Fluid Spectrum Analyser Equipment
by emilhun in Workshop > Science
2521 Views, 8 Favorites, 0 Comments
Fluid Spectrum Analyser Equipment
This home made instrument is define, what fluid is inside in the test tube.
Real time measurement capability for varied fluids qualitative analysis.
.
How it works?
We shift the proton magnetic spin with resonant
radio frequency and receiving the spin echo, in
low energy magnetic field.
Not need cryogenic superconducting electromagnets.
.
.
ZYBO Zynq™-7000 Development board used in the
project. Like a one chip full Linux computer, this is
ideal for this original scientific measurement
unit to build. The measured spectral data stored on SD card.
We compare this with the database, which is inside
more than 700.000 molecule spectral data.
.
.
Replicable steps:
-read carefully the ZYBO reference manuals
-make antistatic environment
-read the schematic
-make the special coils
-make the high precision, peltier-cooled, ultra
low noise preamplifyer LMH6626
-make extra precision temperature meter
-download & flash the VHDL system architecture
to the ZYNQ XC7Z010 FPGA
-system test
-switch on the equipment
.
.
List materials and tools:
-main part: the Zybo board with XILINX ZYNQ XC7Z010 FPGA
-special coil
-test tube
-VGA display
.
materials from digilentinc.com:
The ZYBO is compatible with Xilinx’s new high-
performance Vivado Design Suite as well as the
ISE/EDK toolset. These toolsets meld FPGA logic
design with embedded ARM software development
into an easy to use, intuitive design flow. They
can be used for designing systems of any
complexity, from a complete operating system
running multiple server applications in tandem,
down to a simple bare-metal program that
controls some LEDs. For systems that require an
operating system, Digilent provides an out-of-
the-box Linux solution specifically targeted to
run on the ZYBO, complete with documentation
describing how best to mold it to suit your
purposes. These Xilinx tools and Linux solution
are all available to use at no additional cost
with the ZYBO.
.
IC: Xilinx Zynq-7000 (Z-7010) The Z-7010 features include: * 650Mhz dual-core Cortex-A9 processor * DDR3 memory controller with 8 DMA channels * High-bandwith peripheral controllers: 1G Ethernet, USB 2.0, SDIO * Low-bandwidth peripheral controller: SPI, UART, I2C * Reprogrammable logic equivalent to Artix-7 FPGA
* 28K logic cells * 240KB Block RAM * 80 DSP slices * On-chip dual channel, 12-bit, 1 MSPS analog-to-digital converter (XADC) * Internal clock speeds exceeding 450MHz
.
The ZYBO offers the following on-board ports and peripherals: * ZYNQ XC7Z010-1CLG400C * 512MB x32 DDR3 w/ 1050Mbps bandwidth * Dual-role (Source/Sink) HDMI port * 16-bits per pixel VGA output port * Trimode (1Gbit/100Mbit/10Mbit) Ethernet PHY * MicroSD slot (supports Linux file system) * OTG USB 2.0 PHY (supports host and device) * External EEPROM (programmed with 48-bit globally unique EUI-48/64™ compatible identifier) * Audio codec with headphone out, microphone and line in jacks * 128Mb Serial Flash w/ QSPI interface * On-board JTAG programming and UART to USB converter * GPIO: 6 pushbuttons, 4 slide switches, 5 LEDs * Six Pmod connectors (1 processor-dedicated, 1 dual analog/digital)
.
The ZYBO (Zynq Board) is a feature-rich,
ready-to-use, entry-level embedded software and
digital circuit development platform built
around the smallest member of the Xilinx Zynq-
7000 family, the Z-7010. The Z-7010 is based on
the Xilinx All Programmable System-on-Chip (AP
SoC) architecture, which tightly integrates a
dual-core ARM Cortex-A9 processor with Xilinx 7
-series Field Programmable Gate Array (FPGA)
logic. When coupled with the rich set of multimedia
and connectivity peripherals available on the
ZYBO, the Zynq Z-7010 can host a whole system
design. The on-board memories, video and audio
I/O, dual-role USB, Ethernet and SD slot
.
.
7.Files: Design Overview - General architecture schematic
the Hardware which is actually software now
in VHDL language, on ZYNQ 7000 FPGA:
A/D sample & store program
DDS frequency syntheser
FFT program
Pulse forming & sequencer
VGA screen
.
