Homebrewing - Brew Kettle BTU Calculations
by Tom Hargrave in Cooking > Beverages
10920 Views, 31 Favorites, 0 Comments
Homebrewing - Brew Kettle BTU Calculations
To calculate BTUs needed and heat loss we need to start with the basic stats:
16.5" - Keg diameter
23.3" - Keg height
12 gallons - Batch size these calculations are based on
0.12 BTUs - to heat one pound of steel 1 degree F
3.6 BTUs - to heat the keg 1 degree F
8.34 BTUs - to heat one gallon of water 1 degree F
1.5 sq ft - Water surface area of keg
8.38 sq ft - Side surface area of keg
1.5 sq ft - Bottom surface area of keg
3.41 BTUs - Heat generated by one Watt/hr of electricity
Then I found the standards above in a published Engineering table. The table lists BTU/hr loss per square foot in a steel tank with no insulation, assuming the temperature outside the tank is 70F.
Thanks, Tom
Find more electric brewery tips at www.kegkits.com
BTU Losses During Brewing
The first thing you probably notice is the fast growing yellow line - all the way to 9000 BTU / hr at 210 F. This is also close to the BTU / hr you will need to maintain a boil.
The next thing you probably notice is the fast growing blue line - this is loss due to evaporation. And this heat loss is easy to prevent by keeping the lid on your hot liqour tank and boil pot will make a huge difference!
BTUs to Heat MASH Water
Assuming no loss, the first chart shows the times for each heating element wattage to heat 7 gallons water to initial strike temperature.
But look at the same graph with heat loss added in and the picture is very different. This chart is with the keggle lid off - the heat loss is about half with the lid on.
You can see that heat loss affects the lower wattage elements the most. Almost no time is added to the 5500 Watt Element and the 1650 Watt Element is pushed out to 140 minutes! In other words, you don't want to use a 1650 Watt element for 10 gallon batches. And at 90 minutes you probably don't want to use a 2000 Watt Element either.
BTUs to Heat Sparge Water
So, the total heat needed to raise the water and keggle from 60F to 170F should be 8653 BTU / hr. Assuming no loss, the first chart shows the times for each heating element wattage to heat 9 gallons water to initial strike temperature.
But look at the same graph with heat loss added in and just like heating your mash water, heat loss has a huge impact. This chart is with the keggle lid off - the heat loss is about half with the lid on.
You can see that heat loss affects the lower wattage elements the most. Almost no time is added to the 5500 Watt Element and the 1650 Watt Element is pushed out to 185 minutes! In other words, you don't want to use a 1650 Watt element for 10 gallon batches. And at 120 minutes you don't want to use a 2000 Watt Element either.
BTUs to Reach Boil
So, the total heat needed to raise the water and keggle from 150F to 212F (boiling) should be 6428 BTU / hr.
Assuming no loss, the first graph shows the times for each heating element wattage to heat 12 gallons water from 150F to boiling temperature.
But look at the same graph with heat loss added in and you can see that heat loss has the greatest impact trying to boil. This is because as temperature goes up heat loss goes up even more.
This chart is with the keggle lid off - the heat loss is about half with the lid on.
You can see that heat loss affects the lower wattage elements the most. And the 1650 Watt & 2000 Watt Elements never reach boil! At about 174 degrees F for the 1650 Watt & about 187 degrees F for the 2000 Watt Element the heater just keeps up with heat loss. Ten minutes are added to the 5500 Watt Element and 20 minutes are added to the 4500 Watt Element. The 3500 Watt Element is pushed out to 75 minutes to boil.
In other words, you can't use a 1650 or 2000 Watt element for boil. You probably don't want to use a 3500 Watt Element either.
My Take on This
I mentioned earlier that most of the heat loss is through evaporation. Go back to my first graph and you'll see that evaporation loss becomes the largest heat loss past 180 degrees F.
Keeping the lid on your hot liquor tank and keeping the lid on your brew kettle until almost boil eliminates almost all of your evaporation heat loss.
The next step would be to insulate your hot liquor tank and brew kettle to reduce heat loss.
And finally, it's impossible to brew 10 gallon batches with a 1650 or 2000 Watt element and time consuming to brew with a 3500 Watt element. But a 4500 Watt or 5500 Watt element will work great.
For mash with a mash tun or RIMS tube a 1650 or 2000 watt 120V heating element will work fine, but this is assuming you are going to pre-heat your initial strike and sparge water.
If you want to do full mash including heating your sparge water then I recommend a 5500 watt heating element.
In my opinion, the ideal setup is a HLT heated with a 5500 watt element, a cooler based mash tun with a RIMS tube heated with a 1650 watt element and a boil pot heated with a 5500 watt element.
Thanks, Tom
Find more electric brewery tips at www.kegkits.com