3D Printed Orthosis Prototype (Not for Medical Use!)

by ZMorph in Workshop > 3D Printing

12824 Views, 138 Favorites, 0 Comments

3D Printed Orthosis Prototype (Not for Medical Use!)

3D_Printed_Rehabilitation_Orthosis_Design_01.jpg
Assembly_Guide_ZMorph.jpg

This 3D printed rehabilitation orthosis was developed and fitted to a specific person’s hand and probably won’t fit other people unless the source files are properly adjusted in 3D modeling software. ZMorph and Eliza Wrobel who designed this device are releasing these source files only for educational and hobby non-commercial use.

This is not a certified rehabilitation device and shouldn’t be used as one!

The free package contains 58 files that enable 3D printing of all parts needed to assemble the 3D printed rehabilitation orthosis working prototype.

After unzipping the package there are folders dedicated to all functional sections of the orthosis. Follow the next steps and check the Assembly Guide for details on how to connect specific parts.

You can also read more about the making of 3D printed rehabilitation orthosis on our blog.

Enjoy and remember that any type of medical or other commercial use is prohibited!

3D Printing From STL Files

3D_Printed_Rehabilitation_Orthosis_Design_10.jpg
orthosis_voxelizer.png

STL files can be easily transformed into G-codes in 3D printing software and prepared for printing. Smaller parts can be printed in the required number of copies - just multiply them in your 3D printing software.

You can also open several files and put them on a worktable in 3D printing software. We used free Voxelizer software and then printed the entire prototype on ZMorph 2.0 SX Multitool 3D Printer.

We recommend using ABS filament for the entire device.

In the next step, you can find the number of copies of each part you need for assembling the device.

Number of Parts That You Need to Assemble the Device

3D_Design_in_Voxelizer.jpg
3D_Printed_Rehabilitation_Orthosis_Design_09.jpg

In the Assembly guide, you can find that number + letter in the name of the file represents a certain part and their position in the device:

  • 0 - main husk
  • 1 - finger 1
  • 2 - finger 2
  • 3 - finger 3
  • 4 - finger 4
  • 5 - finger 5
  • 6 - lever mechanism
  • 7 - lever pin

Total number of copies needed to assembly the device:

  • g - 18 copies
  • h - 5 copies
  • I - 4 copies + 1 copy of 5i for thumb
  • k - 5 copies
  • l - 4 copies
  • 7 - 2 copies

If not listed above, then every other part requires only one copy.

We recommend to print the main husk upright in a closed machine. This proved to be the most effective way to print this big part fast and without cracks.

Finishing Touches

3D_Printed_Rehabilitation_Orthosis_Design_11.jpg
3D_Printed_Rehabilitation_Orthosis_Design_03.jpg
3D_Printed_Rehabilitation_Orthosis_Design_02.jpg

When your parts are printed you should remove the support with a sharp knife and clean softly with sandpaper.

Use acetone to give them additional polish too.

The only non-printed part that can be added is a Velcro strap in order to fasten the orthosis around the hand but it’s totally optional.

You can also read more about the making of 3D printed rehabilitation orthosis on our blog.

Enjoy and remember that any type of medical or other commercial use is prohibited!