More Electronics Building Tips ( in 21 Plus More Steps )
by russ_hensel in Circuits > Electronics
24443 Views, 432 Favorites, 0 Comments
More Electronics Building Tips ( in 21 Plus More Steps )
( Pictures are electrical, but not too directly related to the tips; from: http://commons.wikimedia.org/wiki/File:Induktionsapparat_hg.jpg http://upload.wikimedia.org/wikipedia/commons/0/03/Plasma-filaments.jpg )
Free References
The web is full of free electronics references, Google and read. I have already mentioned datasheets and application notes. Here are a few more book like references.
- All About Circuits Book http://www.allaboutcircuits.com/vol_1/index.html
- [PDF] Op Amps for Everyone Design Guide (Rev. B) - Texas Instruments www.ti.com/lit/an/slod006b/slod006b.pdf
- Op Amp Applications Handbook http://www.analog.com/library/analogdialogue/archives/39-05/op_amp_applications_handbook.html
- Electrical Engineering Training Series. http://users.tpg.com.au/users/talking/Pages_of_Theory_500.html
- Electric Circuits 9th Edition Google shows downloads, which I think are legal.
There are lots more go on the web and look.
Not free but so good The Art of Electronics - Horowitz & Hill over $100 new, about half that used. Perhaps at your library, or you can get them to acquire it.
Kits
For awhile I thought that kits were lame, real engineers design circuits. I have now changed my mind. Consider the following:
- They can give success when you are just building, and you may learn a lot.
- If you are building a stock circuit ( like the one in application notes ) a kit may give you a PC board and parts for close to or better than what you could buy them for. If it is a stock circuit you are not designing anything anyway.
- A pre built kit may not cost much more or any than building it. For much of my micro controller work I just buy an Arduino, why not? ( sometimes there are reasons, sometimes not )
- RBBB (Really Bare Bones Board) http://moderndevice.com/product/rbbb-kit/ is a kit version minimum Arduino, I have found frequent use for this as well.
- 30 Watt Stereo Audio Amplifier Kit by Galak Electronics http://galakelectronics.com/VG-501A.htm
Buying Tips
Group together orders to save on shipping which can often be half the cost of the order.
Look for free shipping on Ebay and Amazon. Amazon has recently gotten more into the electronics business than I realized. ( Amazon especially if you are prime )
Futurlec http://www.futurlec.com/ has great prices, good selection, reasonable shipping, and in my experience long shipping times, for them plan ahead.
If you buy a part consider that 1) you may burn it up, 2) if you use one odds are that you will use it again, think about it, 3) look at quantity discounts sometimes they are very aggressive ( in the past I found a part where the total cost for 100 was much less than the cost for 20 ).
SparkFun https://www.sparkfun.com/ and Modern Device http://moderndevice.com/are often attractive places to make purchases,
And for assembled stuff Deal Extreme http://www.dealextreme.com/products.dx/category.299~page.4 has some attractive items, mostly assembled.
Top / Best DIY Electronic Stores & Suppliers by Fuzzy-Wobble https://www.instructables.com/id/Top-DIY-Electronics-Stores-Suppliers/ is a good reference.
Shop around, deals differ a lot.
Micro Controller Communications
There are many way for communicating with a microcontroller, but we almost always program them using some sort of serial cable. Arduinos often have a built in USB connection. This can sometimes add cost. The cheapest way to communicate is RS232 at TTL levels. This normally means you can go directly into the microcontroller pins., Consider doing this with cables. USB to RS232 adapters are easy to find and buy and so or RS232 to TTL. Having made up the cable you do not have to get microcontrolles with USB. You may also find one step way of going from usb to TTL serial. With adapters like this you can use cheaper boards like the really bare bones arduino.
These are some links to get you started.
- P4 RS232 to TTL Serial Adapter Kit http://moderndevice.com/product/p4-rs232-to-ttl-serial-adapter-kit/
- RS232 to TTL converter board DCE with Female DB9 3.3V to 5V http://www.amazon.com/RS232-converter-board-Female-3-3V/dp/B005D5T292
- Google "RS232 to TTL Serial Adapter"
Contacts
Jars
Simulators
A simulator generates a mathematical model of your circuit from a schematic and then runs the model. If you use them you should still consider a prototype as the simulations are never the whole story, rarely capturing things like unintended coupling between circuits. A good bet, free, is LTSpice.
