/all
- 6. https://www.ti.com/lit/an/slva704/slva704.pdf
- 7. https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
- 8. https://learn.sparkfun.com/tutorials/serial-communication
- 9. https://learn.sparkfun.com/tutorials/pulse-width-modulation
- 10. https://www.ti.com/lit/an/sloa101b/sloa101b.pdfhttp://www.electroniccircuitsdesign.com/pinout/sd-microsd-card-pin out.html
- 11. https://www.circuitstate.com/tutorials/interfacing-catalex-micro-sd-card-module-with-arduino/
- 12. https://www.kingston.com/unitedkingdom/en/blog/personal-storage/memory-card-speed-classes
- 13. https://www.integralmemory.com/articles/memory-cards-understanding-the-labels/
- 14. https://www.banggood.com/fr/SPT-Servo-SPT70HV-320-70KG-Large-Torque-Metal-Gear-Digital-Servo-For-RC-Robot -RC-Car-p-1577512.html?cur_warehouse=CN
- 15. https://www.pcboard.ca/minipiezo-buzzer