Python - Calculate Spring Constant of a Coil/Helical Spring
by matt392 in Circuits > Software
67 Views, 1 Favorites, 0 Comments
Python - Calculate Spring Constant of a Coil/Helical Spring


print ("This program will calculate the Spring Constant of a Coil/Helical Spring.") import math ### Formula for calculating the Spring Constant of a Coil/Helical Spring: # SpringConstant = ((WireDiameter**4) * (SpringShearModulus))/((8) * (NumberOfWraps) * (DiameterOfCoil**3)) ########################################### # Enter the WireDiameter, SpringShearModulus, NumberOfWraps, DiameterOfCoil ContinueCalculations = "y" def CalculateSpringConstant(): print ("Solving for the Spring Constant of a Coil/Helical Spring.") # Enter the WireDiameter WireDiameter = float(input("Enter the diameter of the wire: ") ) # Enter the SpringShearModulus SpringShearModulus = float(input("Enter the Shear Modulus of a Spring: ") ) # Enter the NumberOfWraps NumberOfWraps = float(input("Enter the number of wraps in the spring: ") ) # Enter the DiameterOfCoil DiameterOfCoil = float(input("Enter the diameter of the spring coil: ") ) # Calculate the top of the fraction WireDiameter4thPower = (WireDiameter**4) TopOfFraction = (WireDiameter4thPower * SpringShearModulus) # Calculate the bottom of the fraction DiameterCoilCubed = (DiameterOfCoil**3) BottomOfFraction = (8 * NumberOfWraps * DiameterCoilCubed) # Calculate Spring Constant SpringConstant = TopOfFraction/BottomOfFraction print("The Spring Constant of a Coil/Helical Spring is: ", SpringConstant) while (ContinueCalculations=="y"): CalculateSpringConstant() ContinueCalculations = str(input("Would you like to continue to calculate the Spring Constant of a Coil/Helical Spring (y/n): ")) print("==================================") print ("Thank you to www.fxsolver.com for assistance with this formula.")