Electric Ice Scooter

by bennelson in Outside > Snow

41462 Views, 234 Favorites, 0 Comments

Electric Ice Scooter

DSC_0424.jpg
1689005_10153819710890165_990651821_n.jpg
DSC_0423.jpg
DSC_0426.jpg
DSC_0420.jpg
DSC_0422.jpg
DSC_0428.jpg
GOPR0070_lookingdown.jpeg
tire spike.jpg
DSC_0419.jpg
GOPR0070_sunflare.jpeg
DSC_0427.jpg
DSC_0399.jpg
DSC_0415.jpg

Winter got you down? Need to get outside for some fun and exercise?
If you have frozen lakes or rivers in your area, what you need is an ELECTRIC ICE SCOOTER!

In this Instructable, I'll show you how I converted a junk EV scooter into a fun winter toy!

Tools and Materials

DSC_0277.jpg
DSC_0285.jpg
DSC_0273.jpg
DSC_0407.jpg
DSC_0406.jpg
I was originally inspired to build this project when I saw a pair of ice skates right next to a Razor kick scooter at the local thrift store. Immediately, I thought of how the scooter might look with ice skate blades in place of the wheels.

A few days later, I was at the Milwaukee Makerspace, where I saw my old electric scooter on the "Hack Rack". I originally pulled that scooter out of a dumpster. It was missing batteries and the deck plate, but other than that, a little tinkering got it to work. Unfortunately, by now, the cheap motor controller card had burned out and the front wheel was missing. Oh well, I wouldn't need the front wheel, since it would be replaced with a skate.

This project essentially replaces the front wheel of a scooter with an ice skate, and upgrades the rear wheel to have traction appropriate for use on ice.

If you want to go straight to video of the finished project, you can see that in Step 6. If you enjoy this Instructable, please vote for it in the contest!

So, for this project, what you really need is:

Materials:
An electric scooter. (One that already works will make this an easy project!)
An ice skate.
Bolt - 3/8" x 4"
Nut - 3/8"
Spacer to fit 3/8" bolt, about 2 - 2.5" long
4  3/8" washers
1/2" Self-tapping pan head screws
An old bicycle inner tube

Tools:
Ruler or tape measure
Drill
3/8" drill bit
Phillips driver bit
Pair of 9/16" wrenches or adjustable wrenches
Tubing cutter
Scissors or knife
Pen, pencil, or marker


Adding the Skate

DSC_0306.jpg
DSC_0283.jpg
DSC_0284.jpg
DSC_0286.jpg
DSC_0299.jpg
DSC_0301.jpg
DSC_0304.jpg
DSC_0303.jpg
When I first looked at how to mount the skate, I thought that I would need to create some sort of custom mount or heavy blocking to connect the blade to. After examining the skate, I realized that the heel of the skate is actually quite solid, and that there was no reason I couldn't simply drill through the skate itself and then run a bolt through, similar to how the front wheel would have originally been mounted.

I inserted the ice skate into the front fork so that the heel cup made good contact with fork.

Next, I marked the holes in the fork on the skate.

I then drilled holes through the skate with the drill and 3/8" bit.

The skate will need a spacer on the inside, so as to give the bolt something to press against when it's tightened down. I measured across the INSIDE of the skate, between the two holes, and found that the distance was about 2.25".

I had some old aluminum crutches that I was using as material for another project. That aluminum tubing is about the right diameter to go over a 3/8 bolt, so I cut a piece of tubing 2.25" long with my tubing cutter.

I then inserted the tube, with a 3/8" washer on either side of it INSIDE the skate.

I then put a washer on the bolt, pushed it INTO the skate, through the washer, the tube, the other washer, and through the other side of the skate. I added another washer and threaded on the nut.

After tightening the nut and bolt against each other, the skate was solidly connected to the front of the scooter. The original steering still works as intended, and the scooter can still fold down as well.


Spiked Wheel

DSC_0399.jpg
DSC_0384.jpg
IMG_3066.jpg
DSC_0385.jpg
DSC_0386.jpg
DSC_0387.jpg
DSC_0332.jpg
DSC_0406.jpg
DSC_0393.jpg
DSC_0394.jpg
DSC_0391.jpg
DSC_0396.jpg
DSC_0402.jpg
I knew that I would need additional traction for the rear wheel. I did do one test run out on the frozen lake with the stock wheel, and found that it was very difficult to ride the scooter, as the wheel would "fish-tail" so easily. (Step 6 includes a video of the scooter's maiden voyage, BEFORE I had the spiked tire.)

The challenge is that there is very little clearance between the wheel and the frame of the scooter - only just over one-half inch.

I first tried making "tire chains" out of plastic zip-ties. Some sort of "tire chain" would only go around the outside of the tire - an easy modification which wouldn't damage the tire. I was surprised at how the heads protruded and would rub on the frame. So, I decided against the "tire-chain" mod, and instead focused on studding the tire.

I decided what was really needed was spikes. Looking through my hardware drawer, I found some self-tapping sheet metal screws. They were only 1/2" long. To install the screws on the tire, I would have to remove the wheel, disassemble it, and pull the rim and tube.

After removing the wheel from the scooter, I let the air out of the tube and then took out the four screws that hold together the two halves of the rim. 

Using plastic bicycle tire irons, I pried the rim out of the tire. The other half of the rim was easier to remove by setting over a can and pushing down on the tire.

I then pulled the inner tube out.

I decided that I wanted one tire stud about every inch. Since the tire diameter is a little less than 8", the circumference is roughly 24", so I needed 24 screws for the tire.

