Python - Calculate the Log Rate/Logarithmic Rate of Return
by matt392 in Circuits > Software
136 Views, 1 Favorites, 0 Comments
Python - Calculate the Log Rate/Logarithmic Rate of Return



print ("This program will calculate the Logarithmic Rate of Return.") import math ### Formula for calculating the Logarithmic Rate of Return: # LogarithmicRateOfReturn = (Natural Log(FinalValue/InitialValue))/TimeLength # Find the natural log: # NaturalLogOfFraction = math.log(variable) ########################################### # Enter the FinalValue, InitialValue, TimeLength def SolveForLogarithmicRateOfReturn(): print ("Solving for the Logarithmic Rate of Return.") # Enter the FinalValue FinalValue = float(input("Enter the Final Value: ") ) # Enter the InitialValue InitialValue = float(input("Enter the Initial Value: ") ) # Enter the TimeLength TimeLength = float(input("Enter the Time Length: ") ) # Calculate the fraction Fraction = (FinalValue/InitialValue) print("The fraction is: ", Fraction) # Calculate the natural log NaturalLog = (math.log(Fraction) ) print("The Natural Log is: ", NaturalLog) # Calculate the Logarithmic Rate of Return LogarithmicRateOfReturn = NaturalLog/TimeLength print ("The logarithmic rate of return is: ", LogarithmicRateOfReturn) ContinueCalculations = "y" # Check to see if the user wants to continue to calculate the Logarithmic Rate of Return while (ContinueCalculations=="y"): SolveForLogarithmicRateOfReturn() ContinueCalculations = input("Would like to do another calculation for the Logarithmic Rate of Return? (y/n): ") print("==================================") print ("Thank you to www.fxsolver.com for assistance with this formula.")