Stroke Sensor

by Plusea in Craft > Sewing

39536 Views, 179 Favorites, 0 Comments

Stroke Sensor

4265972217_e84e5c8d96.jpg
4266717086_942eef7f80.jpg
4265971511_b8aaba18f6.jpg
3672648540_2abfc7a8dd.jpg
This sensor takes some time to make. Repeatedly threading, stitching and cutting thread. But the result is quite effective and you can vary the design of the sensor in order to detect different kinds of stroke. See illustration for variations in stroke sensor design.

Various techniques could be applied to create this kind of "stroke sensor" such as knitting or crocheting loop stitch or rug knotting techniques. This Instructable shows how to stitch conductive 117/17ply silver plated nylon thread and a more resistive 66 Yarn 22+3ply 110 PET thread into neoprene in order to create a "stroke sensor". The rubberiness of the neoprene creates enough friction so that the threads will not come loose when stroking. Meaning you don't have to knot each individual hair. It is important to use these particular threads as thicker conductive threads tend to curl when repeatedly stroked and thus don't work for the stroke sensing anymore.

The publication DIY Wearable Technology also contains information on this sensor and can be downloaded from:
>> http://plusea.at/downloads/DIYWearableTec.pdf

HOW TO GET WHAT YOU WANT:
Loop stitch technique post >> www.kobakant.at/DIY/
Stroke sensor post >> www.kobakant.at/DIY/

VIDEO

Materials and Tools

Materials and Tools
MATERIALS
For sensor:
* Conductive thread- Silver Plated Nylon thread, 117/17 2ply
* Resistive thread - 66 Yarn 22+3ply 110 PET
both from LessEMF: lessemf.com/fabric.html
* Stretch conductive fabric
* Fusible interfacing

For circuit:
* 1.5 mm thick neoprene with polyester jersey laminated to either side from SedoChemicals: www.sedochemicals.de
* LilyPad sewable LED
* Sewable coin cell holder
both from Sparkfun: www.sparkfun.com/commerce/product_info.php
* 3V coin cell

TOOLS

- Sewing needle
- Scissors
- Iron

Material Preparations

4266714818_cc5733b809.jpg
4266714994_08245f1e82.jpg
Cut out a piece of neoprene as large as you want the sensor to be. Cut two strips of stretch conductive fabric with fusible interfacing adhered to one side and fuse them opposite ends of the back side of the neoprene. See photos for reference.

Thread Needle, Stitch, Cut

4266715132_a3f33ff948.jpg
4266715338_b2532f1eed.jpg
4265970159_b4111380af.jpg
4266715522_7b97f8fb9e.jpg
4265970299_3145da5c70.jpg
4266716600_e48edf1ca9.jpg
4266717666_362b982f96.jpg
Thread a sewing needle with the conductive thread and take it double-double, so that two strands of thread are going through the needle hole. This is a way to save time and effort since you'll be able to stitch four threads in one go. Of course you can also stitch a single thread at a time.
Start by stitching through from the front side of the neoprene where the conductive fabric is adhered to the back. Make sure the thread goes all the way through the neoprene and makes contact with the conductive fabric before coming out the front again. Then cut all four threads to roughly equal lengths - depending on sensor design - about 2-3cm.
Repeat this over and over again until both conductive fabric strips have "hairs" connected to them. See photos.
Now thread the resistive thread the same way and repeat the same technique over again but this time fill the surface area in between the two conductive thread/fabric strips. See photos.
When you are finished with this, your sensor is finished, in order to see results continue with step three. or simple use alligator clips, an LED or a multimeter or an analog to digital converter to read sensor values.

Complete Circuit

4266716492_dc5b74242a.jpg
4266716288_2a99f851bf.jpg
4266717788_c7a926d65e.jpg
4266717958_4241087c31.jpg
4266714660_dd975b81d6.jpg
Your sensor is done, but by connecting an LED and a battery you can see how it works. Connect as follows, sewing with conductive thread:
End of one of the conductive fabric strips -- to -- Negative LED lead
Positive LED lead -- to -- Positive battery holder lead
Negative battery holder lead -- to -- End of the other conductive fabric strip


Now when you stroke the sensor you will see how the LED lights up brighter the greater the surface you stroke and the harder you stroke.

Enjoy!