I put a screw on the magnetic bit driver on my cordless drill  and pushed it into the inside of the tire, drilling from the inside out. I tried to make the screw neither centered on the tire, nor too far to the outside, and then alternated sides. This should maximize traction while turning, while preventing the screws from scraping the frame of the scooter.

I continued installing screws through the inside of the tire, spacing them out by an inch and alternating sides. I found that putting in a spacer (in this case, a socket) to hold the tire open made it easier to do.

Once all the screws were in, I cut a length of old scrap bicycle tubing. I inserted the scrap tube inside the tire to cover the heads of the screws and make a liner to prevent wear on the scooter's inner tube.

I then reassembled the tube and both rim halves, and filled the tire with air.

Once everything looked good, I mounted the wheel back onto the scooter.

The next couple of steps cover a few things that I had to do because this was a junked scooter. If your scooter works fine otherwise, you can go straight to using it now, or at least skip to videos of me playing with mine!

Electrical

DSC_0359.jpg
DSC_0360.jpg
DSC_0361.jpg
IMG_3051.jpg
IMG_3052.jpg
DSC_0369.jpg
DSC_0365.jpg
Because this was a junk scooter, I had to do a few things just to get it back to running condition. The electric system needed a few upgrades - a new speed controller, a throttle to match, batteries, and a charger.

Looking at the motor, the first thing I realized was that it was BRUSHLESS! While I've worked on a few ambitious electric projects before (Electric Motorcycle, Electric car, etc.) this was the first time I had done anything brushless. After a little reading up on the subject, I decided that a basic, generic, 24V 250 watt brushless DC motor would work just fine.

I mail-ordered the controller, and a throttle to match it. (The scooter already had a throttle, but it was the wrong style for the new speed controller.)

Once the controller arrived, I mounted it inside the scooter, adding the correct crimp-on electrical connectors to connect the motor to the controller. I simply followed the wiring diagram that came with the controller, and connected the three wires for the throttle as well.

The old throttle was removed by loosening the set-screw, and sliding it off the handle-bar. The new throttle was installed in the same manner.

The scooter also didn't have batteries. I purchased a pair of 12Ah SLA (Sealed Lead-Acid) batteries. These are wired in series for a 24V 12AH battery system. To wire in series, connect the negative of one battery to the positive of the other, then connect the remaining positive and negative terminals to the speed controller.

I also added a 20 amp fuse between the batteries and controller.

To charge the batteries, I simply use a small 12V charger I already had. I disconnect the controller from the batteries and charge the two batteries one at a time.

Decking

IMG_3050.jpg
IMG_3054.jpg
IMG_3056.jpg
IMG_3057.jpg
IMG_3058.jpg
DSC_0372.jpg
IMG_3064.jpg
The junk electric scooter was also missing a deck - some sort of material that acts as both a cover for the batteries and as a place for the driver to stand.

I looked through what I had for scrap materials and found an old pair of cabinet doors. They were solid, and about the right width for a deck.

The top of the scooter is actually more than one angled portion, so a single flat piece of wood couldn't be used. Instead, I cut the two doors to the right size to cover both the batteries and the back wheel.

With the wood in place, I marked where I would need to drill holes to match the bolt holes in the scooter.

I ran 1/4"-20 machine screws through both pieces of the deck, and fastened them with nuts. I used wing nuts in the front to make it easier to install and remove the deck over the batteries to get at the electrical connections.

Because these were cabinet doors, there were already holes drilled in them where the cabinet door knobs connected. I mounted a salvaged brass door handle to the existing holes to make a connecting point for towing a sled. It also makes it easier to carry the scooter. Because the handle is off-center, it doesn't get in the way of my back foot while riding the scooter.

Ride It!

Ben on Ice Scooter.jpg
GOPR0068_OMG.jpeg
tire spike.jpg
skate_cam.png
GOPR0070_lookingdown.jpeg
With the controller and batteries installed and the deck in place, it's time to take the scooter for a spin.
This is my first time out on the ice scooter, which was done BEFORE installing the spiked tire.



After my first test ride, I decided on a few things. The first was that I needed as much traction as possible on the rear wheel - thus the creation of the screw-spiked-tire. The second was that after falling a few times on my first trail run, I decided to wear my (padded) motorcycle jacket and helmet. In fact I did take a spill in this second video, but I was fine, thanks to my safety gear. (Note to self, keep both hands on the handlebars at all times….)


So far, the Electric Ice Scooter has been a LOT of fun! It tows rather well. I tried towing a sled with a test weight to try it out, and once I was confident that I wasn't going to flip the sled, I took a trip out with the Little Girl in tow.


There's still room for improvement. I might see about making a nicer-looking deck from some other material. I also haven't been able to figure out the wiring on the motor controller to put in a dedicated ON/OFF switch yet, and it would be more convenient to be able to plug in a battery charger without having to take off the deck. The belt got out of alignment while shooting that second test run video. I re-adjusted it and tightened it down since then.

Top speed so far is 7 miles per hour, which is about as fast as I want to travel on glare ice. Battery capacity is great. I started with 12.8 volts per battery. After playing on the ice for about 45 minutes, voltage was at 12.5V.

I've gotten plenty of looks so far as well. Most people are rather interested in the project, and get a kick out of it. I'm also pleased with how the "ankle" works. Because where the bolt goes through the skate and it is horizontal, the skate blade can pivot up and down a bit. this is especially noticeable on tight turns. It allows that blade to be in full contact with the ice at all times, even while turning and tilting side-to-side.

If this looks like a fun project to you, why don't you make one? Be safe and have fun!

If you like my alternative vehicle projects, check out my blog at http://300mpg.org For other household DIY, see http://ecoprojecteer.net