- LTspice IV http://www.linear.com/designtools/software/
- Look at what Wikipedia has to say: http://en.wikipedia.org/wiki/LTspice
Since you should always have a schematic of what you build I would recommend that you do it either in a simulator, or a PCB layout program. This gives the schematic added value.
Remember that simulation is useful, but I does not entirely replace prototyping. Unintended coupling is not caught by a simulator unless you include parts to model it, and this is difficult as the coupling is not intended. One of the areas where a prototype may be useful.
( picture is from http://www.simonbramble.co.uk/lt_spice/ltspice_lt_spice_tutorial_3.htm )
Use Forums ( Wisely )
There are a couple of forums on electronics that I particularly like:
- All About Circuits Forum http://forum.allaboutcircuits.com/
- Electronics Stackexchange http://electronics.stackexchange.com/
- Electro Tech Online http://www.electro-tech-online.com/
There are others that may or may not be just as good. If you are more or less stuck or need some good advice ask you question there. Best not to ask stupid questions ( yes there are stupid questions ).
Here are some things that make a question good:
- Describe your purpose.
- Post a schematics.
- Give a good title ( very compressed version of your question )
- You have already done some research at least a few google queries and searched the particular forum where you are posting.
Here is what is bad:
- Missing the good features above.
- Dumb title “Please Help”, “Stuck”....
- Basic question covered by all the standard references
- Asking what is “best” instead ask what people would recommend for a person in you situation with a particular goal.
Many forum members will not even read a question with a “bad” title.
Operational Amplifiers
If doing analog electronics ( audio, sensor signal conditioning, amplifiers, filters ) learn about operational amplifiers. Some good learning links amplifiers on chip current sensors, instrument amplifiers, etc.:
Decoupling
Coupling is when one circuit effects another circuit, here we are looking at unintended coupling that has a negative impact on the circuit. Sometimes this is from RF radiating through the circuit, but the most common is unintended coupling through the power supply lines, including ground. Breadboards have lots of stray capacitance which can lead to intended coupling, as well as other problems. If you do not get unintended coupling on a bread board you will probably not get it in the real circuit ( but you may get other problems ).
Things you might look into ( google if you need more info).
- Look at signals with a scope, set on AC crank up the gain. Power circuits should have no noise.
- Decoupling capacitors, sometimes on each IC ( digital circuits )
- Good grounding practices
- Separate power/digital/signal circuits and perhaps supply circuits
- Ground conducting case around the circuit
- I had one circuit I could not tame until I added a ferrite bead on the offending component.
If your circuit is acting a bit strange you should always consider decoupling problems.
Scale and Shift - Gain and Offset
Sometimes you have a signal that is fine but for being offset with a constant voltage, and/or has the wrong range, it needs to be rescaled and/or shifted.
The images here try to help you get the idea.
- The first image shows an amplifier input ( blue ) and the output ( red ) when the gain is 2 and the offset is 3
- The second image shows the input vs output function for amplifiers with a gain of 1, .5, and 2, no offset
- The thrid image shows the input vs output function for amplifiers with a gain of 1 and offsets of 0, 2 and 6
- The forth image shows the input vs output function for an amplifier with a gain of 2 and offsets of 3.
You can mess around with voltage dividers but this type of work almost begs to be done with an operational amplifier. The most general circuit is the multi input adder/subtractor. It is a simple circuit, an op amp and a few resistors. It is a bit more complicated to understand than some other circuits and I had trouble finding good simple references. One input is for the signal the other for the bias ( probably from a pot ) you want to add/subtract. Simpler circuits are just the adder or the subtractor.
The inverting adder is really simple, it can amplify while it adds and inverts. Two in a row can give you a non-inventing adder subtractor. Using an amplifier as a gain of 1 non-inverting amp gives you a high impedance input for your signal. So using 3 amps of a quad unit you can scale and shift while drawing minimal current from your signal.
References:
- Google op amp adder/subtractor
Need a Temperature Sensor?
Solid or Stranded?
