Monochrome Spectroscope to Examine Planck Radiation Curves

by stoppi71 in Workshop > Science

82 Views, 6 Favorites, 0 Comments

Monochrome Spectroscope to Examine Planck Radiation Curves

Webcam_monochrom_Spektrograph_99.jpg
Webcam_monochrom_Spektrograph_11.jpg
Webcam_monochrom_Spektrograph_35.jpg
Webcam_monochrom_Spektrograph_36.jpg
Webcam_monochrom_Spektrograph_153.jpg

A spectroscope can be used to examine and analyze light sources. It splits the light into its individual wavelengths. This requires a glass prism or a diffraction grating. A camera module/webcam then records the spectrum.

However, if you want to examine the solar spectrum, color cameras are not suitable. These cameras have a so-called Bayer mask consisting of color filters in front of their color sensor. These absorb part of the incident light and thus distort the light spectrum under investigation.

For example, the solar spectrum should correspond to a Planck radiation curve with a maximum at around 500 nm. However, if recorded with a color camera, the intensity curve does not follow the Planck radiation curve due to the Bayer filter. In the wavelength range around 550 nm, the spectrum has a significantly lower intensity than it should.

A black-and-white camera without a Bayer filter can remedy this problem. This does not distort the light spectrum under investigation. If you record the solar spectrum with such a black and white camera, you will receive a beautiful Planck radiation curve as desired.

Supplies

Webcam_monochrom_Spektrograph_04.jpg
Webcam_monochrom_Spektrograph_07.jpg
Webcam_monochrom_Spektrograph_09.jpg
Webcam_monochrom_Spektrograph_13.jpg
Webcam_monochrom_Spektrograph_70.jpg
Webcam_monochrom_Spektrograph_188.jpg

This spectroscope requires only a few things:

  1. a black-and-white camera module (Amazon)
  2. a diffraction grating with 500 or 1000 lines/mm
  3. two razor blades
  4. a plastic case (f.e. link)
  5. the Theremino spectroscope software: link1, link2

Construction of the Spectroscope

Webcam_monochrom_Spektrograph_50.jpg
Webcam_monochrom_Spektrograph_21.jpg
Webcam_monochrom_Spektrograph_23.jpg
Webcam_monochrom_Spektrograph_25.jpg
Webcam_monochrom_Spektrograph_27.jpg
Webcam_monochrom_Spektrograph_29.jpg
Webcam_monochrom_Spektrograph_53.jpg
Webcam_monochrom_Spektrograph_31.jpg
Webcam_monochrom_Spektrograph_44.jpg
Webcam_monochrom_Spektrograph_55.jpg
Webcam_monochrom_Spektrograph_57.jpg
Webcam_monochrom_Spektrograph_59.jpg
Webcam_monochrom_Spektrograph_61.jpg
Webcam_monochrom_Spektrograph_63.jpg
Webcam_monochrom_Spektrograph_65.jpg
Webcam_monochrom_Spektrograph_67.jpg
Webcam_monochrom_Spektrograph_69.jpg
Webcam_monochrom_Spektrograph_126.jpg
Webcam_monochrom_Spektrograph_128.jpg
Webcam_monochrom_Spektrograph_130.jpg
Webcam_monochrom_Spektrograph_132.jpg

To mount the camera module in the plastic housing, I used a small piece of wood. I attached another piece of wood above the lens and glued a magnet to it. I then used this magnet to fix the diffraction grating in front of the lens. Additional magnets can be used to adjust the ideal position of the diffraction grating. I created the slit using two razor blades. I then fixed them at a distance of approximately 50 µm, exactly above the entrance hole. To prevent stray light, I also mounted black foam rubber on the long side of the plastic housing.

Calibration Using an Energy-saving Lamp

Webcam_monochrom_Spektrograph_80.jpg
Webcam_monochrom_Spektrograph_82.jpg
Webcam_monochrom_Spektrograph_72.jpg
Webcam_monochrom_Spektrograph_87.jpg

Now connect the camera's USB cable to the computer and launch the Theremino spectroscope software. You can then calibrate the spectrum using an older energy-saving light bulb. Energy-saving light bulbs have a multitude of spectral lines. Using the mouse, you then move the spectrum in the Theremino software until the peaks are at the correct wavelength.

The spectral range I recorded with the spectroscope ranges from approximately 200 nm to 1300 nm, which is ideal for Planck radiation curves.


First Test With a Halogen Lamp

Webcam_monochrom_Spektrograph_136.jpg
Webcam_monochrom_Spektrograph_138.jpg
Webcam_monochrom_Spektrograph_140.jpg
Webcam_monochrom_Spektrograph_142.jpg
Webcam_monochrom_Spektrograph_146.jpg
Webcam_monochrom_Spektrograph_101.jpg
Webcam_monochrom_Spektrograph_153.jpg
Webcam_monochrom_Spektrograph_89.jpg
Webcam_monochrom_Spektrograph_91.jpg
Webcam_monochrom_Spektrograph_93.jpg
Webcam_monochrom_Spektrograph_95.jpg
Webcam_monochrom_Spektrograph_97.jpg
Webcam_monochrom_Spektrograph_99.jpg
Webcam_monochrom_Spektrograph_119.jpg
Webcam_monochrom_Spektrograph_movie_04

A halogen lamp is a very good example of a blackbody radiator. The spectrum depends on the temperature of the filament. The hotter it is, the higher the radiation intensity and the further the spectrum shifts towards blue. This is stated by Wien's displacement law. The temperature of the filament can be easily determined using the electrical resistance R. To determine the temperature T, you only need the resistance at room temperature R_20 and then the resistance R during operation. From R_20 and R, the temperature T can then be calculated (see appendix).

The Planck radiation curves are clearly visible, as is their shift towards shorter wavelengths with increasing temperature. The only flaw: The camera module can only capture wavelengths up to approximately 1000 nm. However, parts of the Planck radiation curve lie at longer wavelengths. Therefore, the recorded radiation curves do not fully correspond to the theory.

The Solar Spectrum

Webcam_monochrom_Spektrograph_157.jpg
Webcam_monochrom_Spektrograph_155.jpg
Webcam_monochrom_Spektrograph_156.jpg
Webcam_monochrom_Spektrograph_168.jpg
Webcam_monochrom_Spektrograph_167.jpg
Webcam_monochrom_Spektrograph_169.jpg
Webcam_monochrom_Spektrograph_158.jpg
Webcam_monochrom_Spektrograph_172.jpg
Webcam_monochrom_Spektrograph_173.jpg
Webcam_monochrom_Spektrograph_176.jpg
Webcam_monochrom_Spektrograph_174.jpg
Webcam_monochrom_Spektrograph_175.jpg
Webcam_monochrom_Spektrograph_movie_06

Finally, we record the solar spectrum with our spectroscope. This corresponds to a Planck radiation curve at around 5500 K with a maximum at approximately 500 nm. Not only the beautiful radiation curve is visible, but also individual absorption lines, the so-called Fraunhofer lines. These consist of the individual elements of the sun, including the hydrogen lines of the Balmer series (H-alpha, H-beta, etc.).

If you're interested in other exciting physics projects, you can find my homepage and my YouTube channel here:

Youtube-channel

Homepage

In that spirit, stay curious and Eureka!