Molecule database
3D molecule draw program
complete operating system
.
coming soon...
Now We Look at the Parts!
By the time we will be finished this project,
we will look like this,
if still not, we worked well.
Let's take a Test-Glass
Let's wind according to the parameters,
this will be the Receiver Coil, with whitch we can sense the radio echo impulse
of the atoms answer of
Let's make the Transmitter Coil,
according to the specified parameters:
On an D:22mm, L:40mm, n:16, d:2mm Cuz wire
Transmitter Coil with magnets
Polarizing Coil
coil parameters: D:220mm, n:73, d:2mm Cuz wire, R:0.3 ohm
polarisation pulse:7A, 3-5sec
Excitation Coil
coil parameters: D:85mm, L:100mm, n:360, d:0.8mm Cuz wire, R:3.7 ohm
excitation pulse:0-7A, 3ms, 2.1Khz
This pulse must be at a resonant frequency of the nuclear spin in the ambient field!
Its depending on the ambient temperature and ambient magnetic field.
Let's Make the Legs
Mechanikal holding legs for Excitation Coil
Magnetic Field Gradient Coil-pair
coil parameters: D:270mm, n:100, d:0.5mm Cuz wire, R:3.8 ohm
L1 - L2 distant:240mm
gradient pulse:2.2A, 80ms
Mechanikal Holding Legs for Gradient Coil-pair
Gradient Coil-pair Setting
Gradient Coil, Polarizing Coil and Excitation Coils in Each Other
Emplacement of Coils
What Are These Two Wire?
It's a neat sensitive temperature measurer.
Let's prepare two, from different metal, a cord cut piece off.
Almost no matter, from what metal it is, what we find, then we subsequently calibrate it.
The Precise Temperature Sensor
Producing to ready one, namely their end hammering together,
welding, cicatrizing, according to our opportunities
Golden Coated Plug Pairs
avoiding of the contact potential,
to binding of the temperature sensor cord into the A/D
Preamplifier
Input of this attaching to the receiver coil, output to the A/D input
Box of Preamplifier, Cooler, Screws
To Drill Because of Cooling
Drilled Box
Peltier Element
This will cool the first-stage amplifier
Silicone Thermal Compound
Preamplifier in Its Box
BNC Connector
RF Coax Cable
The Preamplifier With Provisional Power Supply
MOC3020 OptoTriac
will switching all the coils. (the gradient, the polarizer, the exciting, and the transmitter coils)
Shielded Cords Between the Individual Units
2x20W Power Amplifier for Transmitter Coil
Power Supply Units
The Assembled Equipment
The Assembled Equipment With ZYBO Board I/o Connections
400W Transformers of a Polarizer Coil
The Water Magnetizer With Transmitter Coil and Magnets
FPGA Firmware Structure
What is invisible:
in the FPGA is the VHDL firmware.
DDS, FFT, Pulse forming & Sequencer, VGA driver,
Countless 3rd party library from Github.com
Operating System
Xillinux Operating System and I/O interface program
for Digilent inc. Zybo ZYNQ-7000 board from Xillibus.com
Software
3D macro molecule drawing program in C++,
Open Source 3rd party software from Sourceforge.com
But What Is the 42?
... ...This is the last question...
Answer to the Ultimate Question of Life, the Universe, and Everything (42)
The answer is in this book:
Douglas Adams: 'Guide to The Hitchhiker's Guide to the Galaxy'
'a group of hyper-intelligent pan-dimensional beings demand to learn the Answer to the Ultimate Question of Life, The Universe, and Everything from the supercomputer, specially built for this purpose. It takes Deep Thought 7½ million years to compute and check the answer, which turns out to be 42. Deep Thought points out that the answer seems meaningless because the beings who instructed it never actually knew what the Question was.
When asked to produce The Ultimate Question, Deep Thought says that it cannot; however, it can help to design an even more powerful computer that can. This new computer will incorporate living beings into the "computational matrix" and will run for ten million years.'
And the answer is the 42
...otherwise
42Hz/uT (Hertz per microTesla) the resonant frequency of the proton of Hydrogen atom.
We measure that with this Equipment.
In our case:
the Earth magnetic force is: around 50uT, here in Central-Europe,
multiplying this with 42Hz/uT,
the outcome: 2100Hz Spin Echo voice of radio-frequency.
This we attach and this we measure...
If You have more question, ask!
Bye