Wire comes in 2 flavors solid and stranded. If the wire is used in an application where it will not move used solid. Solid wire can be bent into shapes that it will hold and can make for neat layout. Use this for protoboard. If the wire will move and be flexed then stranded wire will stand up better over time.
When you use stranded wire pre-tinning ( coating with solder before connecting ) is particularly useful.
Stranded wire is particularly difficult to get in breadboard unless something is done about the ends of the wire. See: Comprehensive Guide to Electronic Breadboards: A Meta Instructable by russ_hensel https://www.instructables.com/id/Comprehensive-Guide-to-Electronic-Breadboards-A-Me/
Solid wire stays in place better when you bend it, stranded is more flexible.
Category 5 Wire ( Cat 5 )
This is one of the most ubiquitous wires around, stripped down into individual strands it can be very useful in bread boarding. But what if instead you want something for higher current like speaker wire? Cat 5 wire conductors are a bit small for this much current ( 24–26 AWG wire ). But wait! It has 8 conductors, if you put 4 of them in parallel in 2 groups you now have a wire that is OK for fair currents ( the gauge is now about equivalent to gauge 18 to 20 AWG ). I would not use it for voltages over about 30 volts because it is insulated for low voltages.
Need Precision?
Some of you may not know there are precision potentiometers which rotate a full 10 turns with a precise linear relationship between the angle of rotation and the resistance from one end to the wiper. Coupled with a special knob made for these you get a very precise voltage divider or with a bit of buffering voltage source.
These are particularly useful coupled with a circuit that shows linear response. One example is the input resistor to an op amp integrator ( which may itself be part of a triangle wave generator ).
There are also 10 turn trim posts, the point here not being calibration but to give a fine level of control.
What to Build On
I ( in https://www.instructables.com/id/Electronics-Building-Tips-in-21-Plus-Steps-/step21/Breadboards/ ) mentioned that a project on a breadboard is not really finished, it is more of a prototype. and I suggested some alternatives. Here I will add a bit more.
One building choice is a printed circuit board, either one you make ( a lot of work, but nice, see other instructables ) or one someone else made which makes things really easy and is typically what you get in a kit. These are great if you choose them but for now I will assume you are not using PCBs.
Board with holes on it ( like stripboard and the boards mentioned in the reference above ) are nice because you do not have to drill to get access to the back. Choose boards with .1 inch hole spacing as that is what fits many standard pin layouts like dual inline ( dip ) sockets.
When shopping for components also look for .1 inch ( or multiples or sub multiple ) because they fit well, and even if you later do a printed circuit board a .1 inch grid is usually helpful.
You can also use some of the traditional breadboarding techniques:
- How to make vacuum tube breadboarding sockets. by Re-design https://www.instructables.com/id/How-to-make-vacuum-tube-breadboarding-sockets/
- Glowbugs - Homebrew Tube Amateur Radio Transmitters and Receivers by Andy UU1CC https://www.instructables.com/id/Glowbugs-Homebrew-Amateur-Radio-Transmitters-and/
Finally you can build on nothing at all see:
Power Rails on PerfBoard
When wiring on a breadboard there are typically power/ground rails at the top and bottom edge of the board. If you are just using perfboard to build you can still have power rails by running bare wire the length of the board and soldering it in place. Since many components need access to the rails this can make the job of wiring easier. See the pictures.
Need DIP Sockets?
First if there are only a few too many pins, just leave the extra empty. Or perhaps you can put 2 chips in a really large socket. If you do not like extra pins you may be able to cut down the socket ( be careful sometimes the construction will not give a strong socket if you cut it ).
If you need a larger socket, just consider using two. Sometimes this will work out great, a 16 pin dip in 2 x 8 pin sockets, but sometimes not quite as well, but there is no great sin in having a 14 pin chip sitting in 2 end to end 8 pin sockets. 2 empty pins, no big deal.
You may even figure out how to make extra wide sockets from standard ones.
Lost a Part?
A small part on the floor can be really hard to find. To help lay a flashlight on the floor so its beam just grazes the surface. This causes the part to throw a long shadow which can make it easier to find.
Look around you work space. Is it a mess. Clean up for awhile. Good chance the part will surface.